Resonances for a diffusion with small noise

  • We study resonances for the generator of a diffusion with small noise in R(d) : L = -∈∆ + ∇F * ∇, when the potential F grows slowly at infinity (typically as a square root of the norm). The case when F grows fast is well known, and under suitable conditions one can show that there exists a family of exponentially small eigenvalues, related to the wells of F. We show that, for an F with a slow growth, the spectrum is R+, but we can find a family of resonances whose real parts behave as the eigenvalues of the "quick growth" case, and whose imaginary parts are small.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Markus Klein, Pierre-André Zitt
URN:urn:nbn:de:kobv:517-opus-49448
Series (Serial Number):Mathematische Statistik und Wahrscheinlichkeitstheorie : Preprint (2008, 02)
Document Type:Preprint
Language:English
Year of Completion:2008
Publishing Institution:Universität Potsdam
Release Date:2011/03/30
RVK - Regensburg Classification:SI 990
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht