
Technische Berichte Nr. 105

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

Proceedings of the Third
HPI Cloud Symposium
“Operating the Cloud”
2015
David Bartok , Estee van der Walt, Jan Lindemann,
Johannes Eschrig, Max Plauth (Eds.)

ISBN 978-3-86956-360-2
ISSN 1613-5652

Technische Berichte des Hasso-Plattner-Instituts für
 Softwaresystemtechnik an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam | 105

David Bartok | Estee van der Walt | Jan Lindemann |Johannes Eschrig |
Max Plauth (Eds.)

Proceedings of the Third HPI Cloud Symposium
“Operating the Cloud” 2015

Universitätsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.dnb.de/ abrufbar.

Universitätsverlag Potsdam 2016
http://verlag.ub.uni-potsdam.de/

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschützt.

Online veröffentlicht auf dem Publikationsserver der Universität Potsdam
URN urn:nbn:de:kobv:517-opus4-87548
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87548

Zugleich gedruckt erschienen im Universitätsverlag Potsdam:
ISBN 978-3-86956-360-2

mailto:verlag@uni-potsdam.de

Preface

Every year, the Hasso Plattner Institute (HPI) invites guests from industry and
academia to a collaborative scientific workshop on the topic ”Operating the Cloud”.
Our goal is to provide a forum for the exchange of knowledge and experience
between industry and academia. Hence, HPI’s Future SOC Lab is the adequate
environment to host this event which is also supported by BITKOM.

On the occasion of this workshop we called for submissions of research papers
and practitioner’s reports. ”Operating the Cloud” aims to be a platform for pro-
ductive discussions of innovative ideas, visions, and upcoming technologies in the
field of cloud operation and administration.

In this workshop proceedings the results of the third HPI cloud symposium
”Operating the Cloud” 2015 are published. We thank the authors for exciting pre-
sentations and insights into their current work and research. Moreover, we look
forward to more interesting submissions for the upcoming symposium in 2016.

v

Contents

Dependable Cloud Computing with OpenStack 1

Johannes Eschrig, Sven Knebel, Nicco Kunzmann

Protecting Minors on Social Media Platforms - A Big Data Science
Experiment . 15

Estée van der Walt, J.H.P. Eloff

A Scalable Query Dispatcher for Hyrise-R . 25

Jan Lindemann, Stefan Klauck, David Schwalb

A Survey of Security-Aware Approaches for Cloud-Based Storage and Processing
Technologies . 33

Max Plauth, Felix Eberhardt, Frank Feinbube and Andreas Polze

A Branch-and-Bound Approach to Virtual Machine Placement 49

Dávid Bartók and Zoltán Ádám Mann

vii

Dependable Cloud Computing with OpenStack

Johannes Eschrig, Sven Knebel, Nicco Kunzmann

Operating Systems and Middleware Group
Hasso Plattner Institute Potsdam
first.last@student.hpi.de

Offering infrastructures as a service by means of cloud computing is gaining pop-
ularity. High availability aspects of these cloud computing systems are of great
importance, as outages can be extremely costly. Setting up a cloud computing
environment is very complex, thus making dependability testing non trivial. In
our work, we introduce a system for installing a virtual OpenStack cloud comput-
ing environment and running dependability experiments on it. The installation
as well as the experiments are automated in order to achieve reproducible test
results as easily as possible. We propose a first selection of experiments for our
testing framework and describe the results.

1 Introduction

As cloud computing becomes more and more popular, there is an increasing num-
ber of implementations to offer various cloud-service models like infrastructure as
a service (IaaS), platform as a service (PaaS) or software as a service (SaaS). While
many companies offer commercial solutions like the Amazon Elastic Compute
Cloud (EC2) or HP Helion, there are also open source alternatives that can be freely
installed and configured to meet the needs of ones projects with respect to the
underlying hardware available.

One of the open source variants for achieving a cloud computing system is Open-
Stack. OpenStack is a cloud software stack which allows for offering infrastructure
as a service, almost independent of the underlying hardware setup. OpenStack
itself can be seen as a collection of services that can be setup depending on the
specifications of the planned use cases. The most important components that Open-
Stack offers are the networking, virtualization and storage services. Furthermore,
it is possible to add further components to an OpenStack installation, e.g., services
that handle billing or allow for object storage in the cloud.

This paper will describe the results of the masters project “Dependable Cloud
Computing with OpenStack” of the summer term 2015 at the Hasso Plattner Insti-
tute Potsdam. An important factor, especially in cloud computing, is dependability.
When offering such a service, it should be highly available, meaning that the sys-
tem should be continuously operational without failing. Therefore, our main task
was to analyse dependability mechanisms of OpenStack. To do this, we chose to
manually setup a clean OpenStack environment (i.e. none provided by a third party
like HP Helion) on which we would be able to run the specific analyses. We turned
this manual installation into an automated one in order to simplify and speed up
the process of setting up a working OpenStack test environment and making the

1

mailto:first.last@student.hpi.de

Johannes Eschrig, Sven Knebel, Nicco Kunzmann: OpenStack

resulting analyses of dependability reproducible. Since no OpenStack installation
is exactly the same, the reproducibility of the results of such analyses is not an
easy feat. We tackle this issue by making the test environment for the experiments
completely virtual. Thus we circumvent tedious hardware setup, hardware errors
that disturb the experiments. This also allows a fast rerun of the experiments and
switching off network infrastructure.

2 Related Work

In this chapter we will introduce work related to our masters project. In a first part
we will describe work related to OpenStack and its possibilities of installation. The
second part will cover the related work to dependability in OpenStack.

2.1 OpenStack Installation

In order to analyse the dependability of OpenStack, it is necessary to install an
OpenStack instance. Due to the fact that such an analysis might require a clean and
fresh OpenStack installation after each test run, a quick installation is of advantage.
Further, independence of underlying hardware is vital to reproduce results. Merg-
ing the requirements of an easy and quick installation that achieve reproducible
results leads us to look for possibilities to automatically install OpenStack com-
pletely in a virtual environment. There are various OpenStack derivatives both
commercially and freely available.

HP Helion1 is available both as a commercial-grade edition and a free-to-license
community edition. The latter is available on promotional USB drives given out
by HP. The HP Helion community edition installation is made to provide an easy
installation routine with little need for configuration by means of such an USB
drive. Further, it is possible to install HP Helion as an all-in-one system on virtual
machines in addition to deploying it on bare-metal.

DevStack2 is another possibility for an easy OpenStack installation. It is a develop-
ment environment for OpenStack. Being designed for development on OpenStack,
it is mainly used for an one-node installation of OpenStack. Additionally, DevStack
also offers an option for a multi-node setup.

A manual installation of an OpenStack instance can take very long and be quite
cumbersome, depending on the setup one is aiming to achieve. It is therefore
of great advantage to automate the installation. As an OpenStack installation is
distributed among a number of nodes, using an orchestration tool like Ansible3 is
advisable. Ansible manages nodes using SSH and Python.

1http://www8.hp.com/us/en/cloud/hphelion-openstack.html.
2http://docs.openstack.org/developer/devstack/.
3http://www.ansible.com/.

2

http://www8.hp.com/us/en/cloud/hphelion-openstack.html.
http://docs.openstack.org/developer/devstack/.
http://www.ansible.com/.

3 OpenStack Test Environment

Openstack-Ansible4 is an existing automated OpenStack installation project, which
installs OpenStack on Vagrant virtual machines. We ran the installation script of this
project, however encountered some bugs. In order to understand the underlying
mechanisms of OpenStack ourselves, we decided to follow a similar approach to
openstack-ansible based on KVM virtual machines.

2.2 Evaluating OpenStack Dependability

Due to the complexity and variety of possibilities to set up an OpenStack system,
evaluating the dependability of OpenStack in general is no easy task. For this
reason, we have decided to make simplifying assumptions about an OpenStack
installation and define a test environment on which we can then run dependability
experiments. An more general approach is also possible, i.e. building a framework
for injecting faults into various OpenStack deployments, as was done for example
by [3] or [2]. Both works thereby created a frameworks for injecting faults into
OpenStack. [3] follows a similar approach to that of our masters project and uses
a virtual environment for the setup of OpenStack, however only implements one
simulated failure as proof of concept. [2] on the other hand focuses more on the
fault injection aspect, especially targeting service communications, uncovering 23

bugs in two OpenStack versions. In our masters project, we aim to provide a
framework for the evaluation of the cloud system OpenStack with the advantage
of a fast and easy virtual installation of the system itself and easily extendable
experiments for dependability testing.

The previous masters project on OpenStack also gave some insights on fault
tolerance of OpenStack in [1], presenting a fault tree based on the high availability
setup presented by [4].

3 OpenStack Test Environment

As described in Chapter 2, we tried various possibilities to install an OpenStack
system on a virtual environment. In this chapter we outline the challenges we
faced with these possibilities, ultimately leading to the decision to create our own
installation routine for a virtual OpenStack environment. Also, we will describe
this test environment in detail.

3.1 Existing OpenStack Installation Possibilities

We first tried installing the cloud computing environment HP Helion community
edition. It promises an easy installation routine with little need for configuration.
Further, it is possible to install HP Helion as an all-in-one system on virtual ma-
chines in addition to deploying it on bare-metal. This is an advantage with respect

4https://github.com/openstack-ansible/openstack-ansible.

3

https://github.com/openstack-ansible/openstack-ansible.

Johannes Eschrig, Sven Knebel, Nicco Kunzmann: OpenStack

to our requirement of achieving a virtual test environment for reproducible test
results. However, even though HP Helion has its advantages for setting up one’s
own IaaS system for a real use scenario, we came to the conclusion that it is not
suitable for our needs. The installation of HP Helion took around 90 minutes on
our hardware, which is not feasible for repeated installations. Further, we found
that HP Helion does not survive a reboot of the host or the virtual machines it is
running on. Fixing this issue would have required understanding the underlying
installation scripts, which would still not have been beneficial in understanding
OpenStack itself. Additionally, with our limited knowledge of HP Helion, it would
have been a challenge to customize the system to fit our needs. We thus concluded
that we would not use HP Helion for analyzing the dependability of OpenStack in
line with this masters project.

A further option for an OpenStack deployment to work with for dependability
testing we considered was DevStack. Due to the nature of the use cases for which
DevStack is made, multi-node and high-availability setups are not the main focus,
and therefore not documented well enough for us to customize DevStack and
use it for dependability analyses. Also, it is not possible to generalize results
of dependability analyses run on DevStack to a full OpenStack installation, as
DevStack is not designed with real deployment in mind. As a result, we decided
to use a full OpenStack installation for running our analyses.

3.2 Specifying our own OpenStack Environment

In order to be able to make the OpenStack test environment installation as easy
and quick as possible, so that one can concentrate on the dependability analysis,
we chose to install OpenStack virtually. A further advantage of this virtual installa-
tion is the reproducibility of experiment results, which is important to be able to
make scientific statements about the dependability of OpenStack. We used libvirt5

to create a number of virtual machines based on simple configuration files and
Ansible6 to orchestrate the installation of OpenStack on these nodes. The details of
this automated installation are described in Chapter 4.

In order to create an useful test environment for dependability experiments, it
was necessary to define an architecture. We chose this architecture to be a simpli-
fied OpenStack instance, meaning that we focus only the most important of the
OpenStack services available. This can be seen as a bottom-up approach, as we
focus on evaluating a simpler system than one might encounter when looking at an
OpenStack system in production mode. One advantage of this approach is that, due
to the simplicity, it is easier to make statements about OpenStack in general, than
on one specific system. Libvirt and Ansible allow to add more nodes, create a more
complex OpenStack system and, extend the proposed architecture by means of
high availability mechanisms. We then draw conclusions about their effectiveness.

5http://libvirt.org/.
6http://www.ansible.com.

4

http://libvirt.org/.
http://www.ansible.com.

3 OpenStack Test Environment

Figure 1 shows our virtual test environment architecture, which is the proposed
architecture of the official OpenStack install guide. 7 All nodes are virtual machines
running on a physical host. The tenant virtual machines are dispatched on the
compute node by means of nested virtualization. By default, our environment
contains the following nodes:

• One controller node: this node runs the OpenStack Dashboard (Horizon), the
API services, the MySQL database, the RabbitMQ message queue server, the
scheduler for the compute resources, Identity (Keystone) and Image (Glance)
services.

• One network (Neutron) node: this node handles the internal and external
routing and DHCP services for the virtual networks.

• Two compute nodes: the compute nodes are the computing resources for
running the virtual machines of the OpenStack users. They run the hyper-
visor and services like nova-compute, which is responsible for creating and
terminating virtual machine instances through the hypervisor APIs.

• Two object storage (Swift) nodes: these nodes operate the OpenStack con-
tainer and object services and each contain two local block storage disks for
persisting the objects.

Further, the following networks are used to communicate between nodes and
instances:

• Management network: this network is used for the OpenStack administration,
i.e., it connects the OpenStack services on the different nodes.

• Tenant or tunnel network: these networks can be created by the OpenStack
users to achieve communication between projects or instances.

• External network: this network provides internet access to the instances.

This architecture is comprehensive enough to test various OpenStack use cases
and analyze the dependability of the system.

The virtual OpenStack installation requires far less hardware resources than
a distributed bare metal installation. It is possible to install a fully functional
simplified test environment with one compute and object storage node on a quad-
core Intel Xeon machine with 8GB RAM. For the full installation, more resources
are recommended. We used a 16-core machine with 64GB RAM.

7http://docs.openstack.org/kilo/install-guide/install/apt/content/index.
html.

5

http://docs.openstack.org/kilo/install-guide/install/apt/content/index.html.
http://docs.openstack.org/kilo/install-guide/install/apt/content/index.html.

Johannes Eschrig, Sven Knebel, Nicco Kunzmann: OpenStack

Figure 1: Our test environment architecture, based on the one proposed by the
OpenStack install guide

4 Automated Installation of OpenStack

In this chapter, we describe the automated installation process of OpenStack on
our virtual environment. We give an introduction to the usage and a conceptual
overview.

4.1 How to Install OpenStack using our System

The installation scripts are developed and tested on a Ubunutu 14.04 LTE (Trusty
Tahr) desktop version. All required dependencies (e.g., Ansible, libvirt, etc.) are
installed automatically, thus an internet connection is required. It installs OpenStack
virtually creating the architecture described in Chapter 3.2. The virtual machines
are automatically created. The installation takes between 10–15 minutes.

After the successful installation, a snapshot named “initial” is created. This
allows for thorough dependability testing without re-installing the whole system
after each experiment. Snapshots can be created manually as well. The snapshotting
mechanism will shut down all virtual machines, snapshot the virtual hard drives
of all nodes, and bring back up all machines.

6

4 Automated Installation of OpenStack

4.2 Creating the Virtual Environment

The virtual environment, i.e., the virtual networks and the virtual machines, are
defined in the config folder as libvirt network and libvirt domain XML-files. These
XML-files define for example the IP addresses of the networks or the hardware spec-
ifications (size of RAM, number of cores, virtual hard drives, network interfaces)
of the virtual machines. The virtual machines are then created with an Ubuntu
cloud image8, which are pre-configured images customized especially for running
on cloud platforms.

The initialization of the virtual machines is done using cloud-init9, which allows
for setting passwords and SSH keys to aid seamless connection thereafter, which is
also a prerequisite for utilizing Ansible in the next steps. Further, using cloud-init,
the correct etc/network/interfaces configuration files are copied to the virtual
machines.

In addition to the virtual machines for the OpenStack nodes, a further virtual
machine named “aptcache” is created. This machine is used as a package repository
by the others. The packages it delivers are not updated, meaning that the versions
of all installed packages are frozen. This is important for acquiring a reproducible
test environment and prevents different experiment outcomes to be caused by
different package versions throughout the system.

These virtual machines create the base of the virtual OpenStack test environment
and are now ready for the actual OpenStack installation.

4.3 Installing OpenStack on Virtual Machines with Ansible

In order to be able to install OpenStack on the created virtual environment, Ansible
must be configured in such a way that virtual machines are grouped. This allows
for installing different parts of OpenStack on the different nodes. These groups
are defined in a so called Ansible hosts file, which assigns the IP addresses of
the different nodes to different groups. In our case, each node type is a group,
i.e., “controller”, “network”, “compute” and “object”. This allows for the so called
Ansible playbooks to be executed on the specified groups of nodes in parallel.

The Ansible playbooks that run the installation of OpenStack on the virtual nodes
are strongly based on the official OpenStack installation guide10, which is very
extensive. This gives the advantage of not having to write any further OpenStack
related documentation additionally to the documentation of the technicalities of
the creation of the virtual machines and the Ansible installation. The arrangement
of the Ansible playbooks in a folder structure derived from the content of the
OpenStack documentation allows for easily finding the corresponding part of

8https://cloud-images.ubuntu.com/trusty/.
9https://cloudinit.readthedocs.org/.

10http://docs.openstack.org/kilo/install-guide/install/apt/content/index.
html.

7

https://cloud-images.ubuntu.com/trusty/.
https://cloudinit.readthedocs.org/.
http://docs.openstack.org/kilo/install-guide/install/apt/content/index.html.
http://docs.openstack.org/kilo/install-guide/install/apt/content/index.html.

Johannes Eschrig, Sven Knebel, Nicco Kunzmann: OpenStack

the documentation should one require information about a certain part of the
installation.

The Ansible installation of OpenStack starts with an initial preconfiguration of
the virtual nodes. In this step, the hosts files are created in order to be able to
connect to the nodes by their host names. These host names are then also added to
the SSH known_hosts files to enable the SSH connection without warning messages.
Further steps include setting the locale of the virtual machines to prevent locale
errors as well as deactivating the /etc/cloud/cloud.cfg file, as all configuration
of the images is done in the previous step, see Chapter 4.2.

A special virtual machine named “aptcache” is set up first and independently of
the others. It runs Apt-Cacher-NG11, a caching proxy for Linux package repositories.
All other VMs are set up to request their packages through it. This a) decreases
network traffic and wait times and b) can be used to repeat the setup process while
using the exact same package versions as the first time: The first install seeds the
package cache, a repeated installation then can receive all packages from the cache
instead of fetching potentially newer versions from upstream. To allow this, the
cached data is not stored in the VM, but in a folder shared from the host machine.

The first step of the actual OpenStack installation is installing the basic environ-
ment. This includes adding the OpenStack package repository to the nodes and
installing the MySQL database on the controller and the message queue RabbitMQ
on all nodes.

The next step is the installation of the OpenStack identity service (Keystone)
on the controller node. This service is responsible for the permissions of users
and keeping track of the available OpenStack services with their endpoints. The
installation of this service includes creating a database, installing the Keystone
client packages and populating the database. A demo and an admin tenant are
initially created. As with all OpenStack services, the installation is finalized by
creating the service entity and the API endpoint.

Next, the image service Glance is added on the controller node. This service
allows for retrieving and registering virtual machine images. Again, a database for
this service is created along with the installation of the Glance client packages and
the creation of an API endpoint.

OpenStack compute is then setup on the controller and the compute nodes. This
component is responsible for the administration and hosting of the computing
systems. It allows among other things for creating and terminating virtual machine
instances through hypervisor APIs and is responsible for scheduling on which
compute node an instance should run. To install the compute service Nova on the
controller, the respective database and API endpoint is created and the nova service
is configured. On the compute nodes, the nova-compute packages are installed and
configured to run a QEMU hypervisor with the KVM extension.

The OpenStack networking Neutron components are installed next on the net-
work, controller and compute nodes. The main responsibility of the networking

11https://www.unix-ag.uni-kl.de/~bloch/acng/.

8

https://www.unix-ag.uni-kl.de/~bloch/acng/.

5 Running Dependability Experiments

component is to provide connectivity between the instances running on the com-
pute node. On the controller node, database and endpoint API are created, the
networking server component is configured and the Modular Layer 2 plug-in is
configured. This plug-in is responsible for the networking framework of the in-
stances running on the compute nodes. On the network node, the networking
components are installed and configured accordingly. The layer-3 agent for routing
services, the DHCP agent, the metadata agent and the Open vSwitch service are
configured. Lastly, the networking components, the Modular Layer 2 plug-in and
the Open vSwitch service are configured on the compute node. The external and
tenant networks are then created to finalize the installation.

The OpenStack web interface dashboard Horizon is then installed on the con-
troller node. This allows administrators and users to access and manage their
resources on the OpenStack cloud.

The last component that is added to OpenStack in regards to this masters project
is the object storage Swift. This allows to create containers, upload and download
files and management of the objects on the storage nodes. On the controller node,
the proxy service that handles the requests for the storage nodes is installed and
configured. The storage nodes require two empty storage devices for persisting
the objects. The virtual machines for these nodes contain two virtual devices in
the qcow file format. The OpenStack Swift components are then installed and con-
figured on the object storage nodes. Following the installation, the initial account,
container and object rings are created.

5 Running Dependability Experiments

In this chapter, we will describe our OpenStack dependability experiments and their
results. The implementations of these experiments all follow the same structure,
so that it is easy to add further experiments if needed. In our experiments, we
focused on covering the failure of various OpenStack components or nodes. We
will give insights on how these failures affect the OpenStack environment and how
the system deals with each fault. This serves partly to show weak points of the
setup and partly to document details about its behaviour.

Experiments consist of multiple stages: The setup stage creates all elements nec-
essary to run the experiment. The break stage then breaks things. An optional heal
stage tries something simple to undo the damage (e.g. reboot a shutdown node).
After each of this stages, a check step is executed, which observes the state of the
system and reports its findings to the user. Generally, after the setup stage all
checks should be successful. Where user observations are useful (e.g. by looking
not just at API results, but seeing how Horizon represents situations), the user is
prompted to do so.

Using the snapshotting mechanism, the user can always completely restore the
system, even if it didn’t survive an experiment. This is not done by default because
a) it takes some time and is not always necessary and b) to allow the user to inspect

9

Johannes Eschrig, Sven Knebel, Nicco Kunzmann: OpenStack

the system state after the experiment has concluded, e.g. to find or work out steps
to fix remaining issues.

5.1 Experiment Results

This section describes our four example experiments and discusses their results.

Experiment 1: Control Node crash
In this experiment, a crash of the control node in the system is simulated.

Technical Background The controller node stores global information of the
OpenStack cluster and runs the sub-services depending on it, which then give
services on other nodes the specific information they need to e.g. run a specific
instance or to build network connectivity. In our setup, it also provides the dash-
board Horizon and runs the authentication service. A failure of this node obviously
is going to have a large impact, but some things that already are set up on other
nodes continue to operate.

Experiment The experiment script creates an instance and then uses ping to
verify availability of both the compute node and the started instance. It also tries to
access OpenStack APIs. To simulate the fault, it either issues a shutdown command,
simulating the unavailability of the node to the controller or more severely, just
turns off its infrastructure virtual machine to simulate a full crash.

Results and Conclusion While the control node is turned off, outside connectiv-
ity to the already created instance remains, since it runs on the compute node and
its network connection to the outside (managed by Neutron, via the network node)
is unaffected. On the other hand, all attempts to use OpenStack APIs fail. Most
user-facing APIs are accessed via the controller and thus completely unavailable.
Others report errors, since every action has to be authorized using the Keystone
service, which only runs on the compute node in our setup.

After the controller node is up again, OpenStack takes a few minutes to re-
establish all service connections and in most cases is fully operational again. It is
possible that the compute instances fail to reconnect to RabbitMQ and their services
have to be restarted manually.12

This shows that already running instances on OpenStack are generally not im-
pacted by temporary failure or maintenance of quite a few central OpenStack
components, but during their unavailability no changes can be made and recovery
might need manual intervention by an operator.

If the controller node was shut down hard, obviously many more failure scenar-
ios related to the underlying operating system or services are possible e.g. missing
information in databases or damaged file systems.

12http://docs.openstack.org/openstack-ops/content/maintenance.html#cloud_
controller_storage.

10

http://docs.openstack.org/openstack-ops/content/maintenance.html#cloud_controller_storage.
http://docs.openstack.org/openstack-ops/content/maintenance.html#cloud_controller_storage.

5 Running Dependability Experiments

Experiment 2: Memchached Service Loss of Data
This experiment shows the effects of Keystone losing authentication tokens due to
the design of its storage mechanism.

Technical Background A common way to authenticate for operations against
the OpenStack API is to use tokens. A more complex and privileged authentication
(e.g. a password check) is done once to obtain a security token. These tokens have
a limited lifetime and can be limited in scope, so a user can generate a token
for a specific task and pass it to a service, which then can use it to access other
services in the users name. Tokens also are internal to OpenStack, whereas other
authentication might require accessing an external authentication provider (e.g. an
LDAP server).

The Keystone service stores these tokens in memcached13, which is, as the name
alludes to, an in-memory caching service. Designed as just a fast caching layer, it
neither has persistence to disk nor does it guarantee to keep all data it stores. If it
deems necessary it can evict any information at any time (i.e. because it is under
memory pressure).14

Experiment The admin credentials are used to create a token. To verify the
tokens validity, it is used to authenticate an operation against the Keystone API.
To cause memcached to evict it from the cache, the command for memcached to
delete all its data is issued.

Results and Conclusion Subsequent attempts to use the token fail, since it
has been deleted. This shows the consequences of OpenStack using an unreliable
data store to save a central element of its authentication system, instead of using
memcached as designed only as a cache to improve lookup speeds.

If a user is logged into the Horizon dashbord while the experiment is running,
it also sometimes allows to observe failures: The dashboard site is still accessible
(because the session on the web server still exists), but no information from Open-
Stack is shown because attempts to retrieve it fail due to the invalid token. The
user has to log out and back in again to create a new token.

Experiment 3: Compute Nodes Unavailable
This experiment documents the behaviour if connectivity to compute nodes is lost.

Technical Background Instances are distributed among the compute nodes by
the Nova scheduler, which runs on the controller node. Inspecting the state of
VMs e.g. directly via the Nova API or via the Horizon Dashboard is also done via
information stored by Nova on the controller node, where it collects information
from all compute hosts. If the controller looses connectivity to compute nodes, it
can’t accurately report the state of individual instances, as seen in this experiment.

Experiment This experiment first creates an instance to observe throughout the
different stages. Then the first level of fault is introduced: All compute nodes are

13http://memcached.org/.
14https://code.google.com/p/memcached/wiki/NewUserInternals#How_the_LRU_

Decides_What_to_Evict.

11

http://memcached.org/.
https://code.google.com/p/memcached/wiki/NewUserInternals#How_the_LRU_Decides_What_to_Evict.
https://code.google.com/p/memcached/wiki/NewUserInternals#How_the_LRU_Decides_What_to_Evict.

Johannes Eschrig, Sven Knebel, Nicco Kunzmann: OpenStack

removed from the management network. Then an attempt to start a second instance
is made. After this, a more severe fault is created by shutting down all compute
nodes. Then a fix is attempted by restarting the VMs.

Results and Conclusion After the first fault, Nova on the controller has no
connectivity to the compute nodes and is therefore unable to actually start the
second instance. The first instance is still reported as being active, which in this
case is correct: it is still running and can be reached from the outside network.
Since it already has lost all connectivity to the compute nodes, things look exactly
the same after the compute nodes are actually shut down, but in this case the state
information is wrong: the VMs obviously are not active, but shut down together
with the host they were running on. After the reboot of the compute nodes, they
reconnect to the controller and the state of all VMs is reported correctly again.

This shows that when Nova looses connectivity to a compute node it can’t report
accurate information, which is one of the reasons why Nova doesn’t implement
functionality to automatically restart such VMs. Short interruption of Nova services,
e.g. due to software updates, do not necessarily disrupt instance operations. Such
decisions are left to other systems that can collect more information (e.g. by running
active tests against VMs) and can be configured for specific application needs, like
OpenStack Heat.

We find it interesting that the developers choose to report such instances as active
and did not introduce another state to represent this special situation.

6 Conclusion

In our masters project we created a platform for the automated installation of an
virtual OpenStack environment as well as a framework for some first dependability
experiments on this environment.15 The advantage of our platform is the very
fast installation (10–15 minutes) of a complete OpenStack environment on very
limited hardware compared to a full bare metal installation. This makes running
dependability experiments comparatively easy. Features like snapshotting would
not be available on a bare metal setup, but are very useful when repeating such
experiments. Further, our platform is easily extendable, both for adding further
OpenStack components as well as further experiments.

These features can be the foundation for future work. Due to the limited time
and personal resources, we were not able to implement the installation of a full
OpenStack high availability setup. Such a setup could make it possible to compare
the dependability of the “normal” OpenStack setup to the high availability one, by
running the experiments on both. Further, due to the fact that we use Ansible for the
installation, the playbooks themselves can be easily used for installing OpenStack
on bare metal. For this, the scripts for configuring the virtual environment could be

15https://github.com/MasterprojectOpenStack2015/sourcecode.

12

https://github.com/MasterprojectOpenStack2015/sourcecode.

References

extended in order to make it possible to configure a bare metal setup. This would
allow running the experiments on a bare metal OpenStack installation.

References

[1] M. Bastian, S. Brueckner, K. Fabian, M. Hopstock, D. Korsch, and D. Stelter-
Gliese. Cloud Computing with OpenStack. Report Masters Project. 2015.

[2] X. Ju, L. Soares, K. G. Shin, K. D. Ryu, and D. Da Silva. “On Fault Re-
silience of OpenStack”. In: Proceedings of the 4th Annual Symposium on Cloud
Computing. SOCC ’13. Available at http : / / doi . acm . org / 10 . 1145 /
2523616.2523622. Santa Clara, California: ACM, 2013, 2:1–2:16. doi: 10.
1145/2523616.2523622.

[3] M. Kollárová. “Fault injection testing of OpenStack”. Available at http://
is.muni.cz/th/325503/fi_m/. Diplomová práce. Masarykova univerzita,
Fakulta informatiky, Brno, 2014.

[4] Q. Teng. Enhancing High Availability in Context of OpenStack. Available at
https://www.openstack.org/summit/openstack- summit- atlanta-
2014/session-videos/presentation/enhancing-high-availability-
in-context-of-openstack. 2014.

13

http://doi.acm.org/10.1145/2523616.2523622
http://doi.acm.org/10.1145/2523616.2523622
http://dx.doi.org/10.1145/2523616.2523622
http://dx.doi.org/10.1145/2523616.2523622
http://is.muni.cz/th/325503/fi_m/
http://is.muni.cz/th/325503/fi_m/
https://www.openstack.org/summit/openstack-summit-atlanta-2014/session-videos/presentation/enhancing-high-availability-in-context-of-openstack
https://www.openstack.org/summit/openstack-summit-atlanta-2014/session-videos/presentation/enhancing-high-availability-in-context-of-openstack
https://www.openstack.org/summit/openstack-summit-atlanta-2014/session-videos/presentation/enhancing-high-availability-in-context-of-openstack

Protecting Minors on Social Media Platforms - A Big Data
Science Experiment

Estée van der Walt, J.H.P. Eloff

Department of Computer Science
University of Pretoria, South Africa

estee.vanderwalt@gmail.com;eloff@cs.up.ac.za

Interpersonal communications on social media, hosted via cloud computing
infrastructures, has become one of the most common online activities. This is
especially so for children and adolescents (minors) who may be accidentally and
intentionally exposed to cyber threats such as cyber bullying, pornography and
pedophilia. Most of these unwanted activities deal with some form of identity
deception. This paper presents work-in-progress that leverages on the advances
made in big data and data science to assist in the early detection of identity
deception and thereby to protect minors using social media platforms.

1 Introduction

Facebook, Twitter, MySpace and SnapChat host the online activities of millions
of individuals spanning across various age groups. According to a study in the
USA [12] done on the online activities of minors, children and adolescents, it is
showed that 85 percent of 18–29 year olds use social media platforms. These num-
bers however mostly exclude minors as many social media sites have enacted age
based bans to comply with laws like COPPA [19]. Minors may be accidentally and
intentionally exposed to cyber threats such as cyber bullying [19] and pedophilia
[7]. Many of these threats imply some form of identity deception [2]. Of particular
interest to this study is the case of counterfeiting an identity. It is easy for a predator
to counterfeit an identity and to go unnoticed in a big data environment, such as
social media platforms [5]. There is a need for new innovative solutions that can
minimize the risk of identity deception on social media platforms.

The remainder of this paper is structured as follows: Section 2 describes back-
ground and related research whilst Section 3 presents work-in-progress, in the
form of an experiment. The experiment shows how big data and data science can
be leveraged to construct an Identity Deception Indicator. Lastly Section 4 will
conclude the discussion at hand.

15

mailto:estee.vanderwalt@gmail.com; eloff@cs.up.ac.za

Estée van der Walt, J.H.P. Eloff: Protecting Minors on Social Media Platforms

2 Background

2.1 Big Data and Data science

Big data, like the micro-blogs from Twitter, is hosted on cloud computing infras-
tructures due to its size, need for availability and complexity [11].

• The three main characteristics of big data is aptly defined as the 3V’s [13].

• Volume; Minors are actively contributing content on social media daily [19].

• Velocity; Many minors actively participate in online gaming. Within these
games speed and accuracy is critical for stepping out as the victor [7].

• Variety; Most minors will not only write text on social media but also con-
tribute in the form of videos or photos.

Many other characteristics of big data have been proposed like ‘Value’ [6], ‘Via-
bility’ [3], ‘Validity’ [1] and ‘Veracity’ [9]. According to Provost and Fawcett 2013,
Data Science “involves principles, processes, and techniques for understanding
phenomena via the automated analysis of data” [21]. It appears that the protection
of minors against people with harmful intentions in online communities are of
evolving nature [16] and that the availability of sufficient test, sample and training
data sets are limited [18].

2.2 Cyber-security

According to ISO/IEC 27032 Cyber-security is the safeguarding of an individuals or
a society’s interest whilst interacting in cyber space [24]. From a vulnerability point
of view, humans in general and minors, in particular, are not good in detecting
counterfeit identities. Minors are usually easy targets. Social media platforms pro-
vide the ideal platform for an attack [26] mainly because of its big data nature and
the complexity of non-textual data. Most existing countermeasures are based on
plug-ins for safe-browsing on the internet [18]. These countermeasures are however
inadequate for detecting identity deception.

2.3 Human factors

Yet Hargittai, Shultz and Palfrey [10] report that many minors under the age of 13

use social media sites like Facebook and lie about their age during site registration.
It even reaches as far as parents registering on behalf of their children on social
media sites [15]. Parents are however still concerned with their children meeting
strangers online [7] and as at this moment there is no control or safe guard against
this [12].

The problem of protecting minors are even more complicated by the fact that
many minors lie about their age whilst communicating online [14, 20, 19]. It is

16

3 Big Data Science Experiment

easy to impersonate someone else on a Facebook account for example to slander
their image [7] or lie in a chat or micro blogging site like Twitter about your age. It
can therefore be stated that from a human factor point of view the challenge is to
determine the authenticity of a person’s identity.

Authenticity of an identity
A number of measures for determining the authenticity of an identity are based on
a so-called ‘identity score’ [25]. Identity scores use information like personal data,
public records, Internet data, government records and predictive behavior patterns
to determine the authenticity of a person’s identity.

Other research efforts to identify the age of an online identity includes the use of
sentiment or emotions expressed in micro blogs and ngram counts, to understand
whether a person is a pedophile or not, was performed in a study by Bogdanova
[5], detecting age on Facebook through the use of vocabulary [22] and searching
for pattern matching rules where a number followed by ‘yr’ or ‘year’ could denote
a person describing their age [23]. Except for a US patent [4], none of the existing
research efforts weighted the importance of certain identity attributes over another
in the process of detecting identity deception.

3 Big Data Science Experiment

3.1 Process

The big data science experiment proposed to identify identity deceptions. Figure 1

shows the process followed for conducting the full experiment.
The remaining discussion that follows only focus on the first 6 steps of the

process as outlined in Fig. 1.

3.2 Determine experiment objective

The objective of the experiment is to explore with creating an identity deception
indicator with which minors could be protected on social media platforms.

3.3 Identify the source of social media data

Twitter was chosen as the source for big data. Twitter has over 1 billion subscribers
for 400 million actively tweeting every day [8, 17]. Twitter is a dependable and
realistic medium for research as mentioned by Durahim [8]. The main reason is the
ease with which data can be freely retrieved from the cloud. Twitter has made a
REST and streaming API available to developers for this purpose. The free service
does however limit the amount of requests to the API to 180 per 15-minute window.

17

Estée van der Walt, J.H.P. Eloff: Protecting Minors on Social Media Platforms

Figure 1: Big Data Science experiment

For the purposes of the experiment, the authors have decided to retrieve tweets
from Twitter users who have marked their tweets with a hash tag indicator of
‘school’ or ‘homework’. Schwartz et al [22] determined that these two words are
most common with minors between the ages of 13 and 18. Although Twitter has
no indication of age, it is expected that by using these hash tag indicators it should
be possible to get an initial sample set, referred to as Set-1, of minors as a big
data-set. Following the retrieval of Set-1 an additional data-set, referred to as Set-2,
was retrieved containing, amongst other information, the last 200 tweets for each
twitter user in Set-1 as well as the followers for that user. The final data-set, a
combination of Set-1 and Set-2, contains the initial tweets with hash tag indicators
‘school’ or ‘homework’ as well as a history of previous tweets.

3.4 Identify technology stack for the experiment execution

Figure 2 illustrates a high level overview of the technology stack used for con-
ducting the experiment. However, for the results as discussed in this paper not all
components of the stack were used.

18

3 Big Data Science Experiment

Figure 2: Technology stack for experiment

Some of the main components are discussed next:

• Twitter: The Twitter4j Java API was used to dump the data needed for the
experiment in a big data repository.

• Hadoop: For the purposes of this experiment HDP Hadoop runs on an
Ubuntu Linux virtual machine hosted in “The HPI Future SOC” research
lab in Potsdam, Germany. This machine contains 4TBs of storage, 8GB RAM,
4 x Intel Xeon CPU E5-2620 @2GHz and 2 cores per CPU. Hadoop is well
known for handling heterogeneous data in a low-cost distributed environ-
ment, which is a requirement for the experiment at hand.

• Flume: Flume is used as one of the services offered in Hadoop to stream
initial Twitter data into Hadoop and also into SAP HANA.

• Sqoop: This service in Hadoop is used to pull data from SAP HANA back
to the Hadoop HDFS. Analytical results e.g. machine learning and predictive
modeling for the experiment will be generated on both Hadoop and SAP
HANA. These results will be stored on both platforms and Sqoop facilitates
this requirement.

• SAP HANA: A SAP HANA instance is used which is hosted in “The HPI
Future SOC” research lab in Potsdam, Germany on a SUSE Linux operating
system. The machine contains 4TBs of storage, 1TB of RAM and 32CPUs /

19

Estée van der Walt, J.H.P. Eloff: Protecting Minors on Social Media Platforms

100 cores. The in-memory high-performance processing capabilities of SAP
HANA enables almost instantaneous results for analytics.

• The XS Engine from SAP HANA is used to accept streamed Tweets and
populate the appropriate database tables.

3.5 Gather social media sample data set for experiment

To be able to define a store as ‘big data’ anything from 2 to 4TB of test data from
Twitter will be retrieved for the experiment. Keeping the Twitter rate limit, 180

requests per 15-minute window, in mind it was found that initially 4,344 tweets
on average per hour could be retrieved. With code optimization this rate was later
improved to 46,891 tweets on average per hour as seen from Fig. 3.

Figure 3: Average tweets per hour with average tweet size

3.6 Data cleansing, enrichment and transformation

For the experiment conducted Twitter accounts with less than 1,000 followers were
considered and re-tweeted tweets were removed. From first observations it appears
that this cleaned data set resulted in tweets that are more prone to have been sent
by actual individuals.

In terms of enrichment below is an extract of the information added:

• Whether the user is part of the original tweet data-set (Set-1) retrieved from
the Twitter stream (one of the tweets containing ‘school’ or ‘homework’ as a
hash tag) or whether the user is a follower or friend of such a user (Set-2).

• Keeping track of the followers and friends of the users in the original data
set.

20

3 Big Data Science Experiment

3.7 Understanding the data gathered

As part of the experiment some initial variables were identified enabling an im-
proved understanding of the social media data set gathered. Examples of these
variables are described in Table 1.

Table 1: Initial variables identified for the experiment

Variable Description
R average number of retweets per hour
U total number of users
T total number of tweets
AS the number of users with the words ‘age’, ‘yr’ or ‘year’ in the status

description
WO the hashtags extrapolated from all tweets of Set-1
TZ the top time zones of all users

Results for each of these variables were obtained and an extract of the results for
some variables are described in Table 2.

Table 2: Initial results for the experiment

Variable Description
R on average 14,461 tweets were retweets out of the original average of

46,891 tweets per hour
U 2,686 users
T 265,535 tweets
AS 178 users out of 2,686 had the words ’age’, ’yr’ or ’year’ in their status

description
WO It seems that ’nth grade’ and ’nth birthday’ are very common as shown

by the word cloud in Fig. 4 below
TZ the top 3 entries:

Timezone Count
Pacific Time (US & Canada) 26,450

Eastern Time (US & Canada) 24,774

Central Time (US & Canada) 18,384

21

Estée van der Walt, J.H.P. Eloff: Protecting Minors on Social Media Platforms

Figure 4: A word cloud of all tagged entries

Initial insights from observing the data gathered
Based on the results from interrogating the initial identified set of variables some
interesting information has already presented itself towards being considered for
inclusion in creating an Identity Deception Indicator (IDI).

• About 10 percent of all tweets mentioned the words ’yr’, ’year’ or ’age’. This
is worth investigating to understand if this could be used as some form of
age indicator.

• Only 25 percent of tweets were retweets. This seems a good indicator that the
sample set is actual personal i.e. individual, Twitter accounts.

4 Conclusion

The protection of minors are still lacking in many aspects on the Internet and even
more so with big data platforms like social media. This paper presents an initial
attempt towards the early detection of identity deception so to protect minors on
social media platforms. It is envisaged that the experiment, as discussed in this
paper, together with its future expansions can assist authorities to pro-actively
monitor social media feeds and identify potential online personas who are not who
they pose to be.

Acknowledgement

The support of “The HPI Future SOC” research Lab in Potsdam (Germany) is
acknowledged for making available powerful infrastructure to conduct the research
activities as presented in this paper.

22

References

References

[1] M. Ali-ud-din Khan, M. F. Uddin, and N. Gupta. “Seven V’s of Big Data
understanding Big Data to extract value”. In: American Society for Engineering
Education (ASEE Zone 1), 2014 Zone 1 Conference of the. IEEE, pages 1–5.

[2] J. S. Alowibdi, U. A. Buy, S. Y. Philip, S. Ghani, and M. Mokbel. “Decep-
tion detection in Twitter”. In: Social Network Analysis and Mining 5.1 (2015),
pages 1–16. issn: 1869-5450.

[3] M. D. Assunção, R. N. Calheiros, S. Bianchi, M. A. Netto, and R. Buyya.
“Big Data computing and clouds: Trends and future directions”. In: Journal of
Parallel and Distributed Computing 79 (2015), pages 3–15.

[4] S. S. Baveja, A. D. Sarma, and N. Dalvi. Determining trustworthiness and com-
patibility of a person. Generic. 2015.

[5] D. Bogdanova, P. Rosso, and T. Solorio. “Exploring high-level features for de-
tecting cyberpedophilia”. In: Computer Speech & Language 28.1 (2014), pages 108–
120.

[6] L. Cai and Y. Zhu. “The Challenges of Data Quality and Data Quality Assess-
ment in the Big Data Era”. In: Data Science Journal 14 (2015), page 2.

[7] L. Dedkova. “Stranger Is Not Always Danger: The Myth and Reality of
Meetings with Online Strangers”. In: LIVING IN THE DIGITAL AGE (2015),
page 78.

[8] A. O. Durahim and M. Coşkun. “# iamhappybecause: Gross National Happi-
ness through Twitter analysis and big data”. In: Technological Forecasting and
Social Change 99 (2015), pages 92–105.

[9] R. Han, Z. Jia, W. Gao, X. Tian, and L. Wang. “Benchmarking Big Data Sys-
tems: State-of-the-Art and Future Directions”. In: arXiv preprint arXiv:1506.01494
(2015).

[10] E. Hargittai, J. Schultz, and J. Palfrey. “Why parents help their children lie
to Facebook about age: Unintended consequences of the Children’s Online
Privacy Protection Act”. In: First Monday 16.11 (2011).

[11] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and S. U.
Khan. “The rise of “big data” on cloud computing: review and open research
issues”. In: Information Systems 47 (2015), pages 98–115.

[12] M. Y. Herring. Social Media and the Good Life: Do They Connect? McFarland,
2015.

[13] R. Kannadasan, R. Shaikh, and P. Parkhi. “Survey on big data technologies”.
In: International Journal of Advances in Engineering Research Vol. No. 3 Issue No.
III (2013).

[14] S. Kierkegaard. “Cybering, online grooming and ageplay”. In: Computer Law
& Security Review 24.1 (2008), pages 41–55.

23

Estée van der Walt, J.H.P. Eloff: Protecting Minors on Social Media Platforms

[15] I. Liccardi, M. Bulger, H. Abelson, D. J. Weitzner, and W. Mackay. “Can apps
play by the COPPA Rules?” In: Privacy, Security and Trust (PST), 2014 Twelfth
Annual International Conference on. IEEE, pages 1–9.

[16] S. Livingstone, G. Mascheroni, K. Ólafsson, and L. Haddon. “Children’s
online risks and opportunities: comparative findings from EU Kids Online
and Net Children Go Mobile”. In: (2014).

[17] F. Morstatter, J. Pfeffer, H. Liu, and K. M. Carley. “Is the Sample Good
Enough? Comparing Data from Twitter’s Streaming API with Twitter’s Fire-
hose”. In: ICWSM.

[18] K. Moyle. “Filtering children’s access to the internet at school”. In: ICICTE
2012 Proceedings (2012).

[19] G. S. O’Keeffe and K. Clarke-Pearson. “The impact of social media on chil-
dren, adolescents, and families”. In: Pediatrics 127.4 (2011), pages 800–804.

[20] C. Peersman, W. Daelemans, and L. Van Vaerenbergh. “Predicting age and
gender in online social networks”. In: Proceedings of the 3rd international work-
shop on Search and mining user-generated contents. ACM, pages 37–44.

[21] F. Provost and T. Fawcett. Data Science for Business: What you need to know
about data mining and data-analytic thinking. O’Reilly Media, Inc., 2013.

[22] H. A. Schwartz, J. C. Eichstaedt, M. L. Kern, L. Dziurzynski, S. M. Ramones,
M. Agrawal, A. Shah, M. Kosinski, D. Stillwell, and M. E. Seligman. “Person-
ality, gender, and age in the language of social media: The open-vocabulary
approach”. In: PloS one 8.9 (2013).

[23] L. Sloan, J. Morgan, P. Burnap, and M. Williams. “Who tweets? Deriving the
demographic characteristics of age, occupation and social class from twitter
user meta-data”. In: PloS one 10.3 (2015).

[24] R. Von Solms and J. Van Niekerk. “From information security to cyber secu-
rity”. In: Computers & Security 38 (2013), pages 97–102.

[25] Wikipedia. Identity Score. Encyclopedia. 2015.

[26] R. Williams. “Children using social networks underage exposes them to
danger”. In: The telegraph (2014).

24

A Scalable Query Dispatcher for Hyrise-R

Jan Lindemann, Stefan Klauck, David Schwalb

Enterprise Platform and Integration Concepts
Hasso Plattner Institute

jan.lindemann@student.hpi.de,stefan.klauck@hpi.de,david.schwalb@hpi.de

While single machines can handle the transactional database workload of most
companies, the increasing analytical load will push them to their limit. For
this reason, we extended the open source in-memory database Hyrise with the
capability to form a database cluster for scalability and increased availability.
This scale out and hot standby version is called Hyrise-R. It implements lazy
master replication and has been shown to be well suited for mixed workloads as
they exist in enterprise applications.

In this paper we present our extension of Hyrise-R: a query dispatcher, which
works fully transparently and implements an enhanced query distribution algo-
rithm. The new distribution algorithm improves load balancing and prioritizes
write requests for higher transaction throughput. In addition, we discuss our
work in progress and planned activities for Hyrise-R.

1 Introduction

Database workloads of companies can be classified into online transactional pro-
cessing (OLTP) and online analytical processing (OLAP). Transactional workloads
consist of write and read queries that access only a few tuples. On the other side,
queries in analytical workloads access entire columns, e.g., for filtering, joins or
aggregations. Both types have in common that read queries are the major part of
the workload. Krüger et al. stated that 80 percent of the queries in OLTP workloads
are read queries [6]. In OLAP workloads the ratio of read queries is even higher
(90 percent). Since read requests do not change the data, multiple read requests
can be executed concurrently without conflicts. Furthermore, the performance of
the database can be increased with a scale out, e.g., a replication on multiple nodes.
As a result, read queries can be spread over the different database instances and
therefore more queries can be executed at the same time. Besides the increased
throughput of the database, using multiple instances is beneficial for the system’s
resilience. If a database is replicated, every instance stores the same data. In case
of an instance failure, another one can take over the work.

In-memory databases, like SAP HANA [9, 10], HyPer [5] or Hyrise [4, 3], enable
a fast execution of mixed workloads, consisting of transactional and analytical
queries, with a single database. This allows running analytical queries on up-to-
date data which paves the way for new applications. In order to keep the database
response times fast for the increasing workload, the database capacity has to be
increased. To achieve this for the open source database Hyrise, we presented the
implementation of lazy master replication called Hyrise-R [12]. Our previous work

25

mailto:jan.lindemann@student.hpi.de, stefan.klauck@hpi.de, david.schwalb@hpi.de

Lindemann, Klauck, Schwalb: A Scalable Query Dispatcher for Hyrise-R

focused on the propagation of updates from the master node to the replicas in order
to keep them up-to-date. This paper presents the progress on Hyrise-R, especially
it contributes:

• The design of a configurable dispatcher to distribute the queries transparently
among the cluster instances and its implementation for Hyrise-R.

• A detailed description of work in progress and next steps for Hyrise-R.

The presented implementations are publicly available as open source1.
The next section gives an overview of Hyrise. Section 2 presents how Hyrise was

extended to form a database cluster. Following we describe how query dispatching
works in Hyrise-R. Section 5 presents our work in progress and next steps. Finally
Section 6 concludes this paper.

2 Hyrise

Hyrise is an in-memory research database, developed at the Hasso Plattner Institute.
By exploiting a main delta architecture, it is well suited for mixed workloads. Tuples
in the main partition are thereby stored dictionary compressed with a sorted
dictionary. This allows efficient vector scanning and supports optimized range
queries in analytical workloads. New tuples are inserted in the write optimized
delta partition. Using an unsorted dictionary is a trade-off for better write and
reasonable read performance. The periodic merge process moves tuples from the
delta to the main partition [6]. Hyrise supports a flexible hybrid table layout,
allowing to store attributes corresponding to their access patterns [4, 3]. A columnar
arrangement is well-suited for attributes which are often accessed sequentially, e.g.,
via scans, joins or aggregations. On the other side, attributes accessed in OLTP-
style queries, e.g., projections of few tuples, can be stored in a row-wise manner.
Hyrise exploits an insert only approach and multi-version concurrency control with
snapshot isolation as default isolation level [11]. That is why Hyrise can process
writes without delaying read queries.

3 Hyrise-R

Hyrise-R is a replication extension for the in-memory database Hyrise [12]. Figure 1

shows the architecture of Hyrise-R, comprising a query dispatcher and the database
cluster. The Hyrise-R cluster consists of one master database instance, the primary
node, and an arbitrary number of replica instances. Users send their requests to
the dispatcher. Write requests are forwarded to the primary node. Read requests

1https://github.com/hyrise.

26

3 Hyrise-R

Dispatcher

Cluster

Hyrise
Primary Node

Cluster
Interface

Request
Handler

Data
Storage Logger

Hyrise
Replica Node i

Cluster
Interface

Request
Handler

Data
Storage Logger

Figure 1: Architecture of Hyrise-R
with the dispatcher and cluster

Dispatcher

Request Handler

Request Queue

Parser Thread Pool
Parser Thread 1

Parser Thread N
● ● ●

Query Distributor

Parsed Requests

Cluster

Hyrise
Primary Node

Hyrise
Replica Node i

Figure 2: Architecture of the query
dispatcher within Hyrise-R

are distributed among all cluster instances including the master in a round-robin
manner.

To keep the replica nodes up-to-date, the primary node propagates changes to
the replicas. Therefore, we added the Cluster Interface to the Hyrise core. It sends
dictionary compressed logging information to the replica nodes. The replicas store
the log entries and apply them to their table data. In order to reduce the number
of exchanged messages, the changes are collected and transmitted in batches. This
update process is called lazy replication [2]. To detect node failures, a heartbeat
protocol is implemented. The primary node sends heartbeats to the replicas which
have to acknowledge the reception. If the replicas do not receive a heartbeat in a
certain interval, the next replica will take over the position as master instance. The
new primary node will inform the dispatcher that the old master failed and that it
takes over the work as primary node.

The focus of our previous work was the communication between cluster in-
stances, i.e., the necessary modifications within Hyrise to support lazy master
replication. To distinguish read and write queries, we used different endpoints
(URLs) so that the dispatcher did not work completely transparently. Furthermore,
the dispatcher distributed queries with the fixed distribution algorithm round-
robin with no prioritization of writes. Reads would still be sent to the master node
in write intensive workloads, which results in a heavier load for the master node

27

Lindemann, Klauck, Schwalb: A Scalable Query Dispatcher for Hyrise-R

compared to the replicas. In general, round-robin query distribution does not take
into account:

• Different node hardware.

• Necessary compute and storage resources in order to calculate a query result.

In order to overcome these shortcomings, we refactored and extended the query
dispatcher.

4 Dispatcher

The query dispatcher has the task to distribute incoming requests among the cluster
instances. It has the same query interface as Hyrise so that it works transparently
to the user. The dispatcher maintains a list of database hosts with a single primary
node. We encapsulate this information in a configuration file, which is passed to the
dispatcher on start-up. Besides the information about the database instances, i.e.,
their network address and start parameters, the file contains the dispatcher settings
such as the query distribution algorithm and number of threads to use. Figure 2

shows an overview of the dispatcher as part of Hyrise-R. Query dispatching consists
of two major steps: the parsing and distribution according to the request type.

First a request handler stores incoming requests, i.e., Hyrise JSON queries, in a
request queue. Parser threads of a parser thread pool take the requests out of the
queue in order to parse the JSON query plan. In the current implementation of the
parser we distinguish between three cases:

• Read queries.

• Write queries, transactions with writes and procedures.

• Table loads.

The parser uses a blacklist approach to classify the request type. Therefore
it maintains a list with all data manipulation operations. The parser scans the
operators of a query and searches for data manipulation operations. Since the
parser does not know whether a procedure will alter the data or not, each procedure
will be executed on the primary node. Alternatively the procedures could declare
their query type. The third request type is a table load, used to create and fill
Hyrise tables. Since every node in the cluster has to store the same data, every
instance must load the table. This is a special characteristic of a load query that
distinguishes it from the other two types: a load query has to be distributed to all
cluster nodes.

The parsed requests are passed to the query distributor. We implemented two
distribution algorithms so far: a round robin distribution and so-called stream
approach.

28

4 Dispatcher

4.1 Round-Robin Approach

The round-robin approach distributes incoming read requests in circular order to
the cluster instances. In order to determine the instance for the next read request,
the parser uses a read counter. The id of the next instance is the current value of
the counter modulo the number of cluster instances. After reading the value of
the counter, it is incremented by one. In this way the read requests get assigned in
circular order to the database instances. Write requests and procedures are always
assigned to the master node. All requests are stored in the same queue (a queue
per host implementation could also be used), together with the assigned host id
and the socket with the connection to the requesting client.

Round-Robin Distributor

Parsed Request Queue

Connection
Thread Pool

Connection Thread 1

Connection Thread M

● ● ●

Cluster

Hyrise
Primary Node

Hyrise
Replica Node i

Figure 3: Round-robin distributor

Stream Distributor

Parsed Write Queue

Master
Streams

Read
Stream 1

Write
Stream 1

Parsed Read Queue

Replica i
Streams

Read
Stream 2

Read
Stream 3

Cluster

Hyrise
Primary Node

Hyrise
Replica Node i

Figure 4: Stream distributor

Connection threads propagate the requests to the assigned database instances
and respond to the client. Like depicted in Figure 3, the round-robin approach
implements a thread pool containing these connection threads. The threads are
created when the dispatcher starts and wait for tuples with parsed requests pushed
into the parsed request queue.

4.2 Stream Approach

The second algorithm uses a fixed number of connections per cluster instance. The
idea of the algorithm is to execute write queries preferentially and to increase the
transactional throughput in this way. In addition, it supports heterogeneous clusters
by assigning different numbers of connection threads to the cluster instances.

The algorithm separates read and write requests and stores them into one of two
different queues. One queue contains all parsed read requests, whereas the other
one contains all parsed write requests. In contrast to the round-robin approach,
this approach does not use a thread pool shared by all cluster instances but assigns
a fixed number of threads to each cluster instance (see Figure 4). These threads
are called streams, listen on one of the queues and process requests sequentially.

29

Lindemann, Klauck, Schwalb: A Scalable Query Dispatcher for Hyrise-R

Streams belonging to one of the replicas can only listen and take requests from the
read request queue. The streams that are bound to the master can listen either on
the read queue or on the write queue. However, at least one master stream has to
listen on the write queue. If a stream gets a request from the queue it is listening
on, it sends the query to its database instance and returns the result to the client.

5 Discussion and Future Work

This paper presents an extended query dispatcher for Hyrise-R, which works
transparently to the user and supports various query distribution algorithms. The
stream approach overcomes the disadvantages of a round-robin distribution as
it can prioritize write queries on the master node and handle imbalances in the
cluster hardware by assigning more query streams to more powerful cluster nodes.
This will increase the query performance for our planned evaluation.

For performance measurements of databases, Cole et al. presented the mixed
workload CH-benCHmark [1]. It combines the transactional TPC-C and analytical
TPC-H benchmark. The basis of the database schema is the transactional schema of
the TPC-C benchmark, extended by tables only used in the TPC-H benchmark. The
transactional queries are taken from the TPC-C benchmark. The analytical queries
are modified queries of the TPC-H benchmark which are adapted according to
the combined schema. Our primary goal and work in progress is a comprehen-
sive performance analysis of Hyrise-R. We plan to base our evaluation on the
CH-benCHmark. TPC-C benchmark is already implemented with stored proce-
dures in Hyrise. For the TPC-H benchmark, some necessary operators are not yet
implemented in Hyrise.

Besides a performance analysis of the database cluster, we plan to compare
various distribution algorithms and implement more sophisticated approaches.
The architecture of the described dispatcher allows extending the functionality
of existing query distributors and creating new distribution algorithms with low
effort. So far we focused on homogeneous cluster instances. But also scenarios with
heterogeneous machines are possible, i.e., nodes with different hardware resources
or different runtime configurations, e.g., indices. One of our ideas is to setup the
cluster instances with different indices. The dispatcher can exploit the parsed query
and the knowledge about cluster instances to distribute the queries to appropriate
nodes according to the accessed columns.

Further, we plan to increase the resilience of the database cluster. A potential
problem is a failure of the master node and a loss of logs which have not been
replicated yet. As future work we plan to discuss possibilities to achieve k-safety,
e.g., distributed logs. Moreover, the dispatcher is still a single point of failure.
Even though the dispatcher is relatively simple and not as error-prone as complex
software like a database, a failure of the dispatcher would cause a failure of the
whole database cluster. David et al. proposes a cluster of dispatchers with failure
detection as a possible solution [12]. In case that one dispatcher fails, another could
take over the work.

30

6 Conclusion

The implementation of elasticity, the capability to extend and shrink the database
cluster depending on the current workload, is a further goal for Hyrise-R.

Hyrise-R is similar to ScyPer [8], a scale out version of HyPer [5]. The master
node sends redo logs to the replicas using multicasts. A coordinator process at the
primary node distributes read queries among the secondary HyPer nodes [7].

6 Conclusion

This paper presents an advanced query dispatcher for Hyrise-R, the scale out ver-
sion of the in-memory database Hyrise. The configurable and extensible query
dispatcher consists of two major parts, a request parser and distributor. The query
distributor uses the parsed query information to propagate the query to an appro-
priate cluster instance. It uses a blacklist approach to distinguish between read,
write and table load requests. Advanced distribution algorithms can exploit knowl-
edge about the cluster instances, e.g., existing indices to forward queries to the best
suitable node. We discussed how the implemented stream distribution algorithm
improves load balancing and increases the transaction throughput. For future work
we plan to demonstrate the capabilities of Hyrise-R in a performance evaluation.

Acknowledgment

Stefan Klauck has received funding from the European Union’s Horizon 2020

research and innovation program 2014–2018 under grant agreement No. 644866

(SSICLOPS). This document reflects only the authors’ views and the European
Commission is not responsible for any use that may be made of the information it
contains.

References

[1] R. Cole, F. Funke, L. Giakoumakis, W. Guy, A. Kemper, S. Krompass, H. Kuno,
R. Nambiar, T. Neumann, M. Poess, K.-U. Sattler, M. Seibold, E. Simon, and
F. Waas. “The Mixed Workload CH-benCHmark”. In: Proceedings of the Fourth
International Workshop on Testing Database Systems. 2011.

[2] J. Gray, P. Helland, P. O’Neil, and D. Shasha. “The Dangers of Replication and
a Solution”. In: Proceedings of the 1996 ACM SIGMOD International Conference
on Management of Data. SIGMOD ’96. 1996.

[3] M. Grund, P. Cudre-Mauroux, J. Krüger, S. Madden, and H. Plattner. “An
overview of HYRISE–A Main Memory Hybrid Storage Engine”. In: IEEE
Data Engineering Bulletin (2012).

31

Lindemann, Klauck, Schwalb: A Scalable Query Dispatcher for Hyrise-R

[4] M. Grund, J. Krüger, H. Plattner, A. Zeier, P. Cudre-Mauroux, and S. Madden.
“HYRISE: A Main Memory Hybrid Storage Engine”. In: Proc. VLDB Endow.
(2010).

[5] A. Kemper and T. Neumann. “HyPer: A hybrid OLTP&OLAP main memory
database system based on virtual memory snapshots”. In: Data Engineering
(ICDE), 2011 IEEE 27th International Conference on. 2011.

[6] J. Krüger, C. Kim, M. Grund, N. Satish, D. Schwalb, J. Chhugani, H. Plattner,
P. Dubey, and A. Zeier. “Fast Updates on Read-optimized Databases Using
Multi-core CPUs”. In: Proc. VLDB Endow. (2011).

[7] T. Mühlbauer, W. Rödiger, A. Reiser, A. Kemper, and T. Neumann. “ScyPer:
A Hybrid OLTP&OLAP Distributed Main Memory Database System for
Scalable Real-Time Analytics”. In: BTW. 2013.

[8] T. Mühlbauer, W. Rödiger, A. Reiser, A. Kemper, and T. Neumann. “ScyPer:
Elastic OLAP Throughput on Transactional Data”. In: Proceedings of the Second
Workshop on Data Analytics in the Cloud. DanaC ’13. 2013.

[9] H. Plattner. “A Common Database Approach for OLTP and OLAP Using an
In-memory Column Database”. In: SIGMOD (2009).

[10] H. Plattner. “The Impact of Columnar In-memory Databases on Enterprise
Systems: Implications of Eliminating Transaction-maintained Aggregates”.
In: Proc. VLDB Endow. (2014).

[11] D. Schwalb, M. Faust, J. Wust, M. Grund, and H. Plattner. “Efficient Transac-
tion Processing for Hyrise in Mixed Workload Environments”. In: IMDM in
conjunction with VLDB. 2014.

[12] D. Schwalb, J. Kossmann, M. Faust, S. Klauck, M. Uflacker, and H. Plattner.
“Hyrise-R: Scale-out and Hot-Standby Through Lazy Master Replication for
Enterprise Applications”. In: Proceedings of the 3rd VLDB Workshop on In-
Memory Data Mangement and Analytics. 2015.

32

A Survey of Security-Aware Approaches for Cloud-Based
Storage and Processing Technologies

Max Plauth, Felix Eberhardt, Frank Feinbube and Andreas Polze

Operating Systems and Middleware Group
Hasso Plattner Institute for Software Systems Engineering

firstname.lastname@hpi.de

In the Gartner hype cycle, cloud computing is a paradigm that has crossed
the peak of inflated expectations but also has overcome the worst part of the
trough of disillusionment. While the advantages of cloud computing are the best
qualification for traversing the slope enlightenment, security concerns are still a
major hindrance that prevent full adoption of cloud services across all conceivable
user groups and use cases. With the goal of building a solid foundation for future
research efforts, this paper provides a body of knowledge about a choice of
upcoming research opportunities that focus on different strategies for improving
the security level of cloud-based storage and processing technologies.

1 Introduction

Providing low total cost of ownership, high degrees of scalability and ubiquitous
access, cloud computing offers a compelling list of favorable features to both busi-
nesses and consumers. At the same time, these positive qualities also come with
the less favorable drawback, that guaranteeing data confidentiality in cloud-based
storage and processing services still remains an insufficiently tackled problem. As
a consequence, many companies and public institutions are still refraining from
moving storage or processing tasks into the domain of cloud computing. While
this reluctance might be appropriate for few, highly sensitive use-cases, it poses the
risk of an economic disadvantage in many other scenarios.

This paper provides an overview about the current state of the art in security-
aware approaches for cloud-based storage and processing technologies. Since there
are numerous ways to approach the topic, a large variety of potential starting
points is presented. The goal is to provide a solid body of knowledge, which will
be used as a foundation upon which novel security mechanisms can be identified
and studied in the future. In the ensuing section, we present a selected list of
preceding contributions to the field of security research in the context of cloud
computing. Afterwards, a comprehensive review of the state of the art is provided
to form a body of knowledge.

33

mailto:firstname.lastname@hpi.de

Plauth et al.: Security-Aware Cloud-Based Storage and Processing Technologies

2 Preceding contributions

In the last couple of years, several aspects relevant to security-aware approaches
for cloud-based storage and processing technologies have been researched at our
research group. Among these aspects are technologies such as threshold cryptog-
raphy, trust-based access control, virtual machine introspection and searchable
encryption. Since our ongoing research efforts build up on top of the insights
gained in these preceding contributions, a brief overview is provided.

2.1 Threshold Cryptography

In a widely distributed environment, traditional authorization services represent
a single-point of failure: If the service is unavailable, the encrypted data cannot
be accessed by any party. In distributed setups, simple replication mechanisms
can be considered a security threat, since attackers can gain full control as soon
as a single node has been compromised. In order to eliminate this weakness, the
general approach presented by Neuhaus et al. (2012) [29] employs the concept of
Fragmentation-Redundancy-Scattering [9]: Confidential information is broken up
into insignificant pieces which can be distributed over several network nodes.

The contribution of Neuhaus et al. (2012) [29] is the design of a distributed
authorization service. A system architecture has been presented that enables fine-
grained access control on data stored in a distributed system. In order to maintain
privacy in the presence of compromised parties, a threshold encryption scheme has
been applied in order to limit the power of a single authorization service instance.

2.2 Trust-Based Access Control

The Operating System and Middleware Group operates a web platform called
InstantLab [28, 27]. The purpose of the platform is to provide operating system
experiments for student exercises in the undergraduate curriculum. Virtualization
technology is used to provide pre-packaged experiments, which can be conducted
through a terminal session in the browser. Thus far, massive open online-courses
(MOOCs) have not been well suited for hands-on experiments, since assignments
have been non-interactive. The main goal of InstantLab is to provide more interactive
assignments and enable iterative test-and-improve software development cycles as
well as observational assignments.

Providing a platform that enables a large audience to perform live software
experiments creates several challenges regarding the security of such a platform.
Malicious users might abuse resources for other means than the intended software
experiments. In order to detect misuse of the provided resources, virtual machine
introspection is applied. Furthermore, InstantLab [28, 27] demonstrates how auto-
matic resource management is enabled by trust-based access control schemes. The
purpose of trust-based access control is to restrict user access to resource intensive
experiments. The approach implemented in InstantLab [28, 27] calculates a user’s
trust level based on his/her previous behavior.

34

2 Preceding contributions

2.3 Virtual Machine Introspection

In the age of cloud computing and virtualization, virtual machine introspection
provides the means to inspect the state of virtual machines through a hypervisor
without the risk of contaminating its state. Inspection capabilities are useful for a
wide range of use case scenarios, ranging from forensics to more harmless cases
such as making sure a tenant is not violating against the terms of use of the
provider.

The work of Westphal et al. (2014) [36] contributes to the field of virtual ma-
chine introspection by providing a monitoring language called VMI-PL. Using this
language, users can specify which information should be obtained from a virtual
machine. Unlike competing approaches like libVMI [19] and VProbes [35], VMI-
PL does not limit users to hardware level metrics, but it also provides operating
system level information such as running processes and other operating system
events. Furthermore, the language can also be used to monitor data streams such
as network traffic or user interaction.

2.4 Searchable Encryption

For many use cases, efficient and secure data sharing mechanisms are crucial,
especially in distributed scenarios where multiple parties have to access the same
data repositories from arbitrary locations. In such scenarios, the scalability of
cloud computing makes resources simple to provision and to extend. However,
when it comes to storing sensitive data in cloud-hosted data repositories, data
confidentiality is still a major issue that discourages the use of cloud resources in
sensitive scenarios. While traditional encryption can be used to protect the privacy
of data, it also limits the set of operations that can be performed efficiently on
encrypted data, such as search. Encryption schemes which allow the execution
of arbitrary operations on encrypted data are still utopian. However, searchable
encryption schemes exist that enable keyword-based search without the disclosure
of keywords.

Neuhaus et al. (2015) [26] studied the practical applicability of searchable en-
cryption for data archives in the cloud. For their evaluation, an implementation of
Goh’s searchable encryption scheme [12] was embedded into the document-based
database MongoDB. With the encryption scheme in place, benchmarks revealed
that the overhead for insertions is negligible compared to an unencrypted mode of
operation. Search queries on the other hand come with a considerable overhead,
since Goh’s scheme [12] mandates a linear dependency between the complexity of
search operations and the number of documents. However, the processing time of
encrypted queries should be in acceptable orders of magnitude for interactive use
cases where the increased security is mandatory.

35

Plauth et al.: Security-Aware Cloud-Based Storage and Processing Technologies

3 State of the Art

In the context of cloud computing, the field of work related to security-aware ap-
proaches for storage and processing technologies comprises a wide range of diverse
directions. In the consequent part of this document, the state of the art is presented
for a selection of differentiated topics. First, projects are highlighted which pro-
vide best practices for increasing security. Afterwards, new trends in virtualization
strategies are outlined, followed by a brief introduction to novel hardware security
mechanisms. Finally, the security aspects of providing coprocessor resources in
virtual machines is illustrated.

3.1 New trends in virtualization strategies

Virtualization still remains as one of the main technological pillars of cloud com-
puting. The main reason for this key role is that it enables high degrees of resource
utilization and flexibility. Today, the most common approach for virtualization
resorts to low-level hypervisors like Xen or KVM that employ hardware assisted
virtualization in order to run regular guest operating systems in a para-virtualized
or fully virtualized fashion. Recently however, new virtualization approaches have
gained momentum. While containerization approaches move the scope of virtual-
ization to higher levels of the application stack, unikernels are working at the same
level of abstraction as regular operating systems but at the same time change the
operating system drastically. A comparison of the different approaches is illustrated
in Figure 1.

Application Stack
running in a VM

APPLICATION

OPERATING SYSTEM

HYPERVISOR

RUNTIME & LIBRARIES

HOST OS

RUNTIME & LIBRARIES

APPLICATION

Application Stack
running in a container

HOST OS

HYPERVISOR

RUNTIME & LIBRARIES

APPLICATION

Running an application
stack in a container
securely

HYPERVISOR

UNIKERNEL APP

Unikernel app stack
running in a VM

Figure 1: The virtual machine stack as well as both containerization approaches
come with a significant amount of overhead. Unikernels aim at reducing the
footprint of virtualized applications. Source: [38]

Containers
In contrast to hypervisor-level virtualization approaches, where an entire operating
system instance is virtualized, containers belong to the class of operating-system-

36

3 State of the Art

level virtualization strategies that utilize multiple user-space instances in order
to isolate tenants. The main goal of popular containerization implementations
like Linux Containers and Docker is to reduce the memory footprint of hosted
applications and to get rid of the overhead inherent to hypervisor-based virtual-
ization. Recent studies demonstrate that the concept of containerization is able
to outperform matured hypervisors in many use cases [33, 37, 10]. Regarding se-
curity aspects, most containerization approaches thus far rely on the operating
system kernel to provide sufficient means of isolation between different containers.
However, the LXD project aims at providing hardware-based security features to
containers in order to provide isolation levels on par with hypervisor-level based
virtualization.

Unikernels
Unikernels are a new approach to hypervisor-level virtualization. The core concept
of unikernels is based on the idea of deploying applications by merging application
code and a minimal operating system kernel into a single immutable virtual ma-
chine image that is run on top of a standard hypervisor [22, 20, 31]. Since unikernels
intentionally do not support the concept of process isolation, no time-consuming
context switches have to be performed. The general idea behind unikernel systems
is not entirely new, as it builds up on top of the concept of library operating systems
such as exokernel [8] or Nemesis [30]. The main difference to library operating
systems is that unikernels only run on hypervisors and do not support bare metal
deployments, whereas library operating systems are targeting physical hardware.
Due to the necessity to support physical hardware, library operating systems strug-
gled with compatibility issues and proper resource isolation among applications.
Unikernels are solving these problems by using a hypervisor in order to abstract
from physical hardware and to provide strict resource isolation between applica-
tions [20]. Currently, the two most popular unikernel implementations are OSv [17]
and Mirage OS [21]. According to Madhavapeddy et al. [20], unikernels are able to
outperform regular operating systems in the following aspects:

Boot time Unikernel systems are single purpose systems, meaning that they
run only one application. Unnecessary overhead is stripped of by only linking
libraries into a unikernel image which are required by the application. As a re-
sult, very fast boot times can be achieved. In their latest project Jitsu: Just-In-Time
Summoning of Unikernels [3], Madhavapeddy et al. managed to achieve boot times
in the order of 350ms on ARM CPUs and 30ms on x86 CPUs, which enables the
possibility of dynamically bringing up virtual machines in response to network
traffic.

Image size Since a unikernel system only contains the application and only the
required functionality of the specialized operating system kernel, unikernel images
are much smaller compared to traditional operating system images. The smaller
binaries simplify management tasks like live-migration of running virtual machine
instances.

37

Plauth et al.: Security-Aware Cloud-Based Storage and Processing Technologies

Security By eliminating functionality which is not needed for the execution of
an application inside a unikernel image, the attack surface of the system is reduced
massively. Furthermore, the specialized operating system kernel of a unikernel
image is usually written in the same high-level language as the application. The
resulting absence of technology borders facilitates additional opportunities for code
checking like static type checking and automated code checking. However, even if
an attacker should manage to inject malicious code into a unikernel instance, it can
only cause limited harm since no other application runs within the same image.

3.2 Hardware-based security mechanisms

Trusted Execution Technology (TXT)
The goal of Intel Trusted Execution Technology (TXT) [16] technology is that the
user can verify if the operating system or its configuration was altered after the boot
up. This requires a trusted platform module (TPM) which stores system indicators
securely. The approach TXT is using is called dynamic root of trust measurement.
For this methodology, the system can be brought into a clean state (SENTER
instruction) after the firmware was loaded. In this approach as mentioned earlier
only the operating system level software gets measured. These measurements can
be compared with the original files or properties of the OS that have to be known
beforehand.

Software Guard Extensions (SGX)
Sensitive tasks have to face an abundance of potential threats on both the software
and the hardware level. On the hardware level, sensitive information such as
encryption keys can be extracted from the systems main memory using DMA
attacks or cold boot attacks. On the software level, the worst case has to be assumed
and even the operating system has to be considered as a potential threat. While
the concept of processes implements a high level of isolation between different
applications, the elevated privileges of an operating system allow it to tamper
with any process. These capabilities always pose a security threat, not just in the
obvious case where the operating system might not be fully trusted. Even with a
trusted operating system, there is always a certain risk that malicious code running
in a separate process might gain elevated privileges. As soon as that happens, a
malicious application can tamper with any process running on the system.

As a countermeasure to these threats, the Intel Software Guard Extensions (SGX)
[25] introduced secure enclaves, which allow the safe execution of sensitive tasks
even in untrustworthy environments. Enclaves are protected memory areas, which
are encrypted and entirely isolated (see Figure 2). Even privileged code is not able
to access the contents of an enclave. One process can even use multiple enclaves,
which allows a high degree of flexibility. SGX does not require a trusted platform
module (TPM), as the entire feature is implemented on the CPU. This level of
integration reduces the list of trusted vendors to the CPU manufacturer and thus
minimizes the number of potential attack vectors.

38

3 State of the Art

OS

App Code

App Code

Entry TableEnclave
Enclave Heap

Enclave Stack

Enclave Code

Figure 2: Secure enclaves provide an encrypted address space that is protected
even from operating system access. Source: [15]

3.3 Virtualization of coprocessors resources

Coprocessors such as Graphics Processing Units (GPUs), Field-Programmable Gate
Arrays (FPGAs) or Intel’s Many Integrated Core (MIC) devices have become essential
components in the High Performance Computing (HPC) field. Regarding the domain
of cloud computing however, the utilization of coprocessors is not that well es-
tablished. While there has been little demand for HPC-like applications on cloud
resources in the past, the demand for running scientific applications on cloud com-
puting infrastructure has increased [2]. Furthermore, moving compute-intensive
applications to the cloud is becoming increasingly feasible [23] when it comes to
CPU-based tasks. While several providers already offer cloud resources with inte-
grated GPUs, their implementation is based on pass-through of native hardware.
Assigning dedicated devices to each virtual machine results in high operational
costs and decreased levels of flexibility. In such setups, virtual machines can nei-
ther be suspended nor migrated. Furthermore, the one-to-one mapping between
pass-through devices and virtual machines prevent efficient utilization of copro-
cessors, which has a negative impact on cost effectiveness due to the high energy
consumption of such hardware. Although projects exist that maximize resource
utilization by providing unused GPU resources to other compute nodes [24] or that
save energy by shutting down inactive compute nodes [18], a large gap between
the capabilities of GPU and CPU virtualization still exists.

In the ensuing paragraphs, the state of the art of coprocessor virtualization is
evaluated based on several characteristics. Most work deals with GPU compute
devices, however the general techniques are applicable to other coprocessor classes

39

Plauth et al.: Security-Aware Cloud-Based Storage and Processing Technologies

as well. For desktop-based GPU virtualization, Dowty and Sugerman [4] define
four characteristics that are to be considered: performance, fidelity, multiplexing
and interposition. Regarding cloud-based virtualization, the aforementioned enu-
meration is missing isolation as an important characteristic. In order to establish
coprocessors in cloud computing, one of the most crucial characteristics is that
multiple tenants have to be properly isolated. Since the focus is set on coproces-
sors and thus compute-based capabilities instead of interactive graphics, fidelity
can mostly be ignored for our use case. Last but not least, performance should
not suffer severely from the virtualization overhead. However, without isolation,
multiplexing and interposition capabilities, performance is worthless in the cloud
computing use case.

Isolation
Thus far, isolation is only addressed by approaches that make use of mediated pass-
through strategies like Intel GVT-g (formerly called gVirt) [34] and NVIDIA GRID.
While the latter is a commercial closed-source implementation, the implementation
details of GVT-g are publicly available as an open source project. In Intel’s approach,
each virtual machine runs the native graphics driver. In contrast to regular pass-
through, mediated pass-through uses a trap-and-emulate mechanism is used to
isolate virtual machine instances from each other. The main drawback is that the
implementation of the mediated pass-through strategy has to be tailored to the
specifications of each supported GPU, which again requires detailed knowledge
about the GPU design. Overall, this approach is only feasible for the manufacturers
of GPUs themselves.

With rCUDA [5, 7, 6], vCUDA [32], gVirtuS [11], GViM [13], VirtualCL [1] and
VOCL [39], many approaches exist which are based on call forwarding. Originating
from the field of High Performance Computing, the call forwarding approach uses
a driver stub in the guest operating system which redirects the calls to a native
device driver in the privileged domain. Since isolation is barely an issue in the
HPC domain, none of the existing approaches implement isolation mechanisms.

Multiplexing
Sharing a single GPU among multiple virtual machines is possible for all afore-
mentioned implementation strategies. In the faction of mediated pass-through
implementations, both Intel GVT-g and NVIDIA GRID support multiplexing in
order to serve multiple virtual machines with a single GPU. As for isolation, a
trap-and-emulate mechanism in the hypervisor coordinates devices accesses from
multiple virtual machines. On the side of call forwarding approaches, the imple-
mentation of multiplexing capabilities with low overhead is very a tough challenge.
In the privileged domain, additional logic has to be implemented that schedules
requests from different guests. So far, only vCUDA [32] provides such multiplexing
mechanisms.

40

3 State of the Art

Interposition
While mediated pass-through approaches excel call forwarding strategies in both
isolation and multiplexing, interposition is hard to achieve for mediated pass-
through. Although an implementation is possible in theory [40], it is not feasible in
practice as it is susceptible to the slightest variations on the hardware level. With
vCUDA [32] and VOCL [39] on the other hand, multiple projects based on call
forwarding exist that successfully implement interposition capabilities. Again, a
piece of middleware is required in the hypervisor which carefully tracks the state
of each virtual GPU instance. With such capabilities at hands, virtual machines can
be suspended and even live-migrated to other virtual machine hosts.

3.4 Best practices for secure coding

Over the last years, several best practice collections and frameworks dealing with
improving the security of information technology were established and maintained
by companies and public authorities alike.

Critical Security Controls
The term “Security Fog of More” was established by Tony Sager, a chief technologist
of the Council on CyberSecurity. He noticed that security professionals are confronted
with a plethora of security products and services. These choices are influenced by
compliance, regulations, frameworks and audits e.g. the “Security Fog of More”.
As a consequence, one of the main challenges today is making an educated choice.
Sager wants to help security professionals by providing a framework for security
choices called Critical Security Controls [3] (see Figure 3) that spans 20 different
areas of IT security containing suggestions for each of these areas with a focus on
scalability of the solutions.

Open Web Application Security Project
The Open Web Application Security Project (OWASP) is a non-profit organization
founded 2004 with the goal of improving software security. The OWASP houses
a wide range of security related projects centered around all aspects of software
development driven by a large community of volunteers. We will provide a brief
overview over a selection of the most popular OWASP projects:

OWASP Developer Guide The OWASP Developer Guide was the first project
pursued by OWASP. In its latest revision, the guide describes general concepts
about developing secure software without a focus on specific technologies. The
guide covers topics such as Architecture, Design, Build Process and Configura-
tion of secure software and is targeting developers as its target audience. The
instructions can be used as additional guidelines for penetration testers as well.

OWASP Testing Guide The OWASP Testing Guide is a best practice collection
for penetration testing of web applications and services. The guide covers the

41

Plauth et al.: Security-Aware Cloud-Based Storage and Processing Technologies

Figure 3: The Critical Security Controls framework categorizes security threats in
20 classes. Source: [14]

software development process as well as testing approaches for different parts of
web applications (e.g. Authentication, Encryption or Input Validation).

OWASP Top 10 The OWASP Top 10 is a list maintained by security experts which
contains the 10 most prevalent security flaws in web applications. The goal of this
list to establish a security awareness in IT companies to prevent the occurrence of
the most common vulnerabilities in their applications.

4 Discussion

The state of the art presented in the previous section has demonstrated that a
vast variety of approaches exist that can be accommodated under the headline
security-aware approaches for cloud-based storage and processing technologies. While soft
approaches such as best practice collections are beneficial for everyday use, they
are of limited use for technically oriented research prototypes. On the other end of
the scale are hardware security features such as TXT and SGX.

The Software Guard Extensions is an interesting new feature that can be used
to evaluate problems that require the execution of crucial code in untrustworthy
requirements. However, it should be noted that until the day of writing, no com-
mercially available processor implements the SGX feature. Moreover, it is even
unclear when such a processor can be expected to become available. Under the

42

5 Outlook

bottom line, it seems like SGX provides various research opportunities, however
the focus for near future projects should be shifted to different topics.

With virtualization being a key technology in cloud computing, it is important to
keep an eye on new virtualization concepts. With the advent of containerization, a
new approach to virtualization has surfaced that tries to minimize the performance
overhead caused by an additional level of context switches. While containers have
already achieved a certain prevalence rate, unikernels are a recent re-discovery of an
old concept. Unikernels should be considered as a direct competition to containers,
since they also address mitigation of virtualization overhead while maintaining
a thorough level of isolation. Even though there is a certain risk that unikernels
might be a fashionable trend, eventual benefits over traditional virtual machines
and containerization approaches should be evaluated. With boot times of tens of
milliseconds, the use of unikernels might enable new degrees of dynamic resource
utilization and improved power management.

In the subject area of virtualization, server-based virtualization of coprocessor
resources, most importantly Graphics Processing Units (GPUs), is another aspect that
has been neglected in the past. High operational costs are caused by poorly utilized
devices. Even though some approaches exist that allow resource multiplexing, the
near absence of proper isolation has been a deal-breaker for the cloud computing
scenario thus far.

5 Outlook

Recalling the topics presented and discussed in Sections 3 and 4, many approaches
exist for providing increased levels of security in the use case of cloud computing.
While best practices collections may be beneficial for everyday use, they are of
limited use for technically oriented research interests. It seems as if technologi-
cal improvements like the Software Guarded Extensions (SGX) are an interesting
target for further research efforts. However, the uncertain date of availability of
the technology enforces a postponed examination of the topic. Regarding new
virtualization approaches, there is a certain risk that unikernels are a fashionable
trend that might disappear rather sooner than later. However, the crucial role of
virtualization in cloud computing suggests that unikernels and containers should
be evaluated more thoroughly. From a functional perspective, these new virtual-
ization approaches do have the potential to improve both security aspects as well
as performance. Regarding the non-function side of the topic, unikernels might
enable us to improve both dynamic resource utilization and power management
strategies. Last but not least, employing coprocessor resources in cloud computing
is a topic that requires extensive research efforts. In order to move from dedicated
devices to truly shared resources, security is a major concern that has not been
solved yet. Lightweight isolation mechanisms have to be researched that provide
tight levels of isolation while inducing bearable levels of overhead compared to
native hardware.

43

Plauth et al.: Security-Aware Cloud-Based Storage and Processing Technologies

Acknowledgement

This paper has received funding from the European Union’s Horizon 2020 research
and innovation programme 2014–2018 under grant agreement No. 644866.

Disclaimer

This paper reflects only the authors’ views and the European Commission is not
responsible for any use that may be made of the information it contains.

References

[1] A. Barak and A. Shiloh. The VirtualCL (VCL) Cluster Platform.

[2] S. Benedict. “Performance issues and performance analysis tools for HPC
cloud applications: a survey”. In: Computing 95.2 (2013), pages 89–108.

[3] Council on CyberSecurity. The Critical Security Controls for Effective Cyber
Defense Version 5.0. Technical report. https://www.sans.org/, 2014.

[4] M. Dowty and J. Sugerman. “GPU virtualization on VMware’s hosted I/O ar-
chitecture”. In: ACM SIGOPS Operating Systems Review 43.3 (2009), pages 73–
82.

[5] J. Duato, F. D. Igual, R. Mayo, A. J. Peña, E. S. Quintana-Ortí, and F. Silla.
“An Efficient Implementation of GPU Virtualization in High Performance
Clusters”. In: Euro-Par 2009 – Parallel Processing Workshops. Edited by H.-X.
Lin, M. Alexander, M. Forsell, A. Knüpfer, R. Prodan, L. Sousa, and A.
Streit. Volume 6043. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pages 385–394. doi: 10.1007/978-3-642-
14122-5.

[6] J. Duato, A. J. Pena, F. Silla, J. C. Fernandez, R. Mayo, and E. S. Quintana-
Orti. “Enabling CUDA acceleration within virtual machines using rCUDA”.
English. In: 2011 18th International Conference on High Performance Computing.
IEEE, Dec. 2011, pages 1–10. doi: 10.1109/HiPC.2011.6152718.

[7] J. Duato, A. J. Pena, F. Silla, R. Mayo, and E. S. Quintana-Orti. “rCUDA: Re-
ducing the number of GPU-based accelerators in high performance clusters”.
English. In: 2010 International Conference on High Performance Computing & Sim-
ulation. IEEE, June 2010, pages 224–231. doi: 10.1109/HPCS.2010.5547126.

[8] D. R. Engler, M. F. Kaashoek, et al. Exokernel: An operating system architecture
for application-level resource management. Volume 29. 5. ACM, 1995.

[9] J.-C. Fabre, Y. Deswarte, and B. Randell. Designing secure and reliable appli-
cations using fragmentation-redundancy-scattering: an object-oriented approach.
Springer, 1994.

44

http://dx.doi.org/10.1007/978-3-642-14122-5
http://dx.doi.org/10.1007/978-3-642-14122-5
http://dx.doi.org/10.1109/HiPC.2011.6152718
http://dx.doi.org/10.1109/HPCS.2010.5547126

References

[10] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. An updated performance com-
parison of virtual machines and linux containers. Technical report. 2014, page 32.

[11] G. Giunta, R. Montella, G. Agrillo, and G. Coviello. “A GPGPU transparent
virtualization component for high performance computing clouds”. In: Euro-
Par 2010-Parallel Processing. Springer, 2010, pages 379–391.

[12] E.-J. Goh et al. “Secure Indexes.” In: IACR Cryptology ePrint Archive 2003

(2003), page 216.

[13] V. Gupta, A. Gavrilovska, K. Schwan, H. Kharche, N. Tolia, V. Talwar, and
P. Ranganathan. “GViM: GPU-accelerated Virtual Machines Vishakha”. In:
Proceedings of the 3rd ACM Workshop on System-level Virtualization for High
Performance Computing - HPCVirt ’09. New York, New York, USA: ACM Press,
Mar. 2009, pages 17–24. doi: 10.1145/1519138.1519141.

[14] F. T. Insider. Continuous Diagnostics and Mitigation Addresses “Foundational”
Issues Identified by SANS. http://www.federaltechnologyinsider.com/cdm-addresses-
foundational-issues-identified-sans/. May 2014.

[15] Intel Corporation. Intel© Software Guard Extensions Programming Reference.
Technical report. Oct. 2014.

[16] Intel©Corporation. Intel©Trusted Execution Technology White Paper. http://
www.intel.com/content/dam/www/public/us/en/documents/white-
papers/trusted-execution-technology-security-paper.pdf. Online,
Accessed 31.07.2015.

[17] A. Kivity, D. Laor, G. Costa, P. Enberg, N. Har’El, D. Marti, and V. Zolotarov.
“OSv–Optimizing the operating system for virtual machines”. In: 2014 usenix
annual technical conference (usenix atc 14). Volume 1. USENIX Association. 2014,
pages 61–72.

[18] P. Lama, Y. Li, A. M. Aji, P. Balaji, J. Dinan, S. Xiao, Y. Zhang, W.-c. Feng,
R. Thakur, and X. Zhou. “pVOCL: Power-Aware Dynamic Placement and
Migration in Virtualized GPU Environments”. English. In: 2013 IEEE 33rd
International Conference on Distributed Computing Systems. IEEE, July 2013,
pages 145–154. doi: 10.1109/ICDCS.2013.51.

[19] LibVMI Project. LibVMI. http://libvmi.com. Accessed: 2015-07-17.

[20] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gazagnaire, S.
Smith, S. Hand, and J. Crowcroft. “Unikernels: Library operating systems for
the cloud”. In: ACM SIGPLAN Notices. Volume 48. 4. ACM. 2013, pages 461–
472.

[21] A. Madhavapeddy, R. Mortier, R. Sohan, T. Gazagnaire, S. Hand, T. Deegan,
D. McAuley, and J. Crowcroft. “Turning down the LAMP: software speciali-
sation for the cloud”. In: Proceedings of the 2nd USENIX conference on Hot topics
in cloud computing, HotCloud. Volume 10. 2010, pages 11–11.

[22] A. Madhavapeddy and D. J. Scott. “Unikernels: Rise of the virtual library
operating system”. In: Queue 11.11 (2013), page 30.

45

http://dx.doi.org/10.1145/1519138.1519141
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/trusted-execution-technology-security-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/trusted-execution-technology-security-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/trusted-execution-technology-security-paper.pdf
http://dx.doi.org/10.1109/ICDCS.2013.51
http://libvmi.com

Plauth et al.: Security-Aware Cloud-Based Storage and Processing Technologies

[23] K. Mantripragada, A. Binotto, L. Tizzei, and M. Netto. “A Feasibility Study
of Using HPC Cloud Environment for Seismic Exploration”. In: 77th EAGE
Conference and Exhibition 2015. 2015.

[24] P. Markthub, A. Nomura, and S. Matsuoka. “Using rCUDA to Reduce GPU
Resource-assignment Fragmentation caused by Job Scheduler”. In: 15th In-
ternational Conference on Parallel and Distributed Computing, Applications and
Technologies. 2014. doi: 10.1109/PDCAT.2014.26.

[25] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi, V. Shanbhogue,
and U. R. Savagaonkar. “Innovative Instructions and Software Model for Iso-
lated Execution”. In: Proceedings of the 2Nd International Workshop on Hardware
and Architectural Support for Security and Privacy. HASP ’13. Tel-Aviv, Israel:
ACM, 2013, 10:1–10:1.

[26] C. Neuhaus, F. Feinbube, D. Janusz, and A. Polze. “Secure Keyword Search
over Data Archives in the Cloud: Performance and Security Aspects of Search-
able Encryption”. In: 5th International Conference on Cloud Computing and Ser-
vices Science, ACM. Lisbon, Portugal, 2015.

[27] C. Neuhaus, F. Feinbube, and A. Polze. “A Platform for Interactive Software
Experiments in Massive Open Online Courses”. In: Journal of Integrated Design
and Process Science 18.1 (2014), pages 69–87.

[28] C. Neuhaus, F. Feinbube, A. Polze, and A. Retik. “Scaling Software Experi-
ments to the Thousands”. In: CSEDU 2014 - Proceedings of the 6th International
Conference on Computer Supported Education, Volume 1, Barcelona, Spain, 1-3
April, 2014. 2014, pages 594–601.

[29] C. Neuhaus, M. von Löwis, and A. Polze. “A Dependable and Secure Autho-
risation Service in the Cloud”. In: CLOSER. 2012, pages 568–573.

[30] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C. Hunt. “Re-
thinking the library OS from the top down”. In: ACM SIGPLAN Notices 46.3
(2011), pages 291–304.

[31] D. Schatzberg, J. Cadden, O. Krieger, and J. Appavoo. “A way forward:
enabling operating system innovation in the cloud”. In: Proceedings of the 6th
USENIX conference on Hot Topics in Cloud Computing. USENIX Association.
2014, page 4.

[32] L. Shi, H. Chen, J. Sun, and K. Li. “vCUDA: GPU-accelerated high-performance
computing in virtual machines”. In: Computers, IEEE Transactions on 61.6
(2012), pages 804–816.

[33] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson. “Container-
based operating system virtualization: a scalable, high-performance alterna-
tive to hypervisors”. In: ACM SIGOPS Operating Systems Review. Volume 41.
3. ACM. 2007, pages 275–287.

[34] K. Tian, Y. Dong, and D. Cowperthwaite. “A full GPU virtualization solution
with mediated pass-through”. In: Proc. USENIX ATC. 2014.

[35] VMware, Inc. VProbes Programming Reference. Technical report. 2011.

46

http://dx.doi.org/10.1109/PDCAT.2014.26

References

[36] F. Westphal, S. Axelsson, C. Neuhaus, and A. Polze. “VMI-PL: A monitor-
ing language for virtual platforms using virtual machine introspection”. In:
Digital Investigation 11.S - 2 (2014), pages 85–94.

[37] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and C. A.
De Rose. “Performance evaluation of container-based virtualization for high
performance computing environments”. In: Parallel, Distributed and Network-
Based Processing (PDP), 2013 21st Euromicro International Conference on. IEEE.
2013, pages 233–240.

[38] Xen Project. The Next Generation Cloud: The Rise of the Unikernel. Technical
report. http://xenproject.org, 2015.

[39] S. Xiao, P. Balaji, Q. Zhu, R. Thakur, S. Coghlan, H. Lin, G. Wen, J. Hong,
and W.-c. Feng. “VOCL: An Optimized Environment for Transparent Virtual-
ization of Graphics Processing Units”. In: Proceedings of 1st Innovative Parallel
Computing (InPar). 2012, pages 1–12.

[40] E. Zhai, G. D. Cummings, and Y. Dong. “Live migration with pass-through
device for Linux VM”. In: OLS’08: The 2008 Ottawa Linux Symposium. 2008,
pages 261–268.

47

A Branch-and-Bound Approach to Virtual Machine
Placement

Dávid Bartók and Zoltán Ádám Mann

Department of Computer Science and Information Theory
Budapest University of Technology and Economics

Finding the best mapping of virtual machines to physical machines in cloud data
centers is a very important optimization problem, with huge impact on costs,
application performance, and energy consumption. Although several algorithms
have been suggested to solve this problem, most of them are either simple heuris-
tics or use off-the-shelf, mostly integer linear programming (ILP) solvers. In this
paper, we propose a new approach: a custom branch-and-bound algorithm that
exploits problem-specific knowledge in order to improve effectiveness. As shown
by empirical results, the new algorithm performs better than state-of-the-art
general-purpose ILP solvers.

1 Introduction

As cloud data centers (DCs) serve an ever-growing demand for computation, stor-
age, and networking capacity, their operation is becoming a crucial issue. The
energy consumption of DCs is of special importance because of both its environ-
mental impact and its contribution to operational costs. According to a recent study,
DC electricity consumption in the USA alone will increase to 140 billion kWh per
year by 2020, costing US businesses 13 billion USD annually in electricity bills and
emitting nearly 100 million tons of CO2 per year [16].

In order to reduce energy consumption, DC operators use a combination of sev-
eral techniques. Virtualization technology enables the safe co-existence of multiple
applications packaged as virtual machines (VMs) on a single physical machine
(PM), thus allowing high utilization of physical resources. Live migration makes
it possible to move a working VM from one PM to another without noticeable
downtime. Since the load of VMs fluctuates over time, this enables DC operators to
flexibly react to such changes. In times of low demand, VMs can be consolidated
to a low number of PMs, and the remaining PMs can be switched to a low-power
state, leading to considerable energy savings. When load starts to rise, some PMs
must be switched back to normal mode again so that VMs can be spread across a
higher number of PMs.

Finding the best VM placement for the current load level is a tough optimization
problem. First of all, multiple resource types must be taken into account, e.g., CPU,
memory, disk, and network bandwidth. PMs have given capacity and VMs have
given load along these dimensions, and this must be taken into account in VM
placement. Moreover, the migration of VMs has a non-negligible overhead in the

49

mailto:

Bartók, Mann: A branch-and-bound approach to VM placement

form of additional network traffic and additional load on the affected PMs. Thus,
excessive migrations should be avoided.

In the past couple of years, several different approaches have been proposed
for the VM placement problem. From an algorithmic point of view, these can
be mostly grouped into two categories: (i) heuristics without any performance
guarantees or theoretical underpinning and (ii) exact algorithms using off-the-shelf
mathematic programming – mostly integer linear programming (ILP) – solvers
[14]. It is dangerous to rely solely on heuristics because in some cases they can
lead to extremely high costs or dramatic performance degradation of the involved
applications [15]. On the other hand, the exact algorithms suggested so far all
suffer from serious scalability issues, limiting their applicability to small problem
instances.

In this paper, we propose a new approach, with the aim of finding a good com-
promise between practical applicability and theoretical soundness. Our approach
is based on branch-and-bound, just like typical ILP solvers. However, in contrast
to general-purpose ILP solvers, we can make use of problem-specific knowledge to
make the search more effective. This is achieved by crafting customized procedures
for controlling the branching behavior, custom bounding techniques etc.

2 Previous work

Several problem formulations have been suggested for the VM placement problem.
They almost always include computational capacity of PMs and computational
load of VMs. In fact, in many works, this is the only dimension that is considered
[1, 2, 3, 4, 6, 9, 10, 12, 22, 23]. Other authors included, beside the CPU, also some
other resources like memory, I/O, storage, or network bandwidth [5, 7, 8, 21, 25].

Different objective or cost functions have been proposed. The number of active
PMs is often considered because it largely determines the total energy consumption
[3, 4, 6, 8, 23, 25]. Another important factor that some works considered is the cost
of migration of VMs [6, 8, 20, 22].

Concerning the used algorithmic techniques, most previous works apply simple
heuristics. These include packing algorithms inspired by results on the related bin-
packing problem, such as First-Fit, Best-Fit, and similar algorithms [2, 3, 4, 9, 11,
13, 22, 23], other greedy heuristics [17, 24] and straight-forward selection policies
[1, 18], as well as meta-heuristics [7, 8].

Some exact algorithms have also been suggested. Most of them use some form
of mathematical programming to formulate the problem and then apply an off-the-
shelf solver. Examples include integer linear programming [1] and its variants like
binary integer programming [5, 13] and mixed integer non-linear programming [9].
Unfortunately, all these methods suffer from a scalability problem, limiting their
applicability to small-scale problem instances.

50

3 Problem model

3 Problem model

Let P denote the set of available PMs and V the set of VMs hosted in the DC. We
consider d dimensions or resource types; e.g., if CPU capacity and memory are
considered, then d = 2. The capacity of each PM and the load of each VM is a
d-dimensional vector. For p ∈ P, its capacity is denoted by cap(p) ∈ Rd

+, and for
v ∈ V , its load is denoted by load(v) ∈ Rd

+. Further, let |P| = m and |V | = n.
The DC operator regularly re-optimizes the placement of the VMs in order to

adapt to changes [20]. The current placement is given by map0 : V → P. Our aim
is to determine a new mapping map : V → P, subject to capacity constraints

∀p ∈ P :
∑

v:map(v)=p

load(v) 6d cap(p), (1)

where 6d is a relation between d-dimensional vectors; (x1, . . . , xd)T 6d (y1, . . . ,yd)T

if and only if for each 1 6 i 6 d, xi 6 yi. map0 may not satisfy the capacity con-
straints; even if it satisfied them at the time it was computed, the change in VM
loads since then may have rendered it invalid. A PM is active if it hosts at least one
VM, i.e.,
p ∈ P is active if ∃v ∈ V ,map(v) = p. The number of active PMs is act(map). Since
energy consumption is largely determined by the number of active PMs, we should
minimize act(map).

A migration of v ∈ V occurs if map(v) 6= map0(v). The number of migrations
caused by map is given by mig(map). Because of the overhead caused by migra-
tions, we should minimize mig(map) as well. We combine the two minimization
objectives in a single cost function:

f(map) = α · act(map) + µ ·mig(map), (2)

where α and µ are given non-negative weights defining the relative importance of
the two optimization goals. In addition, we require the number of migrations to be
below a given limit:

mig(map) 6 K, (3)

where K is a given non-negative number. This is sensible because too many mi-
grations make the solution practically infeasible [19]; thus, mappings that would
cause too many migrations must be excluded even if they lead to few active PMs
and thus to good overall objective value.

To sum up, our aim is to determine a new mapping map that minimizes (2),
subject to constraints (1) and (3).

4 Integer programming solution

As a baseline, we formulate the problem as an integer program and solve it with
an off-the-shelf ILP solver.

51

Bartók, Mann: A branch-and-bound approach to VM placement

Indexing VMs as vi (i = 1, . . . ,n) and PMs as pj (j = 1, . . . ,m), the following
binary variables are introduced:

Alloci,j =

{
1 if vi is allocated on pj
0 otherwise

Activej =

{
1 if pj is active

0 otherwise

Migri =

{
1 if vi is migrated

0 otherwise

Using these variables, the integer program can be formulated as follows (i =
1, . . . ,n and j = 1, . . . ,m):

min α ·
m∑
j=1

Activej + µ ·
n∑

i=1

Migri (4)

s. t.
m∑
j=1

Alloci,j = 1 ∀i (5)

Alloci,j 6 Activej ∀i, j (6)
n∑

i=1

load(vi) ·Alloci,j 6d cap(pj) ∀j (7)

Migri = 1−Alloci,map0(vi) ∀i (8)
n∑

i=1

Migri 6 K (9)

Alloci,j,Activej,Migri ∈ {0, 1} ∀i, j (10)

The objective function (4) is the same as before, consisting of the number of active
PMs and the number of migrations. Equation (5) ensures that each VM is allocated
to exactly one PM, whereas constraint (6) ensures that for a PM pj to which at least
one VM is allocated, Activej = 1. Together with the objective function, this ensures
that Activej = 1 holds for exactly those PMs that accommodate at least one VM.

Constraint (7) is a straight-forward formulation of constraint (1) in terms of the
binary variables Alloci,j. Equation (8) determines the values of the Migri variables
and constraint (9) corresponds to constraint (3).

5 Branch-and-bound algorithm

Our algorithm does not use the binary variables introduced for the ILP approach,
but operates directly on the map function. It works with partial solutions, in which
map(v) is defined for a subset of the VMs, and traverses the space of partial
solutions in a tree-like manner. For a partial solution, its children in the tree are

52

5 Branch-and-bound algorithm

obtained by selecting a VM that is not mapped yet and trying to map it to all
PMs that have sufficient free capacity to host it: for each such PM, a different child
partial solution is obtained.

The search starts with all VMs unmapped (the root of the tree), and goes down
the tree by mapping one more VM in each step. If all VMs are mapped, then a
solution has been found, corresponding to a leaf of the tree. The best solution
that has been found so far (best_so_far), along with its cost (best_cost_so_far), is
maintained throughout the algorithm. If the current branch of the search tree
cannot be continued or there is no point in doing so, then the algorithm backtracks.
This happens in the following cases:

• A leaf has been reached.

• The current partial solution has become infeasible, i.e.,

– either there is a VM for which no PM has sufficient free capacity,

– or the number of migrations exceeds the limit.

• All children of the current partial solution have been processed.

• The cost of any solution that extends the current partial solution is surely not
lower than the cost of the best solution found so far.

In each of these cases, the algorithm backtracks by undoing the last VM mapping
decision, i.e., going back to the parent node in the tree, essentially unallocating the
last VM. Afterwards, the next child of the parent is tried, i.e., a new PM is selected
for the unallocated VM. When the search would need to backtrack from the root,
the algorithm terminates.

The skeleton of the branch-and-bound procedure is shown in Algorithm 1. In
the following, the non-trivial parts are described in more detail.

5.1 Incremental computations

During the algorithm, many details of the current partial solution are needed,
e.g., its cost. Such characteristics can be simply computed directly from the partial
solution itself. However, it is much more efficient to compute them incrementally.
For example, we maintain the cost of the current partial solution in a variable, and
whenever we go up or down in the tree, the necessary change is made to the stored
cost value. This way, determining the cost of the current partial solution takes O(1)
steps instead of O(n), which is an important difference as this is needed many
times.

Beside the cost of the current partial solution, the following characteristics are
maintained and incrementally updated:

• The number of migrations.

• The remaining free capacity of each PM.

• For each VM, the set of PMs that still have enough free capacity to host it.

53

Bartók, Mann: A branch-and-bound approach to VM placement

Algorithm 1: Branch-and-bound procedure

loop
if all VMs mapped and cost < best_cost_so_far then

update best_so_far and best_cost_so_far;
end
if all VMs mapped or infeasible or all children visited or min_cost >
best_cost_so_far then
// backtrack
if we are in the root then

return best_so_far
end
move back to parent;

end
if no VM selected yet then

select VM;
end
move to next child;

end

5.2 VM selection

VMs can be selected in any order, but this order may have considerable impact on
the running time of the algorithm. As the primary criterion for selecting the next
VM, we use the first-fail principle, a common approach in constraint satisfaction
algorithms: we select the VM with the lowest number of PMs that can host it. This
helps to keep the number of children of the nodes of the tree (the branching factor)
low and thus the whole tree relatively small.

There can be several VMs with the same number of possible hosting PMs, so
we also apply a secondary strategy for tie-breaking: VMs with higher load are
preferred. Just like in bin-packing, where sorting the items in decreasing order is
known to improve the performance of packing algorithms, here it is also sensible
to place the biggest VMs first.

In our case, VM loads are multi-dimensional, so it is not clear what is “bigger.”
We implemented multiple strategies for sorting d-dimensional vectors:

• Using the lexicographic order of the vectors.

• According to the maximum of the dimensions.

• According to the sum of the dimensions.

54

5 Branch-and-bound algorithm

5.3 PM selection

After having selected a VM v, the PMs that can host it must be tried one after the
other. Again, the order in which the PMs are tried may impact the performance of
the algorithm.

One possibility is to sort the PMs according to their remaining capacity. Again,
these are multi-dimensional vectors, so we implemented the same sorting strategies
as for VMs, with the single difference that empty PMs are put at the end in order
to foster better utilization of PMs that are already on.

Another idea is to start with the PM on which v resides according to map0.
Since this strategy only defines the PM that should be tried first, it can also be
combined with any of the sorting strategies, which will then determine the order
of the remaining PM candidates.

5.4 Lower bound on the cost

In Algorithm 1, min_cost denotes a lower bound on the cost of any solution that
can arise as an extension of the current partial solution. If min_cost is not less
than the best cost found so far, then we can backtrack from the current subtree. The
question is how to compute a (non-trivial) lower bound.

Let us consider a partial solution, in which a subset V1 ⊂ V of the VMs have
already been allocated to a subset P1 ⊂ P of the PMs. Let k1 denote the number of
migrations that been made when allocating the VMs of V1. We have to allocate the
remaining VMs of V2 := V \ V1 with at most K ′ := K− k1 migrations. Ideally, we
would like to find the minimal cost according to equation (2), given the constraints
(1) and (3) and given the current partial allocation. This is a tough problem. Luckily,
we just need a lower bound. This can be achieved by considering a relaxation of
the problem: constraint (1) – the capacity constraints – will be disregarded.

The resulting problem is: given the current partial solution, what is the best
cost in terms of the objective (2) that can be achieved by the allocation of V2, if at
most K ′ further migrations are allowed? A cost of α · |P1|+ µ · k1 has already been
incurred. For the remaining VMs, since the number of migrations is constrained,
this limits how much the new mapping can differ from map0.

Let C0 be the cost of mapping each remaining VM as in map0. If P2 is the set
of PMs in P \ P1 that are used by map0 for mapping V2, i.e., P2 = {p ∈ P \ P1 :

∃v ∈ V2, map0(v) = p}, then C0 = α · (|P1|+ |P2|) + µ · k1. For a mapping with
lower costs, some PMs must be emptied, i.e., all their VMs migrated to other PMs.
This decreases the cost if the number of VMs that have to be migrated is less than
α/µ. In order to empty the maximum number of PMs, PMs with the least number
of VMs should be emptied. Therefore, Algorithm 2 delivers optimal result for the
relaxed problem.

55

Bartók, Mann: A branch-and-bound approach to VM placement

Algorithm 2: Optimal solution for the relaxed problem

foreach p ∈ P2 do
a(p) := |{v ∈ V2 : map0(v) = p}|;

end
sort P2 in ascending order of a(p);
i = 1;
mig = 0;
loop

let p be the ith element of P2;
if a(p) > α/µ or mig+ a(p) > K ′ then

return
end
// empty p

mig += a(p);
i ++;
if i > |P2| then

return
end

end

This can be simplified with the following ideas: (i) the actual mapping1 delivered
by the algorithm is not interesting, only its cost; (ii) the a(p) values are typically
small non-negative integers. For any non-negative integer j, let bj denote the
number of PMs in P2 with a(p) = j, i.e., bj := |{p ∈ P2 : a(p) = j}|. Let J denote the
highest j for which bj > 0.

Algorithm 3: Simplified algorithm for the relaxed problem

cost = C0;
mig = 0;
j = 0;
while j 6 J and j < α/µ and mig < K ′ do
t := min(bj, b(K ′ −mig)/jc);
mig += t · j;
cost −= (α · t− µ · t · j);
j ++;

end

1What the algorithm returns is actually not a real mapping because it does not determine
where to place the migrated VMs. Since the capacity constraints do not have to be
observed now, this does not matter: they could be placed on any of the used PMs.

56

5 Branch-and-bound algorithm

Algorithm 3 is the simplified version. We just have to iterate through the (j,bj)
numbers. For the first couple of j values, all bj PMs with a(p) = j can be emptied,
followed by a case in which only some t < bj PMs can be emptied, resulting
in mig = K ′. Using Algorithm 3, the lower bound on the cost can be easily and
quickly computed, if the values of C0, J, and the bj numbers are maintained.

5.5 Trading off running time and solution quality

All techniques so far help to reduce the running time of the algorithm on typical
problem instances, without sacrificing optimality. However, the running time may
still be too high for practical applicability. The following techniques reduce the
running time further, but without guaranteeing optimality.

Symmetry breaking
In a real DC, it is common to have many PMs of the same type. As long as they
do not host any VMs, their capacity is the same, introducing some symmetry in
the problem. When looking for a host for the current VM v, of course the one on
which map0 maps v must be handled separately, but all others that have the same
capacity are equivalent choices – at least “almost equivalent,” as we will see. Hence,
it suffices to try just one of them. For example, if there are 100 PMs, all of the same
type, then two of them must be tried (map0(v) and one of the others) instead of
100, yielding a speedup of a factor 50.

Unfortunately, the PMs in question are not fully equivalent because they host
different VMs initially (i.e., according to map0). Placing v on one of the PMs may
require one of the VMs that was initially on that PM to be migrated to another
PM, whereas placing v on another PM may not lead to migrations, for example.
By considering only one of these PMs for v, the search is not complete anymore:
optimality is not guaranteed. Nevertheless, it can be a good heuristic.

Discarding small improvement possibilities
If we do not strive for optimality, then a sensible goal is to strive for a solution
with cost at most γ times the optimum, where γ > 1 is some given constant. Recall
from Algorithm 1 that we backtrack if min_cost > best_cost_so_far. Now, this
condition can be changed to min_cost > best_cost_so_far/γ, resulting in more
aggressive pruning. The justification is that either best_cost_so_far is already
within γ times the optimum, in which case we do not need any further search, or
otherwise the condition min_cost > best_cost_so_far/γ implies that min_cost
is higher than the optimum, so that pruning this part of the search tree does not
remove the optimum.

Limiting the runtime
The most drastic measure is to simply stop the search after some given time limit,
and return the best allocation found so far.

57

Bartók, Mann: A branch-and-bound approach to VM placement

5.6 Further remarks

The algorithm can be easily extended to accommodate further constraints in the
form of additional pruning rules. E.g., colocation or anti-colocation requirements
may exist for certain sets of VMs. These can be ensured by removing the non-
compliant options from the list of PM candidates for each VM. E.g., if VMs v1 and
v2 must not be colocated and the algorithm decides to map v1 to PM p, then p
must be removed from the list of possible PMs of v2.

The algorithm works with an arbitrary number of dimensions d. Considering
the impact on the running time, the steps of the algorithm are either agnostic of
the value of d, or have a linear runtime in d. Further, d is small in practice. Thus,
there is no combinatorial explosion with respect to d.

6 Evaluation

We compare, by means of simulation experiments, three algorithms. The first two
methods use off-the-shelf ILP solvers on the ILP formulation of Section 4, as sug-
gested so far in the literature. The solvers are: lp_solve2

5.5.2, one of the leading
free open-source packages and Gurobi3 6.0.5, a successful commercial product. The
third method is our branch-and-bound (BB) algorithm.
All measurements were carried out on a desktop PC with 2.6 GHz Pentium E5300

Dual-Core CPU and 3 GB DDR2 800MHz RAM, running MS Windows 7.
Problem instances were generated in the following way. The number of dimen-

sions, d, is set to 2. There are 4 PM types; each PM belongs to a randomly selected
PM type. In each dimension, the capacity of PM types is randomly generated be-
tween 8 and 14, whereas the load of each VM is randomly taken between 1 and 5.
The number of PMs and VMs was determined for each experiment separately (see
below), varying between 25 and 4000. The number of allowed migrations, K, is set
to 10 percent of the number of PMs. The weights in the cost function are α = 10

and µ = 1.
The initial allocation of VMs to PMs is generated in two steps. First, each VM

is randomly mapped on one of the PMs. Such a random mapping may lead to
an unrealistically high number of overloaded PMs that cannot be repaired with
the limited number of migrations. Hence, in a second step, the First-Fit heuristic
is used to pack the VMs into the PMs, with the extension that VMs that did
not fit into any PM remain on the PM determined by the random placement.
The result is a mapping that has likely few overloaded PMs and some room for
consolidation; hence, it models well the typical initial mapping for a VM placement
re-optimization algorithm.

2http://lpsolve.sourceforge.net/5.5/.
3http://www.gurobi.com/.

58

6 Evaluation

Each algorithm is run on each problem instance with a timeout of 60 seconds. All
presented numbers are the median of 10 measurements. Moreover, we also present
lower bounds for the optimum; these were obtained by applying the bounding
method of Section 5.4 before any branching has taken place.

6.1 Parameter tuning

First, we aimed at finding good settings for the parameters of the BB algorithm. We
used randomly generated problem instances with m varying between 25 and 450

and n varying between 50 and 900. Most of the techniques built into the algorithm
proved to be indeed useful. The only exception was the technique described in
Section 5.5 to cut off branches with small improvement possibilities. The reason
why this did not help is probably that – as shown below – the algorithm quickly
finds solutions that are quite near the optimum, so that only small improvements
are possible afterwards.

Table 1: Configuration of the branch-and-bound algorithm

Technique Used variant

VM selection First-fail; tie-breaking: sorting according to the maxi-
mal dimension

PM selection Initial PM first; rest sorted lexicographically
Lower bound Used as described
Symmetry breaking Used as described
Pruning small improvements Not used (γ = 1)

The configuration that turned out to be best and was used in the later experi-
ments is shown in Table 1.

6.2 Comparison

Our main objective was to assess the scalability of the three algorithms. To that
end, we considered problem instances of increasing size. For this experiment, we
fixed the ratio of VMs to PMs to 2, and increased the number of PMs from 25 to
2000, with the number of VMs ranging from 50 to 4000.

To enhance visibility, the results are split into two figures. Figure 1 shows results
for problem instances with n 6 400, whereas Figure 2 shows the results for bigger
problem instances.

In Figure 1, all algorithms perform very similarly for the smallest problem
instances. For n > 150, lp_solve fails to deliver a solution. The other two algorithms
continue to deliver solutions, with Gurobi performing slightly better than BB for
150 6 n 6 300. However, BB closes in on Gurobi at around n = 350 . . . 400. In

59

Bartók, Mann: A branch-and-bound approach to VM placement

0

200

400

600

800

1000

1200

1400

50 100 150 200 250 300 350 400

C
o

st

Nr. of VMs

Lower bound Branch-and-bound Gurobi lp_solve

Figure 1: Scalability results on small problem instances

0

2000

4000

6000

8000

10000

12000

600 1000 1400 1800 2200 2600 3000 3400 3800

C
o

st

Nr. of VMs

Lower bound Branch-and-bound Gurobi

Figure 2: Scalability results on big problem instances

Figure 2 we see that for n > 600, BB already consistently outperforms Gurobi, with
the latter increasingly drifting away from the optimum. After n > 2600, Gurobi
fails to find a valid solution within the given time limit. BB on the other hand
continues to deliver results.

The quality of the results found by BB is excellent: they are in most cases within
10 percent of the lower bound, and therefore, also within 10 percent of the optimum.

Finally, we assessed the effect of the load density (the n/m ratio). With 500

PMs, we varied the number of VMs from 500 (lightly loaded DC) to 1500 (highly
loaded DC). As can be seen in Figure 3, BB consistently outperforms Gurobi for all
densities (lp_solve did not produce valid results in this range).

In our future work, we plan to undertake a more detailed empirical analysis
of the algorithm’s performance, also comparing it with other algorithms on more
realistic test data. Unfortunately, lacking generally accepted benchmarks, this must
be done in an ad-hoc manner.

60

References

0

1000

2000

3000

4000

5000

500 600 700 800 900 1000 1100 1200 1300 1400 1500

C
o

st

Nr. of VMs

Lower bound Branch-and-bound Gurobi

Figure 3: Instances with different density (m = 500 is constant)

Acknowledgment

This work was partially supported by the Hungarian Scientific Research Fund
(Grant Nr. OTKA 108947).

References

[1] D. M. Batista, N. L. S. da Fonseca, and F. K. Miyazawa. “A set of schedulers
for grid networks”. In: Proceedings of the 2007 ACM Symposium on Applied
Computing (SAC’07). 2007, pages 209–213.

[2] A. Beloglazov, J. Abawajy, and R. Buyya. “Energy-aware resource allocation
heuristics for efficient management of data centers for cloud computing”. In:
Future Generation Computer Systems 28 (2012), pages 755–768.

[3] A. Beloglazov and R. Buyya. “Energy efficient allocation of virtual machines
in cloud data centers”. In: 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing. 2010, pages 577–578.

[4] N. Bobroff, A. Kochut, and K. Beaty. “Dynamic Placement of Virtual Ma-
chines for Managing SLA Violations”. In: 10th IFIP/IEEE International Sympo-
sium on Integrated Network Management. 2007, pages 119–128.

[5] R. Bossche, K. Vanmechelen, and J. Broeckhove. “Cost-optimal scheduling
in hybrid IaaS clouds for deadline constrained workloads”. In: IEEE 3rd
International Conference on Cloud Computing. 2010, pages 228–235.

[6] D. Breitgand and A. Epstein. “SLA-aware placement of multi-virtual machine
elastic services in compute clouds”. In: 12th IFIP/IEEE International Symposium
on Integrated Network Management. 2011, pages 161–168.

[7] Y. Gao, H. Guan, Z. Qi, Y. Hou, and L. Liu. “A multi-objective ant colony
system algorithm for virtual machine placement in cloud computing”. In:
Journal of Computer and System Sciences 79 (2013), pages 1230–1242.

61

Bartók, Mann: A branch-and-bound approach to VM placement

[8] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper. “Resource pool manage-
ment: Reactive versus proactive or let’s be friends”. In: Computer Networks
53.17 (2009), pages 2905–2922.

[9] M. Guazzone, C. Anglano, and M. Canonico. “Exploiting VM Migration
for the Automated Power and Performance Management of Green Cloud
Computing Systems”. In: 1st International Workshop on Energy Efficient Data
Centers. Springer, 2012, pages 81–92.

[10] G. Jung, M. A. Hiltunen, K. R. Joshi, R. D. Schlichting, and C. Pu. “Mis-
tral: Dynamically Managing Power, Performance, and Adaptation Cost in
Cloud Infrastructures”. In: IEEE 30th International Conference on Distributed
Computing Systems. 2010, pages 62–73.

[11] A. Khosravi, S. K. Garg, and R. Buyya. “Energy and carbon-efficient place-
ment of virtual machines in distributed cloud data centers”. In: Euro-Par 2013.
Springer, 2013, pages 317–328.

[12] D. Lago, E. Madeira, and L. Bittencourt. “Power-aware virtual machine
scheduling on clouds using active cooling control and DVFS”. In: Proceedings
of the 9th International Workshop on Middleware for Grids, Clouds and e-Science.
2011.

[13] W. Li, J. Tordsson, and E. Elmroth. “Virtual Machine Placement for Pre-
dictable and Time-Constrained Peak Loads”. In: Proceedings of the 8th Interna-
tional Conference on Economics of Grids, Clouds, Systems, and Services (GECON
2011). Springer, 2011, pages 120–134.

[14] Z. Á. Mann. “Allocation of virtual machines in cloud data centers – a survey
of problem models and optimization algorithms”. In: ACM Computing Surveys
48.1 (2015).

[15] Z. Á. Mann. “Rigorous results on the effectiveness of some heuristics for
the consolidation of virtual machines in a cloud data center”. In: Future
Generation Computer Systems 51 (2015), pages 1–6.

[16] Natural Resources Defense Council. Scaling Up Energy Efficiency Across the
Data Center Industry: Evaluating Key Drivers and Barriers. http://www.nrdc.
org/energy/files/data-center-efficiency-assessment-IP.pdf. 2014.

[17] M. A. Salehi, P. R. Krishna, K. S. Deepak, and R. Buyya. “Preemption-Aware
Energy Management in Virtualized Data Centers”. In: 5th International Con-
ference on Cloud Computing. IEEE, 2012, pages 844–851.

[18] L. Shi, J. Furlong, and R. Wang. “Empirical evaluation of vector bin packing
algorithms for energy efficient data centers”. In: IEEE Symposium on Computers
and Communications. 2013, pages 9–15.

[19] W. Song, Z. Xiao, Q. Chen, and H. Luo. “Adaptive Resource Provisioning
for the Cloud Using Online Bin Packing”. In: IEEE Transactions on Computers
63.11 (2014), pages 2647–2660.

[20] P. Svärd, W. Li, E. Wadbro, J. Tordsson, and E. Elmroth. Continuous Datacenter
Consolidation. Technical report. Umea University, 2014.

62

http://www.nrdc.org/energy/files/data-center-efficiency-assessment-IP.pdf
http://www.nrdc.org/energy/files/data-center-efficiency-assessment-IP.pdf

References

[21] L. Tomás and J. Tordsson. “An autonomic approach to risk-aware data center
overbooking”. In: IEEE Transactions on Cloud Computing 2.3 (2014), pages 292–
305.

[22] A. Verma, P. Ahuja, and A. Neogi. “pMapper: power and migration cost
aware application placement in virtualized systems”. In: Middleware 2008.
2008, pages 243–264.

[23] A. Verma, G. Dasgupta, T. K. Nayak, P. De, and R. Kothari. “Server workload
analysis for power minimization using consolidation”. In: Proceedings of the
2009 USENIX Annual Technical Conference. 2009, pages 355–368.

[24] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif. “Sandpiper: Black-
box and gray-box resource management for virtual machines”. In: Computer
Networks 53.17 (2009), pages 2923–2938.

[25] X. Zhu, D. Young, B. J. Watson, Z. Wang, J. Rolia, S. Singhal, B. McKee, C.
Hyser, D. Gmach, R. G., T. Christian, and L. Cherkasova. “1000 islands: an
integrated approach to resource management for virtualized data centers”.
In: Cluster Computing 12.1 (2009), pages 45–57.

63

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

Band

ISBN

Titel

Autoren / Redaktion

103 978-3-86956-348-0 Babelsberg/RML : executable
semantics and language testing
with RML

Tim Felgentreff, Robert
Hirschfeld, Todd Millstein,
Alan Borning

102 978-3-86956-347-3 Proceedings of the Master
Seminar on Event Processing
Systems for Business Process
Management Systems

Anne Baumgraß, Andreas
Meyer, Mathias Weske (Hrsg.)

101 978-3-86956-346-6 Exploratory Authoring of
Interactive Content in a Live
Environment

Philipp Otto, Jaqueline Pollak,
Daniel Werner, Felix Wolff,
Bastian Steinert, Lauritz
Thamsen, Macel Taeumel, Jens
Lincke, Robert Krahn, Daniel
H. H. Ingalls, Robert
Hirschfeld

100 978-3-86956-345-9

Proceedings of the 9th Ph.D.
retreat of the HPI Research
School on service-oriented
systems engineering

Christoph Meinel, Hasso
Plattner, Jürgen Döllner,
Mathias Weske, Andreas
Polze, Robert Hirschfeld, Felix
Naumann, Holger Giese,
Patrick Baudisch, Tobias
Friedrich (Hrsg.)

99 978-3-86956-339-8 Efficient and scalable graph view
maintenance for deductive graph
databases based on generalized
discrimination networks

Thomas Beyhl, Holger Giese

98 978-3-86956-333-6 Inductive invariant checking
with partial negative application
conditions

Johannes Dyck, Holger Giese

97 978-3-86956-334-3 Parts without a whole? : The
current state of Design Thinking
practice in organizations

Jan Schmiedgen, Holger
Rhinow, Eva Köppen,
Christoph Meinel

96 978-3-86956-324-4 Modeling collaborations in self-
adaptive systems of systems :
terms, characteristics,
requirements and scenarios

Sebastian Wätzoldt, Holger
Giese

95

978-3-86956-320-6

Proceedings of the 8th Ph.D.
retreat of the HPI research school
on service-oriented systems
engineering

Christoph Meinel, Hasso
Plattner, Jürgen Döllner,
Mathias Weske, Andreas
Polze, Robert Hirschfeld, Felix
Naumann, Holger Giese,
Patrick Baudisch (Hrsg.)

Technische Berichte Nr. 105

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

Proceedings of the Third
HPI Cloud Symposium
“Operating the Cloud”
2015
David Bartok , Estee van der Walt, Jan Lindemann,
Johannes Eschrig, Max Plauth (Eds.)

ISBN 978-3-86956-360-2
ISSN 1613-5652

	Title
	Imprint

	Preface
	Contents
	Dependable Cloud Computing with OpenStack
	1 Introduction
	2 Related Work
	2.1 OpenStack Installation
	2.2 Evaluating OpenStack Dependability

	3 OpenStack Test Environment
	3.1 Existing OpenStack Installation Possibilities
	3.2 Specifying our own OpenStack Environment

	4 Automated Installation of OpenStack
	4.1 How to Install OpenStack using our System
	4.2 Creating the Virtual Environment
	4.3 Installing OpenStack on Virtual Machines with Ansible

	5 Running Dependability Experiments
	5.1 Experiment Results

	6 Conclusion
	References

	Protecting Minors on Social Media Platforms - A Big Data Science Experiment
	1 Introduction
	2 Background
	2.1 Big Data and Data science
	2.2 Cyber-security
	2.3 Human factors

	3 Big Data Science Experiment
	3.1 Process
	3.2 Determine experiment objective
	3.3 Identify the source of social media data
	3.4 Identify technology stack for the experiment execution
	3.5 Gather social media sample data set for experiment
	3.6 Data cleansing, enrichment and transformation
	3.7 Understanding the data gathered

	4 Conclusion
	Acknowledgement
	References

	A Scalable Query Dispatcher for Hyrise-R
	1 Introduction
	2 Hyrise
	3 Hyrise-R
	4 Dispatcher
	4.1 Round-Robin Approach
	4.2 Stream Approach

	5 Discussion and Future Work
	6 Conclusion
	Acknowledgment
	References

	A Survey of Security-Aware Approaches for Cloud-Based Storage and Processing Technologies
	1 Introduction
	2 Preceding contributions
	2.1 Threshold Cryptography
	2.2 Trust-Based Access Control
	2.3 Virtual Machine Introspection
	2.4 Searchable Encryption

	3 State of the Art
	3.1 New trends in virtualization strategies
	3.2 Hardware-based security mechanisms
	3.3 Virtualization of coprocessors resources
	3.4 Best practices for secure coding

	4 Discussion
	5 Outlook
	Acknowledgement
	Disclaimer
	References

	A Branch-and-Bound Approach to Virtual Machine Placement
	1 Introduction
	2 Previous work
	3 Problem model
	4 Integer programming solution
	5 Branch-and-bound algorithm
	5.1 Incremental computations
	5.2 VM selection
	5.3 PM selection
	5.4 Lower bound on the cost
	5.5 Trading off running time and solution quality
	5.6 Further remarks

	6 Evaluation
	6.1 Parameter tuning
	6.2 Comparison
	Acknowledgment
	References

	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

