A simple numerical approach to the Riemann hypothesis

  • The Riemann hypothesis is equivalent to the fact the the reciprocal function 1/zeta (s) extends from the interval (1/2,1) to an analytic function in the quarter-strip 1/2 < Re s < 1 and Im s > 0. Function theory allows one to rewrite the condition of analytic continuability in an elegant form amenable to numerical experiments.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Nikolai Tarkhanov
URN:urn:nbn:de:kobv:517-opus-57645
ISBN:2193-6943
Series (Serial Number):Preprints des Instituts für Mathematik der Universität Potsdam (1 (2012) 9)
Document Type:Preprint
Language:English
Year of Completion:2012
Publishing Institution:Universität Potsdam
Release Date:2012/01/18
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
MSC Classification:11-XX NUMBER THEORY / 11Mxx Zeta and L-functions: analytic theory / 11M26 Nonreal zeros of ζ(s) and L(s, χ); Riemann and other hypotheses
11-XX NUMBER THEORY / 11Mxx Zeta and L-functions: analytic theory
Collections:Universität Potsdam / Schriftenreihen / Preprints des Instituts für Mathematik der Universität Potsdam, ISSN 2193-6943 / 2012
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Notes extern:RVK-Klassifikation: SI 990 , SK 180