Atomic diffraction by a thin phase grating

  • We present a semiclassical perturbation method for the description of atomic diffraction by a weakly modulated potential. It proceeds in a way similar to the treatment of light diffraction by a thin phase grating, and consists in calculating the atomic wavefunction by means of action integrals along the classical trajectories of the atoms in the absence of the modulated part of the potential. The capabilities and the validity condition of the method are illustrated on the well-known case of atomic diffraction by a Gaussian standing wave. We prove that in this situation the perturbation method is equivalent to the Raman-Nath approximation, and we point out that the usually-considered Raman-Nath validity condition can lead to inaccuracies in the evaluation of the phases of the diffraction amplitudes. The method is also applied to the case of an evanescent wave reflection grating, and an analytical expression for the diffraction pattern at any incidence angle is obtained for the first time. Finally, the application of the method to otherWe present a semiclassical perturbation method for the description of atomic diffraction by a weakly modulated potential. It proceeds in a way similar to the treatment of light diffraction by a thin phase grating, and consists in calculating the atomic wavefunction by means of action integrals along the classical trajectories of the atoms in the absence of the modulated part of the potential. The capabilities and the validity condition of the method are illustrated on the well-known case of atomic diffraction by a Gaussian standing wave. We prove that in this situation the perturbation method is equivalent to the Raman-Nath approximation, and we point out that the usually-considered Raman-Nath validity condition can lead to inaccuracies in the evaluation of the phases of the diffraction amplitudes. The method is also applied to the case of an evanescent wave reflection grating, and an analytical expression for the diffraction pattern at any incidence angle is obtained for the first time. Finally, the application of the method to other situations is briefly discussed.show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS
  • Export XML

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Carsten Henkel, Jean-Yves Courtois, Alain Aspect
URN:urn:nbn:de:kobv:517-opus-42269
Series (Serial Number):Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (paper 101)
Document Type:Postprint
Language:English
Date of Publication (online):2010/04/29
Year of Completion:1994
Publishing Institution:Universität Potsdam
Release Date:2010/04/29
Source:Journal de Physique 4 (1994) 11, S. 1955-1974
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Notes extern:
The preprint is available at ArXiv.org:
Atomic diffraction by a thin phase grating; In: Journal de Physique. - 4 (1994) 11, S. 1955-1974