The method of Fischer-Riesz equations for elliptic boundary value problems

  • We develop the method of Fischer-Riesz equations for general boundary value problems elliptic in the sense of Douglis-Nirenberg. To this end we reduce them to a boundary problem for a (possibly overdetermined) first order system whose classical symbol has a left inverse. For such a problem there is a uniquely determined boundary value problem which is adjoint to the given one with respect to the Green formula. On using a well elaborated theory of approximation by solutions of the adjoint problem, we find the Cauchy data of solutions of our problem.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Author:Ammar Alsaedy, Nikolai Tarkhanov
Series (Serial Number):Preprints des Instituts für Mathematik der Universität Potsdam (1(2012)24)
Document Type:Preprint
Year of Completion:2012
Publishing Institution:Universität Potsdam
Release Date:2012/09/20
Tag:Boundary value problems for first order systems; Fischer-Riesz equations; Green formula; regularisation
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
MSC Classification:35-XX PARTIAL DIFFERENTIAL EQUATIONS / 35Fxx General first-order equations and systems / 35F45 Boundary value problems for linear first-order systems
35-XX PARTIAL DIFFERENTIAL EQUATIONS / 35Jxx Elliptic equations and systems [See also 58J10, 58J20] / 35J56 Boundary value problems for first-order elliptic systems
47-XX OPERATOR THEORY / 47Nxx Miscellaneous applications of operator theory [See also 46Nxx] / 47N20 Applications to differential and integral equations
Collections:Universität Potsdam / Schriftenreihen / Preprints des Instituts für Mathematik der Universität Potsdam, ISSN 2193-6943 / 2012
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Notes extern:RVK-Klassifikation: SI 990