Nonparametric estimation and testing in survival models

  • The aim of this paper is to demonstrate that nonparametric smoothing methods for estimating functions can be an useful tool in the analysis of life time data. After stating some basic notations we will present a data example. Applying standard parametric methods to these data we will see that this approach fails - basic features of the underlying functions are not reflected by their estimates. Our proposal is to use nonparametric estimation methods. These methods are explained in section 2. Nonparametric approaches are better in the sense that they are more flexible, and misspecifications of the model are avoided. But, parametric models have the advantage that the parameters can be interpreted. So, finally, we will formulate a test procedure to check whether a parametric or a nonparametric model is appropriate.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Author:Henning Läuter, Hannelore Liero
Series (Serial Number):Mathematische Statistik und Wahrscheinlichkeitstheorie : Preprint (2004, 05)
Document Type:Preprint
Year of Completion:2004
Publishing Institution:Universität Potsdam
Release Date:2011/03/29
RVK - Regensburg Classification:SI 990
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht