Numerical studies of Black Hole initial data

  • This thesis presents new approaches to evolutions of binary black hole systems in numerical relativity. We analyze and compare evolutions from various physically motivated initial data sets, in particular presenting the first evolutions of Thin Sandwich data generated by the Meudon group. For the first time two different quasi-circular orbit initial data sequences are compared through fully 3d numerical evolutions: Puncture data and Thin Sandwich data (TSD) based on a helical killing vector ansatz. The two different sets are compared in terms of the physical quantities that can be measured from the numerical data, and in terms of their evolutionary behavior. The evolutions demonstrate that for the latter, "Meudon" datasets, the black holes do in fact orbit for a longer amount of time before they merge, in comparison with Puncture data from the same separation. This indicates they are potentially better estimates of quasi-circular orbit parameters. The merger times resulting from the numerical simulations are consistent withThis thesis presents new approaches to evolutions of binary black hole systems in numerical relativity. We analyze and compare evolutions from various physically motivated initial data sets, in particular presenting the first evolutions of Thin Sandwich data generated by the Meudon group. For the first time two different quasi-circular orbit initial data sequences are compared through fully 3d numerical evolutions: Puncture data and Thin Sandwich data (TSD) based on a helical killing vector ansatz. The two different sets are compared in terms of the physical quantities that can be measured from the numerical data, and in terms of their evolutionary behavior. The evolutions demonstrate that for the latter, "Meudon" datasets, the black holes do in fact orbit for a longer amount of time before they merge, in comparison with Puncture data from the same separation. This indicates they are potentially better estimates of quasi-circular orbit parameters. The merger times resulting from the numerical simulations are consistent with independent Post-Newtonian estimates that the final plunge phase of a black hole inspiral should take 60% of an orbit.show moreshow less
  • Diese Doktorarbeit behandelt neue Methoden der numerischen Evolution von Systemen mit binären Schwarzen Löchern. Wir analysieren und vergleichen Evolutionen von verschiedenen physikalisch motivierten Anfangsdaten und zeigen Resultate der ersten Evolution von so genannten 'Thin Sandwich' Daten, die von der Gruppe in Meudon entwickelt wurden. Zum ersten Mal wurden zwei verschiedene Anfangsdaten anhand von dreidimensionalen Evolutionen verglichen: die Puncture-Daten und die Thin-Sandwich Daten. Diese zwei Datentypen wurden im Hinblick auf die physikalischen Eigenschaften während der Evolution verglichen. Die Evolutionen zeigen, dass die Meudon Daten im Vergleich zu Puncture Daten wesentlich mehr Zeit benötigen bevor sie kollidieren. Dies deutet auf eine bessere Abschätzung der Parameter hin. Die Kollisionszeiten der numerischen Evolutionen sind konsistent mit unabhängigen Schätzungen basierend auf Post-Newtonschen Näherungen die vorhersagen, dass die Schwarzen Löcher ca. 60% eines Orbits rotieren bevor sie kollidieren.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Michael Koppitz
URN:urn:nbn:de:kobv:517-0001245
Advisor:Bernard F. Schutz, Ed Seidel, Bernard F. Schutz
Document Type:Doctoral Thesis
Language:English
Year of Completion:2004
Publishing Institution:Universität Potsdam
Granting Institution:Universität Potsdam
Date of final exam:2004/05/19
Release Date:2005/02/10
Tag:Anfangsdaten; Evolutionen; binäre schwarze Löcher; numerische Relativiät
binary black holes; evolutions; initial data; numerical relativity
RVK - Regensburg Classification:US 1080
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik