Chaotic diffusion in nonlinear Hamiltonian systems

Chaotische Diffusion in nichtlinearen Hamiltonschen Systemen

  • This work investigates diffusion in nonlinear Hamiltonian systems. The diffusion, more precisely subdiffusion, in such systems is induced by the intrinsic chaotic behavior of trajectories and thus is called chaotic diffusion''. Its properties are studied on the example of one- or two-dimensional lattices of harmonic or nonlinear oscillators with nearest neighbor couplings. The fundamental observation is the spreading of energy for localized initial conditions. Methods of quantifying this spreading behavior are presented, including a new quantity called excitation time. This new quantity allows for a more precise analysis of the spreading than traditional methods. Furthermore, the nonlinear diffusion equation is introduced as a phenomenologic description of the spreading process and a number of predictions on the density dependence of the spreading are drawn from this equation. Two mathematical techniques for analyzing nonlinear Hamiltonian systems are introduced. The first one is based on a scaling analysis of the HamiltonianThis work investigates diffusion in nonlinear Hamiltonian systems. The diffusion, more precisely subdiffusion, in such systems is induced by the intrinsic chaotic behavior of trajectories and thus is called chaotic diffusion''. Its properties are studied on the example of one- or two-dimensional lattices of harmonic or nonlinear oscillators with nearest neighbor couplings. The fundamental observation is the spreading of energy for localized initial conditions. Methods of quantifying this spreading behavior are presented, including a new quantity called excitation time. This new quantity allows for a more precise analysis of the spreading than traditional methods. Furthermore, the nonlinear diffusion equation is introduced as a phenomenologic description of the spreading process and a number of predictions on the density dependence of the spreading are drawn from this equation. Two mathematical techniques for analyzing nonlinear Hamiltonian systems are introduced. The first one is based on a scaling analysis of the Hamiltonian equations and the results are related to similar scaling properties of the NDE. From this relation, exact spreading predictions are deduced. Secondly, the microscopic dynamics at the edge of spreading states are thoroughly analyzed, which again suggests a scaling behavior that can be related to the NDE. Such a microscopic treatment of chaotically spreading states in nonlinear Hamiltonian systems has not been done before and the results present a new technique of connecting microscopic dynamics with macroscopic descriptions like the nonlinear diffusion equation. All theoretical results are supported by heavy numerical simulations, partly obtained on one of Europe's fastest supercomputers located in Bologna, Italy. In the end, the highly interesting case of harmonic oscillators with random frequencies and nonlinear coupling is studied, which resembles to some extent the famous Discrete Anderson Nonlinear Schroedinger Equation. For this model, a deviation from the widely believed power-law spreading is observed in numerical experiments. Some ideas on a theoretical explanation for this deviation are presented, but a conclusive theory could not be found due to the complicated phase space structure in this case. Nevertheless, it is hoped that the techniques and results presented in this work will help to eventually understand this controversely discussed case as well.show moreshow less
  • Diese Arbeit beschäftigt sich mit dem Phänomen der Diffusion in nichtlinearen Systemen. Unter Diffusion versteht man normalerweise die zufallsmä\ss ige Bewegung von Partikeln durch den stochastischen Einfluss einer thermodynamisch beschreibbaren Umgebung. Dieser Prozess ist mathematisch beschrieben durch die Diffusionsgleichung. In dieser Arbeit werden jedoch abgeschlossene Systeme ohne Einfluss der Umgebung betrachtet. Dennoch wird eine Art von Diffusion, üblicherweise bezeichnet als Subdiffusion, beobachtet. Die Ursache dafür liegt im chaotischen Verhalten des Systems. Vereinfacht gesagt, erzeugt das Chaos eine intrinsische Pseudo-Zufälligkeit, die zu einem gewissen Grad mit dem Einfluss einer thermodynamischen Umgebung vergleichbar ist und somit auch diffusives Verhalten provoziert. Zur quantitativen Beschreibung dieses subdiffusiven Prozesses wird eine Verallgemeinerung der Diffusionsgleichung herangezogen, die Nichtlineare Diffusionsgleichung. Desweiteren wird die mikroskopische Dynamik des Systems mit analytischen MethodenDiese Arbeit beschäftigt sich mit dem Phänomen der Diffusion in nichtlinearen Systemen. Unter Diffusion versteht man normalerweise die zufallsmä\ss ige Bewegung von Partikeln durch den stochastischen Einfluss einer thermodynamisch beschreibbaren Umgebung. Dieser Prozess ist mathematisch beschrieben durch die Diffusionsgleichung. In dieser Arbeit werden jedoch abgeschlossene Systeme ohne Einfluss der Umgebung betrachtet. Dennoch wird eine Art von Diffusion, üblicherweise bezeichnet als Subdiffusion, beobachtet. Die Ursache dafür liegt im chaotischen Verhalten des Systems. Vereinfacht gesagt, erzeugt das Chaos eine intrinsische Pseudo-Zufälligkeit, die zu einem gewissen Grad mit dem Einfluss einer thermodynamischen Umgebung vergleichbar ist und somit auch diffusives Verhalten provoziert. Zur quantitativen Beschreibung dieses subdiffusiven Prozesses wird eine Verallgemeinerung der Diffusionsgleichung herangezogen, die Nichtlineare Diffusionsgleichung. Desweiteren wird die mikroskopische Dynamik des Systems mit analytischen Methoden untersucht, und Schlussfolgerungen für den makroskopischen Diffusionsprozess abgeleitet. Die Technik der Verbindung von mikroskopischer Dynamik und makroskopischen Beobachtungen, die in dieser Arbeit entwickelt wird und detailliert beschrieben ist, führt zu einem tieferen Verständnis von hochdimensionalen chaotischen Systemen. Die mit mathematischen Mitteln abgeleiteten Ergebnisse sind darüber hinaus durch ausführliche Simulationen verifiziert, welche teilweise auf einem der leistungsfähigsten Supercomputer Europas durchgeführt wurden, dem sp6 in Bologna, Italien. Desweiteren können die in dieser Arbeit vorgestellten Erkenntnisse und Techniken mit Sicherheit auch in anderen Fällen bei der Untersuchung chaotischer Systeme Anwendung finden.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Mario Mulansky
URN:urn:nbn:de:kobv:517-opus-63180
Supervisor(s):Arkadij Pikovskij
Publication type:Doctoral Thesis
Language:English
Publication year:2012
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2012/12/13
Release date:2013/01/15
Tag:Chaos; Diffusion; Energieausbreitung; Thermalisierung
chaos; diffusion; energy spreading; thermalization
RVK - Regensburg classification:UG 2300, UG 4000
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
PACS classification:00.00.00 GENERAL / 05.00.00 Statistical physics, thermodynamics, and nonlinear dynamical systems (see also 02.50.-r Probability theory, stochastic processes, and statistics) / 05.45.-a Nonlinear dynamics and chaos (see also section 45 Classical mechanics of discrete systems; for chaos in fluid dynamics, see 47.52.+j) / 05.45.Pq Numerical simulations of chaotic systems
70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES / 71.00.00 Electronic structure of bulk materials (see section 73 for electronic structure of surfaces, interfaces, low-dimensional structures, and nanomaterials; for electronic structure of superconductors, see 74.25.Jb) / 71.55.-i Impurity and defect levels / 71.55.Jv Disordered structures; amorphous and glassy solids
70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES / 72.00.00 Electronic transport in condensed matter (for electronic transport in surfaces, interfaces, and thin films, see section 73; for electrical properties related to treatment conditions, see 81.40.Rs; for transport properties of superconductors, see 74.25.Fy; / 72.15.-v Electronic conduction in metals and alloys
License (German):License LogoCreative Commons - Namensnennung, Nicht kommerziell, Weitergabe zu gleichen Bedingungen 3.0 Deutschland
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.