The existence and regularity of multiple solutions for a class of infinitely degenerate elliptic equations

  • Let X = (X1,.....,Xm) be an infinitely degenerate system of vector fields, we study the existence and regularity of multiple solutions of Dirichelt problem for a class of semi-linear infinitely degenerate elliptic operators associated with the sum of square operator Δx = ∑m(j=1) Xj* Xj.

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS
  • Export XML

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Hua Chen, Ke Li
URN:urn:nbn:de:kobv:517-opus-30247
Series (Serial Number):Preprint ((2007) 03)
Document Type:Preprint
Language:English
Date of Publication (online):2009/05/06
Year of Completion:2007
Publishing Institution:Universität Potsdam
Release Date:2009/05/06
Tag:Logarithmic Sobolev inequality; degenerate elliptic equations
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
MSC Classification:35-XX PARTIAL DIFFERENTIAL EQUATIONS / 35Jxx Elliptic equations and systems [See also 58J10, 58J20] / 35J70 Degenerate elliptic equations
74-XX MECHANICS OF DEFORMABLE SOLIDS / 74Kxx Thin bodies, structures / 74K20 Plates
Collections:Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / 2007
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Notes extern:
Die Printversion kann in der Universitätsbibliothek Potsdam eingesehen werden:
Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis, 1997-

Die Online-Fassung wird auf der Homepage des Instituts für Mathematik veröffentlicht.

RVK-KLassifikation: SI 990