## C*-structure and K-theory of Boutet de Monvel's algebra

• We consider the norm closure A of the algebra of all operators of order and class zero in Boutet de Monvel's calculus on a manifold X with boundary ∂X. We first describe the image and the kernel of the continuous extension of the boundary principal symbol homomorphism to A. If X is connected and ∂X is not empty, we then show that the K-groups of A are topologically determined. In case the manifold, its boundary, and the cotangent space of its interior have torsion free K-theory, we get Ki(A,k) congruent Ki(C(X))⊕Ksub(1-i)(Csub(0)(T*X)),i = 0,1, with k denoting the compact ideal, and T*X denoting the cotangent bundle of the interior. Using Boutet de Monvel's index theorem, we also prove that the above formula holds for i = 1 even without this torsion-free hypothesis. For the case of orientable, two-dimensional X, Ksub(0)(A) congruent Z up(2g+m) and Ksub(1)(A) congruent Z up(2g+m-1), where g is the genus of X and m is the number of connected components of ∂X. We also obtain a composition sequence 0 ⊂ k ⊂ G ⊂ A, with A/GWe consider the norm closure A of the algebra of all operators of order and class zero in Boutet de Monvel's calculus on a manifold X with boundary ∂X. We first describe the image and the kernel of the continuous extension of the boundary principal symbol homomorphism to A. If X is connected and ∂X is not empty, we then show that the K-groups of A are topologically determined. In case the manifold, its boundary, and the cotangent space of its interior have torsion free K-theory, we get Ki(A,k) congruent Ki(C(X))⊕Ksub(1-i)(Csub(0)(T*X)),i = 0,1, with k denoting the compact ideal, and T*X denoting the cotangent bundle of the interior. Using Boutet de Monvel's index theorem, we also prove that the above formula holds for i = 1 even without this torsion-free hypothesis. For the case of orientable, two-dimensional X, Ksub(0)(A) congruent Z up(2g+m) and Ksub(1)(A) congruent Z up(2g+m-1), where g is the genus of X and m is the number of connected components of ∂X. We also obtain a composition sequence 0 ⊂ k ⊂ G ⊂ A, with A/G commutative and G/k isomorphic to the algebra of all continuous functions on the cosphere bundle of ∂X with values in compact operators on L²(R+).