C*-structure and K-theory of Boutet de Monvel's algebra

  • We consider the norm closure A of the algebra of all operators of order and class zero in Boutet de Monvel's calculus on a manifold X with boundary ∂X. We first describe the image and the kernel of the continuous extension of the boundary principal symbol homomorphism to A. If X is connected and ∂X is not empty, we then show that the K-groups of A are topologically determined. In case the manifold, its boundary, and the cotangent space of its interior have torsion free K-theory, we get Ki(A,k) congruent Ki(C(X))⊕Ksub(1-i)(Csub(0)(T*X)),i = 0,1, with k denoting the compact ideal, and T*X denoting the cotangent bundle of the interior. Using Boutet de Monvel's index theorem, we also prove that the above formula holds for i = 1 even without this torsion-free hypothesis. For the case of orientable, two-dimensional X, Ksub(0)(A) congruent Z up(2g+m) and Ksub(1)(A) congruent Z up(2g+m-1), where g is the genus of X and m is the number of connected components of ∂X. We also obtain a composition sequence 0 ⊂ k ⊂ G ⊂ A, with A/G commutative and We consider the norm closure A of the algebra of all operators of order and class zero in Boutet de Monvel's calculus on a manifold X with boundary ∂X. We first describe the image and the kernel of the continuous extension of the boundary principal symbol homomorphism to A. If X is connected and ∂X is not empty, we then show that the K-groups of A are topologically determined. In case the manifold, its boundary, and the cotangent space of its interior have torsion free K-theory, we get Ki(A,k) congruent Ki(C(X))⊕Ksub(1-i)(Csub(0)(T*X)),i = 0,1, with k denoting the compact ideal, and T*X denoting the cotangent bundle of the interior. Using Boutet de Monvel's index theorem, we also prove that the above formula holds for i = 1 even without this torsion-free hypothesis. For the case of orientable, two-dimensional X, Ksub(0)(A) congruent Z up(2g+m) and Ksub(1)(A) congruent Z up(2g+m-1), where g is the genus of X and m is the number of connected components of ∂X. We also obtain a composition sequence 0 ⊂ k ⊂ G ⊂ A, with A/G commutative and G/k isomorphic to the algebra of all continuous functions on the cosphere bundle of ∂X with values in compact operators on L²(R+).show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS
  • Export XML

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:S. T. Melo, R. Nest, Elmar Schrohe
URN:urn:nbn:de:kobv:517-opus-26166
Series (Serial Number):Preprint ((2001) 33)
Document Type:Preprint
Language:English
Date of Publication (online):2008/11/10
Year of Completion:2001
Publishing Institution:Universität Potsdam
Release Date:2008/11/10
RVK - Regensburg Classification:SI 990
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Collections:Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / 2001
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Notes extern:
Die Printversion kann in der Universitätsbibliothek Potsdam eingesehen werden:
Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis, 1997-

Die Online-Fassung wird auf der Homepage des Instituts für Mathematik veröffentlicht.