Characterization of Lévy Processes by a duality formula and related results

  • Processes with independent increments are characterized via a duality formula, including Malliavin derivative and difference operators. This result is based on a characterization of infinitely divisible random vectors by a functional equation. A construction of the difference operator by a variational method is introduced and compared to approaches used by other authors for L´evy processes involving the chaos decomposition. Finally we extend our method to characterize infinitely divisible random measures.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Rüdiger Murr
URN:urn:nbn:de:kobv:517-opus-43538
Series (Serial Number):Mathematische Statistik und Wahrscheinlichkeitstheorie : Preprint (2011, 02)
Document Type:Preprint
Language:English
Year of Completion:2011
Publishing Institution:Universität Potsdam
Release Date:2011/05/11
RVK - Regensburg Classification:SI 990
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht