On the well-posedness of the vacuum Einstein's equations

  • The Cauchy problem of the vacuum Einstein's equations aims to find a semimetric g(αβ) of a spacetime with vanishing Ricci curvature Rα,β and prescribed initial data. Under the harmonic gauge condition, the equations Rα,β = 0 are transferred into a system of quasi-linear wave equations which are called the reduced Einstein equations. The initial data for Einstein's equations are a proper Riemannian metric h(αβ) and a second fundamental form K(αβ). A necessary condition for the reduced Einstein equation to satisfy the vacuum equations is that the initial data satisfy Einstein constraint equations. Hence the data (h(αβ),K(αβ)) cannot serve as initial data for the reduced Einstein equations. Previous results in the case of asymptotically flat spacetimes provide a solution to the constraint equations in one type of Sobolev spaces, while initial data for the evolution equations belong to a different type of Sobolev spaces. The goal of our work is to resolve this incompatibility and to show that under the harmonic gauge the vacuum Einstein eThe Cauchy problem of the vacuum Einstein's equations aims to find a semimetric g(αβ) of a spacetime with vanishing Ricci curvature Rα,β and prescribed initial data. Under the harmonic gauge condition, the equations Rα,β = 0 are transferred into a system of quasi-linear wave equations which are called the reduced Einstein equations. The initial data for Einstein's equations are a proper Riemannian metric h(αβ) and a second fundamental form K(αβ). A necessary condition for the reduced Einstein equation to satisfy the vacuum equations is that the initial data satisfy Einstein constraint equations. Hence the data (h(αβ),K(αβ)) cannot serve as initial data for the reduced Einstein equations. Previous results in the case of asymptotically flat spacetimes provide a solution to the constraint equations in one type of Sobolev spaces, while initial data for the evolution equations belong to a different type of Sobolev spaces. The goal of our work is to resolve this incompatibility and to show that under the harmonic gauge the vacuum Einstein equations are well-posed in one type of Sobolev spaces.show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS
  • Export XML

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Lavi Karp
URN:urn:nbn:de:kobv:517-opus-36593
Series (Serial Number):Preprint ((2009) 06)
Document Type:Preprint
Language:English
Date of Publication (online):2009/10/06
Year of Completion:2009
Publishing Institution:Universität Potsdam
Release Date:2009/10/06
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
MSC Classification:35-XX PARTIAL DIFFERENTIAL EQUATIONS / 35Jxx Elliptic equations and systems [See also 58J10, 58J20] / 35J70 Degenerate elliptic equations
74-XX MECHANICS OF DEFORMABLE SOLIDS / 74Kxx Thin bodies, structures / 74K20 Plates
Collections:Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / 2009
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Notes extern:
Die Printversion kann in der Universitätsbibliothek Potsdam eingesehen werden:
Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis, 1997-

Die Online-Fassung wird auf der Homepage des Instituts für Mathematik veröffentlicht.

RVK-KLassifikation: SI 990