Thermoresponsive Zellkultursubstrate für zeitlich-räumlich gesteuertes Auswachsen neuronaler Zellen

Thermoresponsive cell culture substrates for spatio-temporal controlled outgrowth of neuronal cells

  • Ein wichtiges Ziel der Neurowissenschaften ist das Verständnis der komplexen und zugleich faszinierenden, hochgeordneten Vernetzung der Neurone im Gehirn, welche neuronalen Prozessen, wie zum Beispiel dem Wahrnehmen oder Lernen wie auch Neuropathologien zu Grunde liegt. Für verbesserte neuronale Zellkulturmodelle zur detaillierten Untersuchung dieser Prozesse ist daher die Rekonstruktion von geordneten neuronalen Verbindungen dringend erforderlich. Mit Oberflächenstrukturen aus zellattraktiven und zellabweisenden Beschichtungen können neuronale Zellen und ihre Neuriten in vitro strukturiert werden. Zur Kontrolle der neuronalen Verbindungsrichtung muss das Auswachsen der Axone zu benachbarten Zellen dynamisch gesteuert werden, zum Beispiel über eine veränderliche Zugänglichkeit der Oberfläche. In dieser Arbeit wurde untersucht, ob mit thermoresponsiven Polymeren (TRP) beschichtete Zellkultursubstrate für eine dynamische Kontrolle des Auswachsens neuronaler Zellen geeignet sind. TRP können über die Temperatur von einem zellabweisendenEin wichtiges Ziel der Neurowissenschaften ist das Verständnis der komplexen und zugleich faszinierenden, hochgeordneten Vernetzung der Neurone im Gehirn, welche neuronalen Prozessen, wie zum Beispiel dem Wahrnehmen oder Lernen wie auch Neuropathologien zu Grunde liegt. Für verbesserte neuronale Zellkulturmodelle zur detaillierten Untersuchung dieser Prozesse ist daher die Rekonstruktion von geordneten neuronalen Verbindungen dringend erforderlich. Mit Oberflächenstrukturen aus zellattraktiven und zellabweisenden Beschichtungen können neuronale Zellen und ihre Neuriten in vitro strukturiert werden. Zur Kontrolle der neuronalen Verbindungsrichtung muss das Auswachsen der Axone zu benachbarten Zellen dynamisch gesteuert werden, zum Beispiel über eine veränderliche Zugänglichkeit der Oberfläche. In dieser Arbeit wurde untersucht, ob mit thermoresponsiven Polymeren (TRP) beschichtete Zellkultursubstrate für eine dynamische Kontrolle des Auswachsens neuronaler Zellen geeignet sind. TRP können über die Temperatur von einem zellabweisenden in einen zellattraktiven Zustand geschaltet werden, womit die Zugänglichkeit der Oberfläche für Zellen dynamisch gesteuert werden kann. Die TRP-Beschichtung wurde mikrostrukturiert, um einzelne oder wenige neuronale Zellen zunächst auf der Oberfläche anzuordnen und das Auswachsen der Zellen und Neuriten über definierte TRP-Bereiche in Abhängigkeit der Temperatur zeitlich und räumlich zu kontrollieren. Das Protokoll wurde mit der neuronalen Zelllinie SH-SY5Y etabliert und auf humane induzierte Neurone übertragen. Die Anordnung der Zellen konnte bei Kultivierung im zellabweisenden Zustand des TRPs für bis zu 7 Tage aufrecht erhalten werden. Durch Schalten des TRPs in den zellattraktiven Zustand konnte das Auswachsen der Neuriten und Zellen zeitlich und räumlich induziert werden. Immunozytochemische Färbungen und Patch-Clamp-Ableitungen der Neurone demonstrierten die einfache Anwendbarkeit und Zellkompatibilität der TRP-Substrate. Eine präzisere räumliche Kontrolle des Auswachsens der Zellen sollte durch lokales Schalten der TRP-Beschichtung erreicht werden. Dafür wurden Mikroheizchips mit Mikroelektroden zur lokalen Jouleschen Erwärmung der Substratoberfläche entwickelt. Zur Evaluierung der generierten Temperaturprofile wurde eine Temperaturmessmethode entwickelt und die erhobenen Messwerte mit numerisch simulierten Werten abgeglichen. Die Temperaturmessmethode basiert auf einfach zu applizierenden Sol-Gel-Schichten, die den temperatursensitiven Fluoreszenzfarbstoff Rhodamin B enthalten. Sie ermöglicht oberflächennahe Temperaturmessungen in trockener und wässriger Umgebung mit hoher Orts- und Temperaturauflösung. Numerische Simulationen der Temperaturprofile korrelierten gut mit den experimentellen Daten. Auf dieser Basis konnten Geometrie und Material der Mikroelektroden hinsichtlich einer lokal stark begrenzten Temperierung optimiert werden. Ferner wurden für die Kultvierung der Zellen auf den Mikroheizchips eine Zellkulturkammer und Kontaktboard für die elektrische Kontaktierung der Mikroelektroden geschaffen. Die vorgestellten Ergebnisse demonstrieren erstmalig das enorme Potential thermoresponsiver Zellkultursubstrate für die zeitlich und räumlich gesteuerte Formation geordneter neuronaler Verbindungen in vitro. Zukünftig könnte dies detaillierte Studien zur neuronalen Informationsverarbeitung oder zu Neuropathologien an relevanten, humanen Zellmodellen ermöglichen.show moreshow less
  • An important goal of neurosciences is to understand the fascinating, complex and highly ordered neuronal circuits of the brain that are underlying important neuronal processes such as learning and memory, as well as neuropathologies. For detailed studies of these processes improved neuronal cell culture models that allow a reconstruction of ordered neuronal connections are crucial. Neuronal cells can be patterned in vitro with structured surface coatings of cell repellent and cell attractive substances. For controlling also the direction of neuronal cell connections the outgrowth of the axons towards neighbouring cells needs to be dynamically controlled, which can be achieved for example by surface structures that can be changed due to switchable surface properties. The main goal of this work was to explore if cell culture substrates with coatings of thermoresponsive polymer (TRP) are suitable for dynamically controlling the outgrowth of neuronal cells. TRPs can be switched via temperature between a cell repellent and a cellAn important goal of neurosciences is to understand the fascinating, complex and highly ordered neuronal circuits of the brain that are underlying important neuronal processes such as learning and memory, as well as neuropathologies. For detailed studies of these processes improved neuronal cell culture models that allow a reconstruction of ordered neuronal connections are crucial. Neuronal cells can be patterned in vitro with structured surface coatings of cell repellent and cell attractive substances. For controlling also the direction of neuronal cell connections the outgrowth of the axons towards neighbouring cells needs to be dynamically controlled, which can be achieved for example by surface structures that can be changed due to switchable surface properties. The main goal of this work was to explore if cell culture substrates with coatings of thermoresponsive polymer (TRP) are suitable for dynamically controlling the outgrowth of neuronal cells. TRPs can be switched via temperature between a cell repellent and a cell attractive state, which enables a dynamic change of surface properties. The TRP coating was microstructured in order to pattern neuronal cells and to spatio-temporally control the outgrowth of cells and neurites across defined TRP-coated areas in dependence of the temperature. The protocol was established with the neuronal cell line SH-SY5Y and transferred to human induced neuronal cells. The cell patterns could be maintained for up to 7 days of cultivation when the TRP was kept in the cell repellent state. By switching the TRP to the cell attractive state the outgrowth of neurites and cells was induced at defined time points and areas. Immunocytochemical staining and patch-clamp recordings of the neurons demonstrated the cell compatibility and easy applicability of these TRP-substrates. A more precise spatial control of the outgrowth of cells should be further achieved by local switching of the TRP-coating. Therefore, microheaters comprising microelectrodes were developed for locally heating the substrate surface. For evaluation of the generated temperature profiles a thermometry method was developed and the values obtained were correlated with numerically simulated data. The thermometry method is based on easily applicable sol-gel-films containing the temperature-sensitive fluorophore Rhodamine B. It allows temperature measurements close to the surface under both dry and liquid conditions with high resolution regarding space (lower µm-range) and temperature (≤ 1°C). Numerical simulations of the temperature profiles correlated well with experimental data. On this basis geometry and material of the microelectrodes were optimized with regard to locally restricted temperature changes. Furthermore, a chip environment for cultivating the cells on the microheater chips was developed comprising a cell culture chamber and a contact board for electrically contacting the microelectrodes. The results presented in this work demonstrate for the first time the great potential of thermoresponsive cell culture substrates for a spatio-temporally controlled formation of neuronal connections in vitro. In future this could facilitate detailed studies of information processing in neuronal networks or of neuropathologies using relevant human neuronal cell models.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Laura BehmORCiD
URN:urn:nbn:de:kobv:517-opus4-436196
DOI:https://doi.org/10.25932/publishup-43619
Referee:Frank BierORCiDGND, Roland LausterGND, Andreas OffenhäusserORCiD
Advisor:Frank Bier, Michael Kirschbaum
Document Type:Doctoral Thesis
Language:German
Year of Completion:2019
Publishing Institution:Universität Potsdam
Granting Institution:Universität Potsdam
Date of final exam:2019/09/26
Release Date:2019/11/05
Tag:Lab-on-a-chip; Mikroheizung; Mikrostrukturierung; Neuritenwachstum; Oberflächentemperatur; Rhodamin B; Sol-Gel; Thermometrie; Zelladhäsionskontrolle; neuronale Netzwerke; thermoresponsive Polymere
Rhodamine B; cell adhesion control; lab-on-a-chip; microheating; microstructures; neurite outgrowth; neuronal networks; sol-gel; surface temperature; thermometry; thermoresponsive polymers
Pagenumber:VII, 105
Organizational units:Extern
Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Licence (German):License LogoCreative Commons - Namensnennung, 4.0 International