Nonlinear square patterns in Rayleigh-Bénard convection

  • We numerically investigate nonlinear asymmetric square patterns in a horizontal convection layer with up-down reflection symmetry. As a novel feature we find the patterns to appear via the skewed varicose instability of rolls. The time-independent nonlinear state is generated by two unstable checkerboard (symmetric square) patterns and their nonlinear interaction. As the bouyancy forces increase, the interacting modes give rise to bifurcations leading to a periodic alternation between a nonequilateral hexagonal pattern and the square pattern or to different kinds of standing oscillations.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Ayhan Demircan, Norbert Seehafer
URN:urn:nbn:de:kobv:517-opus-14986
Series (Serial Number):NLD Preprints (paper 062)
Document Type:Preprint
Language:English
Year of Completion:2000
Publishing Institution:Universität Potsdam
Release Date:2007/08/15
Organizational units:Zentrale und wissenschaftliche Einrichtungen / Interdisziplinäres Zentrum für Dynamik komplexer Systeme
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
PACS Classification:40.00.00 ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS / 47.00.00 Fluid dynamics (for fluid dynamics of quantum fluids, see section 67; see also section 83 Rheology; for sound generation by fluid flow, see 43.28.Ra-in Acoustics Appendix) / 47.20.-k Flow instabilities (see also 47.15.Fe Stability of laminar flows) / 47.20.Bp Buoyancy-driven instabilities (e.g., Rayleigh-Benard)
40.00.00 ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS / 47.00.00 Fluid dynamics (for fluid dynamics of quantum fluids, see section 67; see also section 83 Rheology; for sound generation by fluid flow, see 43.28.Ra-in Acoustics Appendix) / 47.20.-k Flow instabilities (see also 47.15.Fe Stability of laminar flows) / 47.20.Ky Nonlinearity, bifurcation, and symmetry breaking