Adiabatic vacuum states on general spacetime manifolds : definition, construction, and physical properties

  • Adiabatic vacuum states are a well-known class of physical states for linear quantum fields n Robertson-Walker spacetimes. We extend the definition of adiabatic vacua to general spacetime manifolds by using the notion of the Sobolev wavefront set. This definition is also applicable to interacting field theories. Hadamard states form a special subclass of the adiabatic vacua. We analyze physical properties of adiabatic vacuum representations of the Klein-Gordon field on globally hyperbolic spacetme manifolds (factoriality, quasiequivalence, local definteness, Haag duality) and construct them explicitly, if the manifold has a compact Cauchy surface.

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS
  • Export XML

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Wolfgang Junker, Elmar Schrohe
URN:urn:nbn:de:kobv:517-opus-26100
Series (Serial Number):Preprint ((2001) 27)
Document Type:Preprint
Language:English
Date of Publication (online):2008/11/10
Year of Completion:2001
Publishing Institution:Universität Potsdam
Release Date:2008/11/10
RVK - Regensburg Classification:SI 990
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Collections:Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / 2001
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Notes extern:
Die Printversion kann in der Universitätsbibliothek Potsdam eingesehen werden:
Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis, 1997-

Die Online-Fassung wird auf der Homepage des Instituts für Mathematik veröffentlicht.