The physics of shape changes in biology

Die Physik von Formveränderungen in der Biologie

  • Biological materials, in addition to having remarkable physical properties, can also change shape and volume. These shape and volume changes allow organisms to form new tissue during growth and morphogenesis, as well as to repair and remodel old tissues. In addition shape or volume changes in an existing tissue can lead to useful motion or force generation (actuation) that may even still function in the dead organism, such as in the well known example of the hygroscopic opening or closing behaviour of the pine cone. Both growth and actuation of tissues are mediated, in addition to biochemical factors, by the physical constraints of the surrounding environment and the architecture of the underlying tissue. This habilitation thesis describes biophysical studies carried out over the past years on growth and swelling mediated shape changes in biological systems. These studies use a combination of theoretical and experimental tools to attempt toBiological materials, in addition to having remarkable physical properties, can also change shape and volume. These shape and volume changes allow organisms to form new tissue during growth and morphogenesis, as well as to repair and remodel old tissues. In addition shape or volume changes in an existing tissue can lead to useful motion or force generation (actuation) that may even still function in the dead organism, such as in the well known example of the hygroscopic opening or closing behaviour of the pine cone. Both growth and actuation of tissues are mediated, in addition to biochemical factors, by the physical constraints of the surrounding environment and the architecture of the underlying tissue. This habilitation thesis describes biophysical studies carried out over the past years on growth and swelling mediated shape changes in biological systems. These studies use a combination of theoretical and experimental tools to attempt to elucidate the physical mechanisms governing geometry controlled tissue growth and geometry constrained tissue swelling. It is hoped that in addition to helping understand fundamental processes of growth and morphogenesis, ideas stemming from such studies can also be used to design new materials for medicine and robotics.show moreshow less
  • Biologische Materialien verfügen nicht nur über außergewöhnliche physikalische Eigenschaften, sie können auch ihre Form und ihr Volumen verändern. Ermöglicht werden diese Anpassungen während der Morphogenese und des Wachstums sowohl durch die Bildung neuer Gewebe, als auch die Umformung und/oder Reparatur alter Gewebe. Zusätzlich führen Form? oder Volumenänderungen in Geweben häufig zur Generierung von Kräften (Aktuation) und daraus resultierenden Bewegungen. Ein bekanntes Beispiel dafür ist der feuchtigkeitsgetriebene Öffnungs? und Schließmechanismus der Schuppen von Kiefernzapfen, die ausschließlich aus totem Gewebe ohne aktiven Metabolismus bestehen. Bestimmend für Wachstum und Aktuation sind dabei nicht nur biochemische Faktoren sondern auch physikalische Randbedingung definiert durch die Umgebung und die Gewebearchitektur. Die vorliegende Habilitationsschrift basiert auf biophysikalischen Arbeiten der Gruppe „BiomimeticBiologische Materialien verfügen nicht nur über außergewöhnliche physikalische Eigenschaften, sie können auch ihre Form und ihr Volumen verändern. Ermöglicht werden diese Anpassungen während der Morphogenese und des Wachstums sowohl durch die Bildung neuer Gewebe, als auch die Umformung und/oder Reparatur alter Gewebe. Zusätzlich führen Form? oder Volumenänderungen in Geweben häufig zur Generierung von Kräften (Aktuation) und daraus resultierenden Bewegungen. Ein bekanntes Beispiel dafür ist der feuchtigkeitsgetriebene Öffnungs? und Schließmechanismus der Schuppen von Kiefernzapfen, die ausschließlich aus totem Gewebe ohne aktiven Metabolismus bestehen. Bestimmend für Wachstum und Aktuation sind dabei nicht nur biochemische Faktoren sondern auch physikalische Randbedingung definiert durch die Umgebung und die Gewebearchitektur. Die vorliegende Habilitationsschrift basiert auf biophysikalischen Arbeiten der Gruppe „Biomimetic Actuation and Tissue Growth“ zu wachstums? und quellungsbedingten Formänderungen biologischer Systeme. Physikalische Mechanismen von Gewebewachstum und Quellprozessen unter dem kontrollierenden Einfluss von geometrischen Randbedingungen werden mit theoretischen und experimentellen Methoden untersucht und erklärt. Die gewonnenen Ergebnisse tragen nicht nur zum Verständnis grundlegender Wachstums? und Morphogeneseprozesse bei, sie könnten zukünftig auch für die Entwicklung neuer Materialien für die Medizin und Robotik von Nutzen sein.show moreshow less

Download full text files

Export metadata

Metadaten
Author details:John William Chapman DunlopORCiDGND
URN:urn:nbn:de:kobv:517-opus4-96554
Supervisor(s):Peter Fratzl
Publication type:Habilitation Thesis
Language:English
Publication year:2015
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2016/09/26
Release date:2016/09/29
Tag:Aktuation; Biomechanik; Biophysik; Gewebewachstum; Morphogenese
actuation; biomechanics; biophysics; swelling; tissue growth
Number of pages:vii, 202
RVK - Regensburg classification:UM 1080, WD 2100
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
PACS classification:80.00.00 INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY
License (German):License LogoKeine öffentliche Lizenz: Urheberrechtsschutz
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.