A Bohr phenomenon for elliptic equations

  • In 1914 Bohr proved that there is an r ∈ (0, 1) such that if a power series converges in the unit disk and its sum has modulus less than 1 then, for |z| < r, the sum of absolute values of its terms is again less than 1. Recently analogous results were obtained for functions of several variables. The aim of this paper is to comprehend the theorem of Bohr in the context of solutions to second order elliptic equations meeting the maximum principle.

Volltext Dateien herunterladen

Metadaten exportieren

  • Export nach Bibtex
  • Export nach RIS
  • Export nach XML

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Lev Aizenberg, Nikolai Tarkhanov
URN:urn:nbn:de:kobv:517-opus-25547
Schriftenreihe (Bandnummer):Preprint ((1999) 18)
Dokumentart:Preprint
Sprache:Englisch
Jahr der Fertigstellung:1999
Veröffentlichende Institution:Universität Potsdam
Datum der Freischaltung:04.11.2008
RVK - Regensburger Verbundklassifikation:SI 990
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Sammlungen:Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / 1999
Lizenz (Deutsch):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Externe Bemerkung:
Die Printversion kann in der Universitätsbibliothek Potsdam eingesehen werden:
Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis, 1997-

Die Online-Fassung wird auf der Homepage des Instituts für Mathematik veröffentlicht.