Elliptic perturbations of dynamical systems with a proper node

  • The paper is devoted to asymptotic analysis of the Dirichlet problem for a second order partial differential equation containing a small parameter multiplying the highest order derivatives. It corresponds to a small perturbation of a dynamical system having a stationary solution in the domain. We focus on the case where the trajectories of the system go into the domain and the stationary solution is a proper node.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Oskar Sultanov, Leonid Kalyakin, Nikolai Nikolaevich TarkhanovORCiDGND
URN:urn:nbn:de:kobv:517-opus-70460
ISSN:2193-6943
Series (Serial Number):Preprints des Instituts für Mathematik der Universität Potsdam (3 (2014) 4)
Publisher:Universitätsverlag Potsdam
Place of publication:Potsdam
Document Type:Preprint
Language:English
Year of first Publication:2014
Year of Completion:2014
Publishing Institution:Universität Potsdam
Publishing Institution:Universitätsverlag Potsdam
Release Date:2014/05/12
Tag:asymptotic methods; dynamical system; singular perturbation
Volume:3
Issue:4
Pagenumber:12
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
MSC Classification:34-XX ORDINARY DIFFERENTIAL EQUATIONS / 34Dxx Stability theory [See also 37C75, 93Dxx] / 34D15 Singular perturbations
34-XX ORDINARY DIFFERENTIAL EQUATIONS / 34Exx Asymptotic theory / 34E20 Singular perturbations, turning point theory, WKB methods
76-XX FLUID MECHANICS (For general continuum mechanics, see 74Axx, or other parts of 74-XX) / 76Mxx Basic methods in fluid mechanics [See also 65-XX] / 76M45 Asymptotic methods, singular perturbations
Collections:Universität Potsdam / Schriftenreihen / Preprints des Instituts für Mathematik der Universität Potsdam, ISSN 2193-6943 / 2014
Publication Way:Universitätsverlag Potsdam
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht