The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 9 of 41264
Back to Result List

Enabling Big Data security analytics for advanced network attack detection

Ermöglichung von Big Data Sicherheitsanalysen für erweiterte Angriffserkennung in Netzwerken

  • The last years have shown an increasing sophistication of attacks against enterprises. Traditional security solutions like firewalls, anti-virus systems and generally Intrusion Detection Systems (IDSs) are no longer sufficient to protect an enterprise against these advanced attacks. One popular approach to tackle this issue is to collect and analyze events generated across the IT landscape of an enterprise. This task is achieved by the utilization of Security Information and Event Management (SIEM) systems. However, the majority of the currently existing SIEM solutions is not capable of handling the massive volume of data and the diversity of event representations. Even if these solutions can collect the data at a central place, they are neither able to extract all relevant information from the events nor correlate events across various sources. Hence, only rather simple attacks are detected, whereas complex attacks, consisting of multiple stages, remain undetected. Undoubtedly, security operators of large enterprises are faced with aThe last years have shown an increasing sophistication of attacks against enterprises. Traditional security solutions like firewalls, anti-virus systems and generally Intrusion Detection Systems (IDSs) are no longer sufficient to protect an enterprise against these advanced attacks. One popular approach to tackle this issue is to collect and analyze events generated across the IT landscape of an enterprise. This task is achieved by the utilization of Security Information and Event Management (SIEM) systems. However, the majority of the currently existing SIEM solutions is not capable of handling the massive volume of data and the diversity of event representations. Even if these solutions can collect the data at a central place, they are neither able to extract all relevant information from the events nor correlate events across various sources. Hence, only rather simple attacks are detected, whereas complex attacks, consisting of multiple stages, remain undetected. Undoubtedly, security operators of large enterprises are faced with a typical Big Data problem. In this thesis, we propose and implement a prototypical SIEM system named Real-Time Event Analysis and Monitoring System (REAMS) that addresses the Big Data challenges of event data with common paradigms, such as data normalization, multi-threading, in-memory storage, and distributed processing. In particular, a mostly stream-based event processing workflow is proposed that collects, normalizes, persists and analyzes events in near real-time. In this regard, we have made various contributions in the SIEM context. First, we propose a high-performance normalization algorithm that is highly parallelized across threads and distributed across nodes. Second, we are persisting into an in-memory database for fast querying and correlation in the context of attack detection. Third, we propose various analysis layers, such as anomaly- and signature-based detection, that run on top of the normalized and correlated events. As a result, we demonstrate our capabilities to detect previously known as well as unknown attack patterns. Lastly, we have investigated the integration of cyber threat intelligence (CTI) into the analytical process, for instance, for correlating monitored user accounts with previously collected public identity leaks to identify possible compromised user accounts. In summary, we show that a SIEM system can indeed monitor a large enterprise environment with a massive load of incoming events. As a result, complex attacks spanning across the whole network can be uncovered and mitigated, which is an advancement in comparison to existing SIEM systems on the market.show moreshow less
  • Die letzten Jahre haben gezeigt, dass die Komplexität von Angriffen auf Unternehmensnetzwerke stetig zunimmt. Herkömmliche Sicherheitslösungen, wie Firewalls, Antivirus-Programme oder generell Intrusion Detection Systeme (IDS), sind nicht mehr ausreichend, um Unternehmen vor solch ausgefeilten Angriffen zu schützen. Ein verbreiteter Lösungsansatz für dieses Problem ist das Sammeln und Analysieren von Ereignissen innerhalb des betroffenen Unternehmensnetzwerks mittels Security Information and Event Management (SIEM) Systemen. Die Mehrheit der derzeitigen SIEM-Lösungen auf dem Markt ist allerdings nicht in er Lage, das riesige Datenvolumen und die Vielfalt der Ereignisdarstellungen zu bewältigen. Auch wenn diese Lösungen die Daten an einem zentralen Ort sammeln können, können sie weder alle relevanten Informationen aus den Ereignissen extrahieren noch diese über verschiedene Quellen hinweg korrelieren. Aktuell werden daher nur relativ einfache Angriffe erkannt, während komplexe mehrstufige Angriffe unentdeckt bleiben. Zweifellos stehenDie letzten Jahre haben gezeigt, dass die Komplexität von Angriffen auf Unternehmensnetzwerke stetig zunimmt. Herkömmliche Sicherheitslösungen, wie Firewalls, Antivirus-Programme oder generell Intrusion Detection Systeme (IDS), sind nicht mehr ausreichend, um Unternehmen vor solch ausgefeilten Angriffen zu schützen. Ein verbreiteter Lösungsansatz für dieses Problem ist das Sammeln und Analysieren von Ereignissen innerhalb des betroffenen Unternehmensnetzwerks mittels Security Information and Event Management (SIEM) Systemen. Die Mehrheit der derzeitigen SIEM-Lösungen auf dem Markt ist allerdings nicht in er Lage, das riesige Datenvolumen und die Vielfalt der Ereignisdarstellungen zu bewältigen. Auch wenn diese Lösungen die Daten an einem zentralen Ort sammeln können, können sie weder alle relevanten Informationen aus den Ereignissen extrahieren noch diese über verschiedene Quellen hinweg korrelieren. Aktuell werden daher nur relativ einfache Angriffe erkannt, während komplexe mehrstufige Angriffe unentdeckt bleiben. Zweifellos stehen Sicherheitsverantwortliche großer Unternehmen einem typischen Big Data-Problem gegenüber. In dieser Arbeit wird ein prototypisches SIEM-System vorgeschlagen und implementiert, welches den Big Data-Anforderungen von Ereignisdaten mit gängigen Paradigmen, wie Datennormalisierung, Multithreading, In-Memory/Speicherung und verteilter Verarbeitung begegnet. Insbesondere wird ein größtenteils stream-basierter Workflow für die Ereignisverarbeitung vorgeschlagen, der Ereignisse in nahezu Echtzeit erfasst, normalisiert, persistiert und analysiert. In diesem Zusammenhang haben wir verschiedene Beiträge im SIEM-Kontext geleistet. Erstens schlagen wir einen Algorithmus für die Hochleistungsnormalisierung vor, der, über Threads hinweg, hochgradig parallelisiert und auf Knoten verteilt ist. Zweitens persistieren wir in eine In-Memory-Datenbank, um im Rahmen der Angriffserkennung eine schnelle Abfrage und Korrelation von Ereignissen zu ermöglichen. Drittens schlagen wir verschiedene Analyseansätze, wie beispielsweise die anomalie- und musterbasierte Erkennung, vor, die auf normalisierten und korrelierten Ereignissen basieren. Damit können wir bereits bekannte als auch bisher unbekannte Arten von Angriffen erkennen. Zuletzt haben wir die Integration von sogenannter Cyber Threat Intelligence (CTI) in den Analyseprozess untersucht. Als Beispiel erfassen wir veröffentlichte Identitätsdiebstähle von großen Dienstanbietern, um Nutzerkonten zu identifizieren, die möglicherweise in nächster Zeit durch den Missbrauch verloren gegangener Zugangsdaten kompromittiert werden könnten. Zusammenfassend zeigen wir, dass ein SIEM-System tatsächlich ein großes Unternehmensnetzwerk mit einer massiven Menge an eingehenden Ereignissen überwachen kann. Dadurch können komplexe Angriffe, die sich über das gesamte Netzwerk erstrecken, aufgedeckt und abgewehrt werden. Dies ist ein Fortschritt gegenüber den auf dem Markt vorhandenen SIEM-Systemen.show moreshow less

Download full text files

Export metadata

Metadaten
Author:David JaegerORCiD
URN:urn:nbn:de:kobv:517-opus4-435713
DOI:https://doi.org/10.25932/publishup-43571
Referee:Christoph MeinelORCiDGND, Norbert PohlmannGND, Michael Meier
Advisor:Christoph Meinel
Document Type:Doctoral Thesis
Language:English
Year of Completion:2018
Publishing Institution:Universität Potsdam
Granting Institution:Universität Potsdam
Date of final exam:2019/09/13
Release Date:2019/11/06
Tag:Angriffserkennung; Big Data; Ereignisnormalisierung; IDS; Netzwerksicherheit; SIEM; mehrstufiger Angriff
Big Data; IDS; SIEM; event normalization; intrusion detection; multi-step attack; network security
Pagenumber:XVII, 201, XXXIII
RVK - Regensburg Classification:ST 277
Organizational units:Digital Engineering Fakultät / Hasso-Plattner-Institut für Digital Engineering GmbH
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 000 Informatik, Informationswissenschaft, allgemeine Werke
Licence (German):License LogoCreative Commons - Namensnennung, Nicht kommerziell, Weitergabe zu gleichen Bedingungen 4.0 International