On the general theory of the cauchy type functional equations with applications in analysis

  • Contents: 1 The main notations and definitions. 2 Statement of the problems and main results. 2.1 The case of a Z-configuration. 2.2 The case of a P-configuration. 3 Proofs of Theorems 1-7. 4 Applications. 4.1 Multiplicative Cauchy type functional equation. 4.2 On some integral equations relating to a geometric problem 4.3 On the solvability of boundary problem for hyperbolic differential equations.

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS
  • Export XML

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:B. Paneah
URN:urn:nbn:de:kobv:517-opus-30004
Series (Serial Number):Preprint ((2005) 24)
Document Type:Preprint
Language:English
Date of Publication (online):2009/04/29
Year of Completion:2005
Publishing Institution:Universität Potsdam
Release Date:2009/04/29
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
MSC Classification:35-XX PARTIAL DIFFERENTIAL EQUATIONS / 35Jxx Elliptic equations and systems [See also 58J10, 58J20] / 35J70 Degenerate elliptic equations
74-XX MECHANICS OF DEFORMABLE SOLIDS / 74Kxx Thin bodies, structures / 74K20 Plates
Collections:Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / 2005
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Notes extern:
Die Printversion kann in der Universitätsbibliothek Potsdam eingesehen werden:
Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis, 1997-

Die Online-Fassung wird auf der Homepage des Instituts für Mathematik veröffentlicht.

RVK-KLassifikation: SI 990