Construction de Triplets Spectraux à Partir de Modules de Fredholm

  • Soit (A, H, F) un module de Fredholm p-sommable, où l'algèbre A = CT est engendrée par un groupe discret Gamma d'éléments unitaires de L(H) qui est de croissance polynomiale r. On construit alors un triplet spectral (A, H, D) sommabilité q pour tout q > p + r + 1 avec F = signD. Dans le cas où (A, H, F) est (p, infini)-sommable on obtient la (q, infini)-sommabilité de (A, H, D)pour tout q > p + r + 1.
  • Let (A, H, F) be a p-summable Fredholm module where the algebra A = CT is generated by a discrete group of unitaries in L(H) which is of polynomial growth r. Then we construct a spectral triple (A, H, D) with F = signD which is q-summable for each q > p + r + 1. In case (A, H, F) is (p, infinite)-summable we obtain (q, infinite)-summability of (A, H, D) for each q > p + r + 1.

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS
  • Export XML

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Elmar Schrohe, Markus Walze, Jan-Martin Warzecha
URN:urn:nbn:de:kobv:517-opus-25247
Series (Serial Number):Preprint ((1998) 12 )
Document Type:Preprint
Language:French
Date of Publication (online):2008/10/30
Year of Completion:1998
Publishing Institution:Universität Potsdam
Release Date:2008/10/30
RVK - Regensburg Classification:SI 990
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Collections:Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / 1998
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Notes extern:
Beitrag teilw. engl.

Die Printversion kann in der Universitätsbibliothek Potsdam eingesehen werden:
Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis, 1997-

Die Online-Fassung wird auf der Homepage des Instituts für Mathematik veröffentlicht.