Particle-in-cell simulations of perpendicular supernova shock fronts

Particle-in-Cell Simulationen von senkrechten Supernova Schock-Fronten

  • The origin of cosmic rays was the subject of several studies for over a century. The investigations done within this dissertation are one small step to shed some more light on this mystery. Locating the sources of cosmic rays is not trivial due to the interstellar magnetic field. However, the Hillas criterion allows us to arrive at the conclusion that supernova remnants are our main suspect for the origin of galactic cosmic rays. The mechanism by which they are accelerating particles is found within the field of shock physics as diffusive shock acceleration. To allow particles to enter this process also known as Fermi acceleration pre-acceleration processes like shock surfing acceleration and shock drift acceleration are necessary. Investigating the processes happening in the plasma shocks of supernova remnants is possible by utilising a simplified model which can be simulated on a computer using Particle-in-Cell simulations. We developed a new and clean setup to simulate the formation of a double shock, i.e., consisting of aThe origin of cosmic rays was the subject of several studies for over a century. The investigations done within this dissertation are one small step to shed some more light on this mystery. Locating the sources of cosmic rays is not trivial due to the interstellar magnetic field. However, the Hillas criterion allows us to arrive at the conclusion that supernova remnants are our main suspect for the origin of galactic cosmic rays. The mechanism by which they are accelerating particles is found within the field of shock physics as diffusive shock acceleration. To allow particles to enter this process also known as Fermi acceleration pre-acceleration processes like shock surfing acceleration and shock drift acceleration are necessary. Investigating the processes happening in the plasma shocks of supernova remnants is possible by utilising a simplified model which can be simulated on a computer using Particle-in-Cell simulations. We developed a new and clean setup to simulate the formation of a double shock, i.e., consisting of a forward and a reverse shock and a contact discontinuity, by the collision of two counter-streaming plasmas, in which a magnetic field can be woven into. In a previous work, we investigated the processes at unmagnetised and at magnetised parallel shocks, whereas in the current work, we move our investigation on to magnetised perpendicular shocks. Due to a much stronger confinement of the particles to the collision region the perpendicular shock develops much faster than the parallel shock. On the other hand, this leads to much weaker turbulence. We are able to find indications for shock surfing acceleration and shock drift acceleration happening at the two shocks leading to populations of pre-accelerated particles that are suitable as a seed population to be injected into further diffusive shock acceleration to be accelerated to even higher energies. We observe the development of filamentary structures in the shock ramp of the forward shock, but not at the reverse shock. This leads to the conclusion that the development of such structures in the shock ramp of quasi-perpendicular collisionless shocks might not necessarily be determined by the existence of a critical sonic Mach number but by a critical shock speed. The results of the investigations done within this dissertation might be useful for further studies of oblique shocks and for studies using hybrid or magnetohydrodynamic simulations. Together with more sophisticated observational methods, these studies will help to bring us closer to an answer as to how particles can be accelerated in supernova remnants and eventually become cosmic rays that can be detected on Earth.show moreshow less
  • Der Ursprung der kosmischen Strahlung war seit über einem Jahrhundert Gegenstand von zahlreichen Untersuchungen. Die Untersuchungen, welche innerhalb dieser Dissertation gemacht wurden, sind ein kleiner Schritt dazu etwas mehr Licht auf dieses Geheimnis zu werfen. Die Quellen der kosmischen Strahlung herauszufinden stellt sich aufgrund des interstellaren Magnetfeldes als nicht trivial heraus. Jedoch erlaubt uns das Hillas-Kriterium die Schlussfolgerung, dass Supernovaüberreste unsere Hauptverdächtigen für den Ursprung der galaktischen kosmischen Strahlung sind. Der Mechanismus, durch welchen sie Teilchen beschleunigen, kann im Gebiet der Schock-Physik in Form der diffusen Schockbeschleunigung gefunden werden. Um den Teilchen zu ermöglichen an diesem Prozess, der auch als Fermi-Beschleunigung bekannt ist, teilzunehmen, sind Vorbeschleunigungsprozesse wie die Schock-Surfing-Beschleunigung und die Schock-Drift-Beschleunigung nötig. Die Untersuchung der Prozesse in Plasma-Schocks ist durch die Verwendung eines vereinfachten ModellsDer Ursprung der kosmischen Strahlung war seit über einem Jahrhundert Gegenstand von zahlreichen Untersuchungen. Die Untersuchungen, welche innerhalb dieser Dissertation gemacht wurden, sind ein kleiner Schritt dazu etwas mehr Licht auf dieses Geheimnis zu werfen. Die Quellen der kosmischen Strahlung herauszufinden stellt sich aufgrund des interstellaren Magnetfeldes als nicht trivial heraus. Jedoch erlaubt uns das Hillas-Kriterium die Schlussfolgerung, dass Supernovaüberreste unsere Hauptverdächtigen für den Ursprung der galaktischen kosmischen Strahlung sind. Der Mechanismus, durch welchen sie Teilchen beschleunigen, kann im Gebiet der Schock-Physik in Form der diffusen Schockbeschleunigung gefunden werden. Um den Teilchen zu ermöglichen an diesem Prozess, der auch als Fermi-Beschleunigung bekannt ist, teilzunehmen, sind Vorbeschleunigungsprozesse wie die Schock-Surfing-Beschleunigung und die Schock-Drift-Beschleunigung nötig. Die Untersuchung der Prozesse in Plasma-Schocks ist durch die Verwendung eines vereinfachten Modells möglich, welches sich mit Hilfe von Particle-in-Cell Simulationen auf einem Computer simulieren lässt. Wir haben einen neuen und sauberen Setup entwickelt um die Entstehung eines Doppelschocks, bestehend aus einem vorwärts und einem rückwärts gerichtet Schock und einer Kontakt-Diskontinuität, durch die Kollision zweier gegeneinander strömender Plasmen, in welche ein Magnetfeld eingelagert werden kann, zu simulieren. In einer vorhergehenden Arbeit haben wir bereits die Prozesse an unmagnetisierten und an magnetisierten parallelen Schocks untersucht, weshalb wir in der vorliegenden Arbeit zu der Untersuchung magnetisierter senkrechter Schocks weiter gegangen sind. Aufgrund eines sehr viel stärkeren Einfangens der Teilchen in der Kollisionsregion, entwickelt sich der senkrechte Schock sehr viel schneller als der parallele Schock. Andererseits führt dies zu einer viel schwächeren Turbulenz. Wir finden Anzeichen für Schock-Surfing-Beschleunigung und Schock-Drift-Beschleunigung in beiden Schocks, welche Populationen von vorbeschleunigten Teilchen erzeugen, die wiederum als Ausgangspopulation für die Injektion in die diffusive Schock-Beschleunigung geeignet sind um zu noch höheren Energien beschleunigt zu werden. Wir beobachten die Entwicklung von Filamentstrukturen in der Schockrampe des vorwärts gerichteten Schocks, jedoch nicht im rückwärts gerichtet Schock. Dies führt zu der Schlussfolgerung, dass die Entwicklung dieser Strukturen in der Schockrampe von quasi-senkrechten kollisionsfreien Schocks nicht notwendigerweise durch die Existenz einer kritischen sonischen Machzahl bestimmt ist, sondern durch eine kritische Schock-Geschwindigkeit. Die Ergebnisse der Untersuchungen in dieser Dissertation können sich für weiterführende Untersuchungen von schrägen Schocks und für Untersuchungen mit Hilfe von hybriden oder magnetohydrodynamischen Simulationen als nützlich erweisen. Zusammen mit ausgefeilteren Beobachtungsmethoden helfen uns diese Untersuchungen dabei näher an eine Antwort auf die Frage zu kommen, wie Teilchen in Supernovaüberresten beschleunigt werden können um schließlich als kosmische Strahlung auf der Erde detektiert werden zu können.show moreshow less

Download full text files

Export metadata

Metadaten
Author:Volkmar Wieland
URN:urn:nbn:de:kobv:517-opus4-74532
Advisor:Martin Pohl
Document Type:Doctoral Thesis
Language:English
Year of Completion:2015
Publishing Institution:Universität Potsdam
Granting Institution:Universität Potsdam
Date of final exam:2015/03/16
Release Date:2015/04/01
Tag:Supernovaüberreste; kosmische Strahlung
cosmic rays; particle-in-cell simulations; supernova remnants
Pagenumber:v, 89
RVK - Regensburg Classification:US 1080, US 4600
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):License LogoCreative Commons - Namensnennung, 4.0 International