What's in a query : analyzing, predicting, and managing linked data access

Was ist in einer Anfrage : Analyse, Vorhersage und Verwaltung von Zugriffen auf Linked Data

  • The term Linked Data refers to connected information sources comprising structured data about a wide range of topics and for a multitude of applications. In recent years, the conceptional and technical foundations of Linked Data have been formalized and refined. To this end, well-known technologies have been established, such as the Resource Description Framework (RDF) as a Linked Data model or the SPARQL Protocol and RDF Query Language (SPARQL) for retrieving this information. Whereas most research has been conducted in the area of generating and publishing Linked Data, this thesis presents novel approaches for improved management. In particular, we illustrate new methods for analyzing and processing SPARQL queries. Here, we present two algorithms suitable for identifying structural relationships between these queries. Both algorithms are applied to a large number of real-world requests to evaluate the performance of the approaches and the quality of their results. Based on this, we introduce different strategies enabling optimizedThe term Linked Data refers to connected information sources comprising structured data about a wide range of topics and for a multitude of applications. In recent years, the conceptional and technical foundations of Linked Data have been formalized and refined. To this end, well-known technologies have been established, such as the Resource Description Framework (RDF) as a Linked Data model or the SPARQL Protocol and RDF Query Language (SPARQL) for retrieving this information. Whereas most research has been conducted in the area of generating and publishing Linked Data, this thesis presents novel approaches for improved management. In particular, we illustrate new methods for analyzing and processing SPARQL queries. Here, we present two algorithms suitable for identifying structural relationships between these queries. Both algorithms are applied to a large number of real-world requests to evaluate the performance of the approaches and the quality of their results. Based on this, we introduce different strategies enabling optimized access of Linked Data sources. We demonstrate how the presented approach facilitates effective utilization of SPARQL endpoints by prefetching results relevant for multiple subsequent requests. Furthermore, we contribute a set of metrics for determining technical characteristics of such knowledge bases. To this end, we devise practical heuristics and validate them through thorough analysis of real-world data sources. We discuss the findings and evaluate their impact on utilizing the endpoints. Moreover, we detail the adoption of a scalable infrastructure for improving Linked Data discovery and consumption. As we outline in an exemplary use case, this platform is eligible both for processing and provisioning the corresponding information.show moreshow less
  • Unter dem Begriff Linked Data werden untereinander vernetzte Datenbestände verstanden, die große Mengen an strukturierten Informationen für verschiedene Anwendungsgebiete enthalten. In den letzten Jahren wurden die konzeptionellen und technischen Grundlagen für die Veröffentlichung von Linked Data gelegt und verfeinert. Zu diesem Zweck wurden eine Reihe von Technologien eingeführt, darunter das Resource Description Framework (RDF) als Datenmodell für Linked Data und das SPARQL Protocol and RDF Query Language (SPARQL) zum Abfragen dieser Informationen. Während bisher hauptsächlich die Erzeugung und Bereitstellung von Linked Data Forschungsgegenstand war, präsentiert die vorliegende Arbeit neuartige Verfahren zur besseren Nutzbarmachung. Insbesondere werden dafür Methoden zur Analyse und Verarbeitung von SPARQL-Anfragen entwickelt. Zunächst werden daher zwei Algorithmen vorgestellt, die die strukturelle Ähnlichkeit solcher Anfragen bestimmen. Beide Algorithmen werden auf eine große Anzahl von authentischen Anfragen angewandt, um sowohlUnter dem Begriff Linked Data werden untereinander vernetzte Datenbestände verstanden, die große Mengen an strukturierten Informationen für verschiedene Anwendungsgebiete enthalten. In den letzten Jahren wurden die konzeptionellen und technischen Grundlagen für die Veröffentlichung von Linked Data gelegt und verfeinert. Zu diesem Zweck wurden eine Reihe von Technologien eingeführt, darunter das Resource Description Framework (RDF) als Datenmodell für Linked Data und das SPARQL Protocol and RDF Query Language (SPARQL) zum Abfragen dieser Informationen. Während bisher hauptsächlich die Erzeugung und Bereitstellung von Linked Data Forschungsgegenstand war, präsentiert die vorliegende Arbeit neuartige Verfahren zur besseren Nutzbarmachung. Insbesondere werden dafür Methoden zur Analyse und Verarbeitung von SPARQL-Anfragen entwickelt. Zunächst werden daher zwei Algorithmen vorgestellt, die die strukturelle Ähnlichkeit solcher Anfragen bestimmen. Beide Algorithmen werden auf eine große Anzahl von authentischen Anfragen angewandt, um sowohl die Güte der Ansätze als auch die ihrer Resultate zu untersuchen. Darauf aufbauend werden verschiedene Strategien erläutert, mittels derer optimiert auf Quellen von Linked Data zugegriffen werden kann. Es wird gezeigt, wie die dabei entwickelte Methode zur effektiven Verwendung von SPARQL-Endpunkten beiträgt, indem relevante Ergebnisse für mehrere nachfolgende Anfragen vorgeladen werden. Weiterhin werden in dieser Arbeit eine Reihe von Metriken eingeführt, die eine Einschätzung der technischen Eigenschaften solcher Endpunkte erlauben. Hierfür werden praxisrelevante Heuristiken entwickelt, die anschließend ausführlich mit Hilfe von konkreten Datenquellen analysiert werden. Die dabei gewonnenen Erkenntnisse werden erörtert und in Hinblick auf die Verwendung der Endpunkte interpretiert. Des Weiteren wird der Einsatz einer skalierbaren Plattform vorgestellt, die die Entdeckung und Nutzung von Beständen an Linked Data erleichtert. Diese Plattform dient dabei sowohl zur Verarbeitung als auch zur Verfügbarstellung der zugehörigen Information, wie in einem exemplarischen Anwendungsfall erläutert wird.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Johannes Lorey
URN:urn:nbn:de:kobv:517-opus-72312
Advisor:Felix Naumann
Document Type:Doctoral Thesis
Language:English
Year of Completion:2014
Publishing Institution:Universität Potsdam
Granting Institution:Universität Potsdam
Date of final exam:2014/10/27
Release Date:2014/11/26
Tag:Anfragepaare; Informationsvorhaltung; RDF; SPARQL; Vernetzte Daten
RDF; SPARQL; linked data; prefetching; query matching
RVK - Regensburg Classification:ST 205
Organizational units:An-Institute / Hasso-Plattner-Institut für Digital Engineering gGmbH
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):License LogoCreative Commons - Namensnennung, 4.0 International
Notes extern:CCS - Klassifikation: H3.5 , H3.4 , H3.3