Reduction of orders in boundary value problems without the transmission property

  • Given an algebra of pseudo-differential operators on a manifold, an elliptic element is said to be a reduction of orders, if it induces isomorphisms of Sobolev spaces with a corresponding shift of smoothness. Reductions of orders on a manifold with boundary refer to boundary value problems. We consider smooth symbols and ellipticity without additional boundary conditions which is the relevant case on a manifold with boundary. Starting from a class of symbols that has been investigated before for integer orders in boundary value problems with the transmission property we study operators of arbitrary real orders that play a similar role for operators without the transmission property. Moreover, we show that order reducing symbols have the Volterra property and are parabolic of anisotropy 1; analogous relations are formulated for arbitrary anisotropies. We finally investigate parameter-dependent operators, apply a kernel cut-off construction with respect to the parameter and show that corresponding holomorphic operator-valued Mellin symbGiven an algebra of pseudo-differential operators on a manifold, an elliptic element is said to be a reduction of orders, if it induces isomorphisms of Sobolev spaces with a corresponding shift of smoothness. Reductions of orders on a manifold with boundary refer to boundary value problems. We consider smooth symbols and ellipticity without additional boundary conditions which is the relevant case on a manifold with boundary. Starting from a class of symbols that has been investigated before for integer orders in boundary value problems with the transmission property we study operators of arbitrary real orders that play a similar role for operators without the transmission property. Moreover, we show that order reducing symbols have the Volterra property and are parabolic of anisotropy 1; analogous relations are formulated for arbitrary anisotropies. We finally investigate parameter-dependent operators, apply a kernel cut-off construction with respect to the parameter and show that corresponding holomorphic operator-valued Mellin symbols reduce orders in weighted Sobolev spaces on a cone with boundary.show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS
  • Export XML

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:G. Harutjunjan, Bert-Wolfgang Schulze
URN:urn:nbn:de:kobv:517-opus-26220
Series (Serial Number):Preprint ((2002) 03)
Document Type:Preprint
Language:English
Date of Publication (online):2008/11/11
Year of Completion:2002
Publishing Institution:Universität Potsdam
Release Date:2008/11/11
Tag:Boundary value problems; Volterra symbols; elliptic operators; order reduction
RVK - Regensburg Classification:SI 990
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Collections:Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / 2002
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Notes extern:
Die Printversion kann in der Universitätsbibliothek Potsdam eingesehen werden:
Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis, 1997-

Die Online-Fassung wird auf der Homepage des Instituts für Mathematik veröffentlicht.