Volterra operators and parabolicity : anisotropic pseudo-differential operators

  • Parabolic equations on manifolds with singularities require a new calculus of anisotropic pseudo-differential operators with operator-valued symbols. The paper develops this theory along the lines of sn abstract wedge calculus with strongly continuous groups of isomorphisms on the involved Banach spaces. The corresponding pseodo-diferential operators are continuous in anisotropic wedge Sobolev spaces, and they form an alegbra. There is then introduced the concept of anisotropic parameter-dependent ellipticity, based on an order reduction variant of the pseudo-differential calculus. The theory is appled to a class of parabolic differential operators, and it is proved the invertibility in Sobolev spaces with exponential weights at infinity in time direction.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Thilo Buchholz, Bert-Wolfgang Schulze
URN:urn:nbn:de:kobv:517-opus-25231
Series (Serial Number):Preprint ((1998) 11)
Document Type:Preprint
Language:English
Year of Completion:1998
Publishing Institution:Universität Potsdam
Release Date:2008/10/30
RVK - Regensburg Classification:SI 990
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Collections:Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / 1998
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Notes extern:
Die Printversion kann in der Universitätsbibliothek Potsdam eingesehen werden:
Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis, 1997-

Die Online-Fassung wird auf der Homepage des Instituts für Mathematik veröffentlicht.