On the inverse of parabolic systems of partial differential equations of general form in an infinite space-time cylinder [Part 1: Chapter 1+2]

  • We consider general parabolic systems of equations on the infinite time interval in case of the underlying spatial configuration is a closed manifold. The solvability of equations is studied both with respect to time and spatial variables in exponentially weighted anisotropic Sobolev spaces, and existence and maximal regularity statements for parabolic equations are proved. Moreover, we analyze the long-time behaiour of solutions in terms of complete asymptotic expansions. These results are deduced from a pseudodifferential calculus that we construct explicitly. This algebra of operators is specifically designed to contain both the classical systems of parabolic equations of general form and their inverses, parabolicity being reflected purely on symbolic level. To this end, we assign t = ∞ the meaning of an anisotropic conical point, and prove that this interprtation is consistent with the natural setting in the analysis of parabolic PDE. Hence, major parts of this work consist of the construction of an appropriate anisotropiccone calWe consider general parabolic systems of equations on the infinite time interval in case of the underlying spatial configuration is a closed manifold. The solvability of equations is studied both with respect to time and spatial variables in exponentially weighted anisotropic Sobolev spaces, and existence and maximal regularity statements for parabolic equations are proved. Moreover, we analyze the long-time behaiour of solutions in terms of complete asymptotic expansions. These results are deduced from a pseudodifferential calculus that we construct explicitly. This algebra of operators is specifically designed to contain both the classical systems of parabolic equations of general form and their inverses, parabolicity being reflected purely on symbolic level. To this end, we assign t = ∞ the meaning of an anisotropic conical point, and prove that this interprtation is consistent with the natural setting in the analysis of parabolic PDE. Hence, major parts of this work consist of the construction of an appropriate anisotropiccone calculus of so-called Volterra operators. In particular, which is the most important aspect, we obtain the complete characterization of the microlocal and the global kernel structure of the inverse of parabolicsystems in an infinite space-time cylinder. Moreover, we obtain perturbation results for parabolic equations from the investigation of the ideal structure of the calculus.show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS
  • Export XML

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Thomas Krainer, Bert-Wolfgang Schulze
URN:urn:nbn:de:kobv:517-opus-25987
Series (Serial Number):Preprint ((2001) 14)
Document Type:Preprint
Language:English
Date of Publication (online):2008/11/07
Year of Completion:2001
Publishing Institution:Universität Potsdam
Release Date:2008/11/07
RVK - Regensburg Classification:SI 990
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Collections:Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / Zusammengehörige Beiträge / On the inverse of parabolic systems...
Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / Zusammengehörige Beiträge / On the inverse of parabolic systems... / Teil 1 (Chapter 1 + 2)
Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / 2001
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Notes extern:
Die Printversion kann in der Universitätsbibliothek Potsdam eingesehen werden:
Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis, 1997-

Die Online-Fassung wird auf der Homepage des Instituts für Mathematik veröffentlicht.