Poly(ionic liquid) stabilizers and new synthetic approaches

Polyionische Flüssigkeiten als Stabilisatoren und neue Synthesewege

  • The main focus of the present thesis was to investigate the stabilization ability of poly(ionic liquid)s (PILs) in several examples as well as develop novel chemical structures and synthetic routes of PILs. The performed research can be specifically divided into three parts that include synthesis and application of hybrid material composed of PIL and cellulose nanofibers (CNFs), thiazolium-containing PILs, and main-chain imidazolium-type PILs. In the first chapter, a vinylimidazolium-type IL was polymerized in water in the presence of CNFs resulting in the in situ electrostatic grafting of polymeric chains onto the surface of CNFs. The synthesized hybrid material merged advantages of its two components, that is, superior mechanical strength of CNFs and anion dependent solution properties of PILs. In contrast to unmodified CNFs, the hybrid could be stabilized and processed in organic solvents enabling its application as reinforcing agent for porous polyelectrolyte membranes. In the second part, PILs and ionic polymers containingThe main focus of the present thesis was to investigate the stabilization ability of poly(ionic liquid)s (PILs) in several examples as well as develop novel chemical structures and synthetic routes of PILs. The performed research can be specifically divided into three parts that include synthesis and application of hybrid material composed of PIL and cellulose nanofibers (CNFs), thiazolium-containing PILs, and main-chain imidazolium-type PILs. In the first chapter, a vinylimidazolium-type IL was polymerized in water in the presence of CNFs resulting in the in situ electrostatic grafting of polymeric chains onto the surface of CNFs. The synthesized hybrid material merged advantages of its two components, that is, superior mechanical strength of CNFs and anion dependent solution properties of PILs. In contrast to unmodified CNFs, the hybrid could be stabilized and processed in organic solvents enabling its application as reinforcing agent for porous polyelectrolyte membranes. In the second part, PILs and ionic polymers containing two types of thiazolium repeating units were synthesized. Such polymers displayed counterion dependent thermal stability and solubility in organic solvents of various dielectric constants. This new class of PILs was tested as stabilizers and phase transfer agents for carbon nanotubes in aqueous and organic media, and as binder materials to disperse electroactive powders and carbon additives in solid electrode in lithium-ion batteries. The incorporation of S and N atoms into the polymeric structures make such PILs also potential precursors for S, N - co-doped carbons. In the last chapter, reactants originating from biomass were successfully harnessed to synthesize main-chain imidazolium-type PILs. An imidazolium-type diester IL obtained via a modified Debus-Radziszewski reaction underwent transesterification with diol in a polycondensation reaction. This yielded a polyester-type PIL which CO2 sorption properties were investigated. In the next step, the modified Debus-Radziszewski reaction was further applied to synthesize main-chain PILs according to a convenient, one-step protocol, using water as a green solvent and simple organic molecules as reagents. Depending on the structure of the employed diamine, the synthesized PILs after anion exchange showed superior thermal stability with unusually high carbonization yields. Overall, the outcome of these studies will actively contribute to the current research on PILs by introducing novel PIL chemical structures, improved synthetic routes, and new examples of stabilized materials. The synthesis of main-chain imidazolium-type PILs by a modified Debus-Radziszewski reaction is of a special interest for the future work on porous ionic liquid networks as well as colloidal PIL nanoparticles.show moreshow less
  • Im Mittelpunkt der vorliegenden Arbeit stand die Entwicklung neuer polymerer ionischen Flüssigkeiten (PILs) mittels neuer Synthesewege als auch auf diesen PILs basierenden Kompositmaterialien. Die hergestellten Materialien wurden folgend hinsichtlich ihrer Tauglichkeit als Stabilisatoren, Phasentransferreagenzien, „binder“ oder CO2-Absorber untersucht. Die Untersuchungen lassen sich in drei Teile untergliedern und beinhalten Herstellung und Anwendungsuntersuchungen von Hybridmaterialien basierend auf PILs und Cellulosefasern im Nanometerbereich (CNF), von PILs mit Thiazoliumgruppen und schließlich PILs welche teilweise oder vollständig aus Biomaterialien hergestellt wurden mit Imidazoliumgruppen in der Hauptkette. In Gegenwart von CNF wurde eine vinylimidazoliumbasierte ionische Flüssigkeit (IL) in Wasser polymerisiert. Dies führte in situ zu einem elektrostatischen angraften der Ketten auf der Oberfläche der CNFs. Diese Kompositmaterialien vereinigen die Vorteile beider Komponenten, die außerordentliche mechanischeIm Mittelpunkt der vorliegenden Arbeit stand die Entwicklung neuer polymerer ionischen Flüssigkeiten (PILs) mittels neuer Synthesewege als auch auf diesen PILs basierenden Kompositmaterialien. Die hergestellten Materialien wurden folgend hinsichtlich ihrer Tauglichkeit als Stabilisatoren, Phasentransferreagenzien, „binder“ oder CO2-Absorber untersucht. Die Untersuchungen lassen sich in drei Teile untergliedern und beinhalten Herstellung und Anwendungsuntersuchungen von Hybridmaterialien basierend auf PILs und Cellulosefasern im Nanometerbereich (CNF), von PILs mit Thiazoliumgruppen und schließlich PILs welche teilweise oder vollständig aus Biomaterialien hergestellt wurden mit Imidazoliumgruppen in der Hauptkette. In Gegenwart von CNF wurde eine vinylimidazoliumbasierte ionische Flüssigkeit (IL) in Wasser polymerisiert. Dies führte in situ zu einem elektrostatischen angraften der Ketten auf der Oberfläche der CNFs. Diese Kompositmaterialien vereinigen die Vorteile beider Komponenten, die außerordentliche mechanische Stabilität der CNFs und die vielseitigen mittels Gegenionen einstellbaren Lösungseigenschaften der PIL. Beispielsweise können diese Hybridmaterialien im Gegensatz zu den unmodifizierten CNFs in organischen Lösungsmitteln und somit zur Verstärkung für poröse Polyelektrolytmembranen eingesetzt werden. Im zweiten Teil wurden PILs und ioniosche Polymere synthetisiert mit Thiazoliumkationen in den Monomerbausteinen. Diese Polymere zeigten eine vom Gegenion abhängige thermische Stabilität und Löslichkeit in Lösungsmitteln verschiedenster Dielektrizitätskonstanten. Diese neue Klasse der PILs bzw. ionischen Polymere wurde hinsichtlich der Nutzbarkeit als Vorläufer für Stickstoff- und Schwefel-codotierte Kohlenstoffsysteme, Stabilisator sowie Phasentransferreagenz für „carbon nanotubes“ in wässrigem und organischen Lösungsmitteln und „binder“ für Elektrodenmaterialien in Lithiumionenbatterien. Im letzten Teil wurden aus Biomaterialien die Ausgangsstoffe für PILs mit imidazoliumbasierter Hauptkette gewonnen. Hierzu wurde der imidazoliumbasierende Diester mittels abgewandelter Debus-Radziszewski-Reaktion gewonnen und eine Umesterung mittels eines ebenfalls aus Biomaterialien stammenden Diols vorgenommen. Die erhaltene polyesterbasierte PIL wurde folgend hinsichtlich ihres CO2 – Absorbtionspotentials untersucht. Die geänderte Debus-Radziszewski-Reaktion wurde folgend für eine PIL-Einstufensynthese mit Wasser als grünem Lösungsmittel und einfachen hauptsächlich aus Biomasse gewonnen Reagenzien herangezogen. Abhängig von den eingesetzten Diaminen und Gegenionen konnten für die hergestellten PILs hervorragende thermische Stabilitäten oder beträchtliche Karbonisierungsausbeuten erreicht werden, welche für PILs zu den höchsten publizierten Werten in der Literatur zählen. Die vorgelegten Studien stellen einen wichtigen Beitrag auf dem Gebiet der PIL-Forschung dar mit neuen PIL-Strukturen, verbesserten Synthesewegen und neuen Stabilisierungsmöglichkeiten. Die Synthese der Hauptkettenimidazolium-PIL mittels angepasster Debus-Radziszewski-Reaktion ist eine vielversprechende Methode sowohl für die Herstellung poröser IL-Netzwerke als auch kolloidaler PIL-Nanopartikel.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Konrad Grygiel
URN:urn:nbn:de:kobv:517-opus4-80367
Advisor:Markus Antonietti
Document Type:Doctoral Thesis
Language:English
Year of Completion:2015
Publishing Institution:Universität Potsdam
Granting Institution:Universität Potsdam
Date of final exam:2015/06/26
Release Date:2015/09/03
Tag:Thiazol-Salze; elektroaktive Polymere; ionische Flüssigkeit; ionischen Polymere
Debus-Radziszewski polymerization; ionic liquids; ionic polymers; polymerised ionic liquids; thiazolium
Pagenumber:vii, 126
RVK - Regensburg Classification:VK 5070, VK 8007
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Licence (German):License LogoCreative Commons - Namensnennung, 4.0 International