Edge-boundary problems with singular trace conditions

  • The ellipticity of boundary value problems on a smooth manifold with boundary relies on a two-component principal symbolic structure (σψ; σ∂), consisting of interior and boundary symbols. In the case of a smooth edge on manifolds with boundary we have a third symbolic component, namely the edge symbol σ∧, referring to extra conditions on the edge, analogously as boundary conditions. Apart from such conditions in integral form' there may exist singular trace conditions, investigated in [6] on closed' manifolds with edge. Here we concentrate on the phenomena in combination with boundary conditions and edge problem.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Bert-Wolfgang Schulze, Y. Wei
URN:urn:nbn:de:kobv:517-opus-30317
Series (Serial Number):Preprint ((2008) 04)
Document Type:Preprint
Language:English
Year of Completion:2008
Publishing Institution:Universität Potsdam
Release Date:2009/05/06
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
MSC Classification:35-XX PARTIAL DIFFERENTIAL EQUATIONS / 35Jxx Elliptic equations and systems [See also 58J10, 58J20] / 35J70 Degenerate elliptic equations
74-XX MECHANICS OF DEFORMABLE SOLIDS / 74Kxx Thin bodies, structures / 74K20 Plates
Collections:Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / 2008
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Notes extern:
Die Printversion kann in der Universitätsbibliothek Potsdam eingesehen werden:
Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis, 1997-

Die Online-Fassung wird auf der Homepage des Instituts für Mathematik veröffentlicht.

RVK-KLassifikation: SI 990