Iterations of self-adjoint operators and their applications to elliptic systems

  • Let Hsub(0), Hsub(1) be Hilbert spaces and L : Hsub(0) -> Hsub(1) be a linear bounded operator with ||L|| ≤ 1. Then L*L is a bounded linear self-adjoint non-negative operator in the Hilbert space Hsub(0) and one can use the Neumann series ∑∞sub(v=0)(I - L*L)v L*f in order to study solvability of the operator equation Lu = f. In particular, applying this method to the ill-posed Cauchy problem for solutions to an elliptic system Pu = 0 of linear PDE's of order p with smooth coefficients we obtain solvability conditions and representation formulae for solutions of the problem in Hardy spaces whenever these solutions exist. For the Cauchy-Riemann system in C the summands of the Neumann series are iterations of the Cauchy type integral. We also obtain similar results 1) for the equation Pu = f in Sobolev spaces, 2) for the Dirichlet problem and 3) for the Neumann problem related to operator P*P if P is a homogeneous first order operator and its coefficients are constant. In these cases the representations involve sums of series whose termsLet Hsub(0), Hsub(1) be Hilbert spaces and L : Hsub(0) -> Hsub(1) be a linear bounded operator with ||L|| ≤ 1. Then L*L is a bounded linear self-adjoint non-negative operator in the Hilbert space Hsub(0) and one can use the Neumann series ∑∞sub(v=0)(I - L*L)v L*f in order to study solvability of the operator equation Lu = f. In particular, applying this method to the ill-posed Cauchy problem for solutions to an elliptic system Pu = 0 of linear PDE's of order p with smooth coefficients we obtain solvability conditions and representation formulae for solutions of the problem in Hardy spaces whenever these solutions exist. For the Cauchy-Riemann system in C the summands of the Neumann series are iterations of the Cauchy type integral. We also obtain similar results 1) for the equation Pu = f in Sobolev spaces, 2) for the Dirichlet problem and 3) for the Neumann problem related to operator P*P if P is a homogeneous first order operator and its coefficients are constant. In these cases the representations involve sums of series whose terms are iterations of integro-differential operators, while the solvability conditions consist of convergence of the series together with trivial necessary conditions.show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS
  • Export XML

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Alexander Shlapunov
URN:urn:nbn:de:kobv:517-opus-25401
Series (Serial Number):Preprint ((1999) 03 )
Document Type:Preprint
Language:English
Date of Publication (online):2008/11/03
Year of Completion:1999
Publishing Institution:Universität Potsdam
Release Date:2008/11/03
RVK - Regensburg Classification:SI 990
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Collections:Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / 1999
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Notes extern:
Die Printversion kann in der Universitätsbibliothek Potsdam eingesehen werden:
Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis, 1997-

Die Online-Fassung wird auf der Homepage des Instituts für Mathematik veröffentlicht.