Elliptic operators in subspaces and the eta invariant

  • The paper deals with the calculation of the fractional part of the η-invariant for elliptic self-adjoint operators in topological terms. The method used to obtain the corresponding formula is based on the index theorem for elliptic operators in subspaces obtained in [1], [2]. It also utilizes K-theory with coefficients Zsub(n). In particular, it is shown that the group K(T*M,Zsub(n)) is realized by elliptic operators (symbols) acting in appropriate subspaces.

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS
  • Export XML

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Bert-Wolfgang Schulze, Anton Savin, Boris Sternin
URN:urn:nbn:de:kobv:517-opus-25496
Series (Serial Number):Preprint ((1999) 14 )
Document Type:Preprint
Language:English
Date of Publication (online):2008/11/03
Year of Completion:1999
Publishing Institution:Universität Potsdam
Release Date:2008/11/03
Tag:Atiyah-Patodi-Singer theory; K-theory; eta-invariant; index of elliptic operators in subspaces; mod k index
RVK - Regensburg Classification:SI 990
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Collections:Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / 1999
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Notes extern:
Die Printversion kann in der Universitätsbibliothek Potsdam eingesehen werden:
Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis, 1997-

Die Online-Fassung wird auf der Homepage des Instituts für Mathematik veröffentlicht.