Boundary-contact problems for domains with edge singularities

  • We study boundary-contact problems for elliptic equations (and systems) with interfaces that have edge singularities. Such problems represent continuous operators between weighted edge spaces and subspaces with asymptotics. Ellipticity is formulated in terms of a principal symbolic hierarchy, containing interior, transmission, and edge symbols. We construct parametrices, show regularity with asymptotics of solutions in weighted edge spaces and illustrate the results by boundary-contact problems for the Laplacian with jumping coefficients.

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS
  • Export XML

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:David Kapanadze, B.-Wolfgang Schulze
URN:urn:nbn:de:kobv:517-opus-29901
Series (Serial Number):Preprint ((2005) 14)
Document Type:Preprint
Language:English
Date of Publication (online):2009/04/29
Year of Completion:2005
Publishing Institution:Universität Potsdam
Release Date:2009/04/29
Tag:Boundary-contact problems; asymptotics of solutions; edge spaces; pseudo-differential operators
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
MSC Classification:35-XX PARTIAL DIFFERENTIAL EQUATIONS / 35Jxx Elliptic equations and systems [See also 58J10, 58J20] / 35J70 Degenerate elliptic equations
74-XX MECHANICS OF DEFORMABLE SOLIDS / 74Kxx Thin bodies, structures / 74K20 Plates
Collections:Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / 2005
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Notes extern:
Die Printversion kann in der Universitätsbibliothek Potsdam eingesehen werden:
Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis, 1997-

Die Online-Fassung wird auf der Homepage des Instituts für Mathematik veröffentlicht.

RVK-KLassifikation: SI 990