Operators with singular trace conditions on a manifold with edges

  • We establish a new calculus of pseudodifferential operators on a manifold with smooth edges and study ellipticity with extra trace and potential conditions (as well as Green operators) at the edge. In contrast to the known scenario with conditions of that kind in integral form we admit in this paper ‘singular’ trace, potential and Green operators, which are related to the corresponding operators of positive type in Boutet de Monvel’s calculus for boundary value problems.

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS
  • Export XML

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author: Kapanadze; D., Schulze; B.-W., Seiler; J.
URN:urn:nbn:de:kobv:517-opus-30058
Series (Serial Number):Preprint ((2006) 01)
Document Type:Preprint
Language:English
Date of Publication (online):2009/05/05
Year of Completion:2006
Publishing Institution:Universität Potsdam
Release Date:2009/05/05
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
MSC Classification:35-XX PARTIAL DIFFERENTIAL EQUATIONS / 35Jxx Elliptic equations and systems [See also 58J10, 58J20] / 35J70 Degenerate elliptic equations
74-XX MECHANICS OF DEFORMABLE SOLIDS / 74Kxx Thin bodies, structures / 74K20 Plates
Collections:Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / 2006
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Notes extern:
Die Printversion kann in der Universitätsbibliothek Potsdam eingesehen werden:
Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis, 1997-

Die Online-Fassung wird auf der Homepage des Instituts für Mathematik veröffentlicht.

RVK-KLassifikation: SI 990