• search hit 1 of 2
Back to Result List

Phenology, roots and reproductive allocation, but not the LHS scheme, shape ecotypes along an aridity gradient

  • This study tested systematically at two spatial scales for key traits shaping within-species ecotypic differentiation under increasing aridity. It assessed different plant strategy theories and considered potential implications for climate change. We studied the widespread Mediterranean grass Brachypodium hybridum. At large scale, we tested 14 populations along a steep natural aridity gradient (114-954 mm annual rainfall). At small scale, we tested the microclimatic contrast between plants originating from corresponding north (more mesic) and south (more arid) exposed hillslopes. Fifteen traits were measured in the greenhouse, including the popular traits of the LeafHeight- Seed scheme (SLA, plant height, seed mass), several traits on phenology, architecture, growth, fitness, and rarely measured root traits. Clear trait shifts indicated ecotypic differentiation along the large-scale gradient. Earlier phenology, higher reproductive allocation and reduced root investment characterized arid ecotypes. Surprisingly, no trait of theThis study tested systematically at two spatial scales for key traits shaping within-species ecotypic differentiation under increasing aridity. It assessed different plant strategy theories and considered potential implications for climate change. We studied the widespread Mediterranean grass Brachypodium hybridum. At large scale, we tested 14 populations along a steep natural aridity gradient (114-954 mm annual rainfall). At small scale, we tested the microclimatic contrast between plants originating from corresponding north (more mesic) and south (more arid) exposed hillslopes. Fifteen traits were measured in the greenhouse, including the popular traits of the LeafHeight- Seed scheme (SLA, plant height, seed mass), several traits on phenology, architecture, growth, fitness, and rarely measured root traits. Clear trait shifts indicated ecotypic differentiation along the large-scale gradient. Earlier phenology, higher reproductive allocation and reduced root investment characterized arid ecotypes. Surprisingly, no trait of the Leaf-Height-Seed scheme shifted with aridity and root responses were opposite to the theory of optimal resource partitioning. Trait differences between north and south exposures were small, often inconsistent between sites, and poorly matched the trends across the large-scale gradient. South exposures thus appeared unlikely to harbour distinct ecotypes better adapted to aridity. Our findings highlight ecotypes as a crucial way how species span environmental gradients, yet underpinning their restriction at small spatial scales. In combination, this possibly renders populations more vulnerable to climate change. We draw attention to specific, partly unexpected traits and pose the question whether the LeafHeight- Seed scheme has limited applicability for intraspecific investigations in drylands.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Susanne Kurze, Nils Bareither, Johannes MetzORCiDGND
DOI:https://doi.org/10.1016/j.ppees.2017.09.004
ISSN:1433-8319
Title of parent work (English):Perspectives in plant ecology, evolution and systematics
Publisher:Elsevier
Place of publishing:Jena
Publication type:Article
Language:English
Year of first publication:2017
Publication year:2017
Release date:2020/04/20
Tag:Brachypodium hybridum; Local adaptation; Rainfall gradient; SLA; Seed mass; Slope exposure
Volume:29
Number of pages:10
First page:20
Last Page:29
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.