## Quantization methods in differential equations : Chapter 2: Quantization of Lagrangian modules

• In this chapter we use the wave packet transform described in Chapter 1 to quantize extended classical states represented by so-called Lagrangian sumbanifolds of the phase space. Functions on a Lagrangian manifold form a module over the ring of classical Hamiltonian functions on the phase space (with respect to pointwise multiplication). The quantization procedure intertwines this multiplication with the action of the corresponding quantum Hamiltonians; hence we speak of quantization of Lagrangian modules. The semiclassical states obtained by this quantization procedure provide asymptotic solutions to differential equations with a small parameter. Locally, such solutions can be represented by WKB elements. Global solutions are given by Maslov's canonical operator [2]; also see, e.g., [3] and the references therein. Here the canonical operator is obtained in the framework of the universal quantization procedure provided by the wave packet transform. This procedure was suggested in [4] (see also the references there) and furtherIn this chapter we use the wave packet transform described in Chapter 1 to quantize extended classical states represented by so-called Lagrangian sumbanifolds of the phase space. Functions on a Lagrangian manifold form a module over the ring of classical Hamiltonian functions on the phase space (with respect to pointwise multiplication). The quantization procedure intertwines this multiplication with the action of the corresponding quantum Hamiltonians; hence we speak of quantization of Lagrangian modules. The semiclassical states obtained by this quantization procedure provide asymptotic solutions to differential equations with a small parameter. Locally, such solutions can be represented by WKB elements. Global solutions are given by Maslov's canonical operator [2]; also see, e.g., [3] and the references therein. Here the canonical operator is obtained in the framework of the universal quantization procedure provided by the wave packet transform. This procedure was suggested in [4] (see also the references there) and further developed in [5]; our exposition is in the spirit of these papers. Some further bibliographical remarks can be found in the beginning of Chapter 1.

### Additional Services

Author: Vladimir E. Nazaikinskii, Bert-Wolfgang Schulze, Boris Sternin urn:nbn:de:kobv:517-opus-25582 Preprint ((1999) 22) Preprint English 1999 Universität Potsdam 2008/11/04 SI 990 Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik 5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / 1999 Keine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht Weitere Teile des Werkes können auf dem Publikationsserver der Universität Potsdam abgerufen werden. Die Printversion kann in der Universitätsbibliothek Potsdam eingesehen werden: Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis, 1997- Die Online-Fassung wird auf der Homepage des Instituts für Mathematik veröffentlicht.