The cauchy problem of couple-stress elasticity

  • We study the Cauchy problem for the oscillation equation of the couple-stress theory of elasticity in a bounded domain in R3. Both the displacement and stress are given on a part S of the boundary of the domain. This problem is densely solvable while data of compact support in the interior of S fail to belong to the range of the problem. Hence the problem is ill-posed which makes the standard calculi of Fourier integral operators inapplicable. If S is real analytic the Cauchy-Kovalevskaya theorem applies to guarantee the existence of a local solution. We invoke the special structure of the oscillation equation to derive explicit conditions of global solvability and an approximation solution.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Makhmudov; O., I. Niyozov, Nicolai Tarkhanov
URN:urn:nbn:de:kobv:517-opus-30078
Series (Serial Number):Preprint ((2006) 03)
Document Type:Preprint
Language:English
Year of Completion:2006
Publishing Institution:Universität Potsdam
Release Date:2009/05/05
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
MSC Classification:35-XX PARTIAL DIFFERENTIAL EQUATIONS / 35Jxx Elliptic equations and systems [See also 58J10, 58J20] / 35J70 Degenerate elliptic equations
74-XX MECHANICS OF DEFORMABLE SOLIDS / 74Kxx Thin bodies, structures / 74K20 Plates
Collections:Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / 2006
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Notes extern:
Die Printversion kann in der Universitätsbibliothek Potsdam eingesehen werden:
Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis, 1997-

Die Online-Fassung wird auf der Homepage des Instituts für Mathematik veröffentlicht.

RVK-KLassifikation: SI 990