Well-posedness of Einstein-Euler systems in asymptotically flat spacetimes

  • We prove a local in time existence and uniqueness theorem of classical solutions of the coupled Einstein{Euler system, and therefore establish the well posedness of this system. We use the condition that the energy density might vanish or tends to zero at infinity and that the pressure is a certain function of the energy density, conditions which are used to describe simplified stellar models. In order to achieve our goals we are enforced, by the complexity of the problem, to deal with these equations in a new type of weighted Sobolev spaces of fractional order. Beside their construction, we develop tools for PDEs and techniques for hyperbolic and elliptic equations in these spaces. The well posedness is obtained in these spaces.

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS
  • Export XML

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Uwe Brauer, Lavi Karp
URN:urn:nbn:de:kobv:517-opus-30347
Series (Serial Number):Preprint ((2008) 07)
Document Type:Preprint
Language:English
Date of Publication (online):2009/05/06
Year of Completion:2008
Publishing Institution:Universität Potsdam
Release Date:2009/05/06
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
MSC Classification:35-XX PARTIAL DIFFERENTIAL EQUATIONS / 35Jxx Elliptic equations and systems [See also 58J10, 58J20] / 35J70 Degenerate elliptic equations
74-XX MECHANICS OF DEFORMABLE SOLIDS / 74Kxx Thin bodies, structures / 74K20 Plates
Collections:Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / 2008
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Notes extern:
Die Printversion kann in der Universitätsbibliothek Potsdam eingesehen werden:
Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis, 1997-

Die Online-Fassung wird auf der Homepage des Instituts für Mathematik veröffentlicht.

RVK-KLassifikation: SI 990