Long-time asymptotics with geometric singularities in the spatial variables

  • Content: Introduction 1 Anisotropic operators in a cylinder with a conical base 1.1 Manifolds with conical singularities and opertors of Fuchs type 1.2 Typical operators and symbol structures 2 Weighted wedge Sobolev spaces and edge asymptotics 2.1 Discrete edge asymptotics 2.2 Continuos edge asymptotics with discrete limit at infinity 2.3 Calculus with operator valued symbols 3 Corner asymptotics at infinity 3.1 The structure of singular functions 3.2 Operators with trace and potential conditions 3.3 Asymptotics and (anisotropic) elliptic regularity

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS
  • Export XML

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Thomas Krainer, Bert-Wolfgang Schulze
URN:urn:nbn:de:kobv:517-opus-25824
Series (Serial Number):Preprint ((2000) 17)
Document Type:Preprint
Language:English
Date of Publication (online):2008/11/06
Year of Completion:2000
Publishing Institution:Universität Potsdam
Release Date:2008/11/06
RVK - Regensburg Classification:SI 990
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Collections:Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / 2000
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Notes extern:
Die Printversion kann in der Universitätsbibliothek Potsdam eingesehen werden:
Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis, 1997-

Die Online-Fassung wird auf der Homepage des Instituts für Mathematik veröffentlicht.