Non-Abelian reduction in deformation quantization

  • We consider a G-invariant star-product algebra A on a symplectic manifold (M,ω) obtained by a canonical construction of deformation quantization. Under assumptions of the classical Marsden-Weinstein theorem we define a reduction of the algebra A with respect to the G-action. The reduced algebra turns out to be isomorphic to a canonical star-product algebra on the reduced phase space B. In other words, we show that the reduction commutes with the canonical G-invariant deformation quantization. A similar statement in the framework of geometric quantization is known as the Guillemin-Sternberg conjecture (by now completely proved).

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS
  • Export XML

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Boris Fedosov
URN:urn:nbn:de:kobv:517-opus-25101
Series (Serial Number):Preprint ((1997) 26 )
Document Type:Preprint
Language:English
Date of Publication (online):2008/10/30
Year of Completion:1997
Publishing Institution:Universität Potsdam
Release Date:2008/10/30
Tag:Hamiltonian group action; classical and quantum reduction; deformation quantization; moment map
RVK - Regensburg Classification:SI 990
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Collections:Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / 1997
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Notes extern:
Die Printversion kann in der Universitätsbibliothek Potsdam eingesehen werden:
Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis, 1997-

Die Online-Fassung wird auf der Homepage des Instituts für Mathematik veröffentlicht.