Fourier integral operators defined by classical symbols with exit behaviour

  • We continue the investigation of the calculus of Fourier Integral Operators (FIOs) in the class of symbols with exit behaviour (SG symbols). Here we analyse what happens when one restricts the choice of amplitude and phase functions to the subclass of the classical SG symbols. It turns out that the main composition theorem, obtained in the environment of general SG classes, has a "classical" counterpart. As an application, we study the Cauchy problem for classical hyperbolic operators of order (1, 1); for such operators we refine the known results about the analogous problem for general SG hyperbolic operators. The material contained here will be used in a forthcoming paper to obtain a Weyl formula for a class of operators defined on manifolds with cylindrical ends, improving the results obtained in [9].

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS
  • Export XML

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Sandro Coriasco, Panarese; Paolo
URN:urn:nbn:de:kobv:517-opus-25896
Series (Serial Number):Preprint ((2000) 24)
Document Type:Preprint
Language:English
Date of Publication (online):2008/11/06
Year of Completion:2000
Publishing Institution:Universität Potsdam
Release Date:2008/11/06
RVK - Regensburg Classification:SI 990
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Collections:Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / 2000
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Notes extern:
Die Printversion kann in der Universitätsbibliothek Potsdam eingesehen werden:
Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis, 1997-

Die Online-Fassung wird auf der Homepage des Instituts für Mathematik veröffentlicht.