Non-Abelian reduction in deformation quantization

  • We consider a G-invariant star-product algebra A on a symplectic manifold (M,ω) obtained by a canonical construction of deformation quantization. Under assumptions of the classical Marsden-Weinstein theorem we define a reduction of the algebra A with respect to the G-action. The reduced algebra turns out to be isomorphic to a canonical star-product algebra on the reduced phase space B. In other words, we show that the reduction commutes with the canonical G-invariant deformation quantization. A similar statement in the framework of geometric quantization is known as the Guillemin-Sternberg conjecture (by now completely proved).

Volltext Dateien herunterladen

Metadaten exportieren

  • Export nach Bibtex
  • Export nach RIS
  • Export nach XML

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Boris Fedosov
URN:urn:nbn:de:kobv:517-opus-25101
Schriftenreihe (Bandnummer):Preprint ((1997) 26 )
Dokumentart:Preprint
Sprache:Englisch
Jahr der Fertigstellung:1997
Veröffentlichende Institution:Universität Potsdam
Datum der Freischaltung:30.10.2008
Freies Schlagwort / Tag:Hamiltonian group action; classical and quantum reduction; deformation quantization; moment map
RVK - Regensburger Verbundklassifikation:SI 990
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Sammlungen:Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / 1997
Lizenz (Deutsch):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Externe Bemerkung:
Die Printversion kann in der Universitätsbibliothek Potsdam eingesehen werden:
Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis, 1997-

Die Online-Fassung wird auf der Homepage des Instituts für Mathematik veröffentlicht.