Geometric optics for the nonlinear hyperbolic systems of Kirchhoff-type

  • Contents: 1 Introduction 2 Main result 3 Construction of the asymptotic solutions 3.1 Derivation of the equations for the profiles 3.2 Exsistence of the principal profile 3.3 Determination of Usub(2) and the remaining profiles 4 Stability of the samll global solutions. Justification of One Phase Nonlinear Geometric Optics for the Kirchhoff-type equations 4.1 Stability of the global solutions to the Kirchhoff-type symmetric hyperbolic systems 4.2 The nonlinear system of ordinary differential equations with the parameter 4.3 Some energies estimates 4.4 The dependence of the solution W(t, ξ) on the function s(t) 4.5 The oscillatory integrals of the bilinear forms of the solutions 4.6 Estimates for the basic bilinear form Γsub(s)(t) 4.7 Contraction mapping 4.8 Stability of the global solution 4.9 Justification of One Phase Nonlinear Geometric Optics for the Kirchhoff-type equations

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS
  • Export XML

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Karen Yagdjian
URN:urn:nbn:de:kobv:517-opus-26059
Series (Serial Number):Preprint ((2001) 22)
Document Type:Preprint
Language:English
Date of Publication (online):2008/11/07
Year of Completion:2001
Publishing Institution:Universität Potsdam
Release Date:2008/11/07
RVK - Regensburg Classification:SI 990
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Collections:Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / 2001
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Notes extern:
Die Printversion kann in der Universitätsbibliothek Potsdam eingesehen werden:
Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis, 1997-

Die Online-Fassung wird auf der Homepage des Instituts für Mathematik veröffentlicht.