Stimulation of glycogen phosphorylase in rat hepatocytes via prostanoid release from Kupffer cells by recombinant rat anaphylatoxin C5a but not by native human C5a in hepatocyte/Kupffer cell co-cultures

  • Human anaphylatoxin C3a had previously been shown to increase glycogenolysis in perfused rat liver and prostanoid formation in rat liver macrophages. Surprisingly, human C5a, which in other systems elicited stronger responses than C3a, did not increase glycogenolysis in perfused rat liver. Species incompatibilities within the experimental system had been supposed to be the reason. The current study supports this hypothesis: (1) In rat liver macrophages that had been maintained in primary culture for 72 h recombinant rat anaphylatoxin C5a in concentrations between 0.1 and 10 pg/ml increased the formation of thromboxane A₂, prostaglandin D₂, E₂ and F₂α6- to 12-fold over basal within 10 min. In contrast, human anaphylatoxin C5a did not increase prostanoid formation in rat Kupffer cells. (2) The increase in prostanoid formation by recombinant rat C5a was specific. It was inhibited by a neutralizing monoclonal antibody. (3) In co-cultures of rat hepatocytes and rat Kupffer cells but not in hepatocyte mono-cultures recombinant rat C5a increHuman anaphylatoxin C3a had previously been shown to increase glycogenolysis in perfused rat liver and prostanoid formation in rat liver macrophages. Surprisingly, human C5a, which in other systems elicited stronger responses than C3a, did not increase glycogenolysis in perfused rat liver. Species incompatibilities within the experimental system had been supposed to be the reason. The current study supports this hypothesis: (1) In rat liver macrophages that had been maintained in primary culture for 72 h recombinant rat anaphylatoxin C5a in concentrations between 0.1 and 10 pg/ml increased the formation of thromboxane A₂, prostaglandin D₂, E₂ and F₂α6- to 12-fold over basal within 10 min. In contrast, human anaphylatoxin C5a did not increase prostanoid formation in rat Kupffer cells. (2) The increase in prostanoid formation by recombinant rat C5a was specific. It was inhibited by a neutralizing monoclonal antibody. (3) In co-cultures of rat hepatocytes and rat Kupffer cells but not in hepatocyte mono-cultures recombinant rat C5a increased glycogen phosphorylase activity 3-fold over basal. This effect was inhibited by incubation of the co-cultures with 500 μM acetylsalicyclic acid. Thus, C5a generated either locally in the liver or systemically e.g. in the course of sepsis, may increase hepatic glycogenolysis by a prostanoid-mediated intercellular communication between Kupffer cells and hepatocytes.show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS
  • Export XML

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Ursula Hespeling, Gerhard Püschel, Kurt Jungermann, Otto Götze, Jörg Zwirner
URN:urn:nbn:de:kobv:517-opus-45909
Series (Serial Number):Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (paper 117)
Document Type:Postprint
Language:English
Date of Publication (online):2010/08/04
Year of Completion:1995
Publishing Institution:Universität Potsdam
Release Date:2010/08/04
Source:FEBS Letters 372 (1995), 1, p. 108-112, DOI 10.1016/0014-5793(95)00883-B, ISSN 0014-5793
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Ernährungswissenschaft
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Notes extern:
first published in:
FEBS Letters - 372 (1995), 1, p. 108-112
ISSN: 0014-5793
doi: 10.1016/0014-5793(95)00883-B