Lρ spectral independence of elliptic operators via commutator estimates

  • Let {Tsub(p) : q1 ≤ p ≤ q2} be a family of consistent Csub(0) semigroups on Lφ(Ω) with q1, q2 ∈ [1, ∞)and Ω ⊆ IRn open. We show that certain commutator conditions on Tφ and on the resolvent of its generator Aφ ensure the φ independence of the spectrum of Aφ for φ ∈ [q1, q2]. Applications include the case of Petrovskij correct systems with Hölder continuous coeffcients, Schrödinger operators, and certain elliptic operators in divergence form with real, but not necessarily symmetric, or complex coeffcients.

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS
  • Export XML

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Matthias Hieber, Elmar Schrohe
URN:urn:nbn:de:kobv:517-opus-25047
Series (Serial Number):Preprint ((1997) 17 )
Document Type:Preprint
Language:English
Date of Publication (online):2008/10/30
Year of Completion:1997
Publishing Institution:Universität Potsdam
Release Date:2008/10/30
Tag:Lφ spectrum; elliptic systems; spectral independence
RVK - Regensburg Classification:SI 990
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Collections:Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / 1997
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Notes extern:
Die Printversion kann in der Universitätsbibliothek Potsdam eingesehen werden:
Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis, 1997-

Die Online-Fassung wird auf der Homepage des Instituts für Mathematik veröffentlicht.