

4 Self-Configuring Data Imports

Therefor, Figure 5 illustrates the results for each labeled number of threads
combined with the following batch sizes: 10; 100; 1,000; 10,000; 100,000; 1,000,000;
10,000,000 and 100,000,000. Any configuration including four or less threads per-
formed significantly slower than any other number of threads between 8 and 256.
Within each thread interval, the averagely best performing batch sizes ranged from
10,000 to 1,000,000.

Comparing the imports parameterized by the experimentally determined values
with both the default import configuration (no parameters passed) and a configu-
ration recommended by SAP (10; 10, 000) [9], we ascertain a significant difference
between imports performed with the default values of the parameters and the
imports using the parameter values that were experimentally determined as illus-
trated in Figure 6.

The parameter configuration recommended by SAP led to a number of inserted
rows per second that is located between default and optima with a lag varying
from 93,064 (D2) to 152,563 (D1) inserts per second compared to the respective
parameters that were determined in the context of the experiments.

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000
Inserts per Second

D
ef

au
lt

D
ef

au
lt

D
ef

au
lt

SA
P

R
ec

om
m

.

SA
P

R
ec

om
m

.

SA
P

R
ec

om
m

.

Dataset D1 Dataset D2 Dataset D3

Ex
pe

rim
en

ta
l

Ex
pe

rim
en

ta
l

Ex
pe

rim
en

ta
l

Figure 6: Comparison of the Results for each Dataset

4 Self-Con�guring Data Imports

Rather than importing datasets by using the default or predefined parameter values
or by randomly choosing the parameters for the import, the import of new datasets
could be conducted based on similar data that was previously loaded. In order to be
able to determine the similarity of datasets, a knowledge base was built as described
in the previous section. The data generated by means of the experiments can now
be used in order to determine suitable parameter values for an import based on
historical data. Therefore, it is first of all necessary to compute the similarity of
all previously imported datasets in relation to the dataset that is to be imported.

55

Müller, Splieth, Bosse, Turowski: Self-Configuring Data Imports

The similarity of data can be computed in various ways, for example by applying
kernel functions [8] or by using distance functions such as presented in [2]. In this
paper, a distance function was chosen to compute the similarity of two datasets,
the canberra distance [5], which is defined in Equation 1.

d(p,q) =
n∑
i=1

|pi − qi|

|pi|+ |qi|
(1)

p and q are vectors that represent a particular dataset and comprise the pa-
rameters of a dataset: its size, its number of rows and its number of columns.
Respectively, pi and qi are elements within the vectors. The most similar dataset in
relation to the dataset that is to be imported is the one with the smallest distance.
The distance is determined for all datasets that were previously imported and can
hence be used to query for the parameters that have led to the best import result
with regard to the most similar dataset.

But up to this point, a suitable configuration for the import parameters would
only be determined based on historical data. However, in a cloud environment, it
is unlikely that each system is idle due to the fact that a provider may serve a vast
amount of users [1]. Thus, it is reasonable to assume that the individual hosts are
differently utilized. Hence, the determined configuration of input parameters may
not be applicable due to the current utilization of a host. For example, user A may
upload data that results in an import configuration of (256; 100,000) according to
the knowledge base. At the same time, user B works on the system, consequently
the current utilization is very high and the additional import would overload the
node. This should be avoided due to possible contractual penalties as a result of
the violation of SLAs. Therefore, it would not be possible to employ the optimal
import configuration for user A due to the current state of the system. It would
rather be desirable to adapt the configuration according to the current state of the
system.

In order to cope with such a scenario, a solution was implemented that deter-
mines a suitable import configuration based on the historical data and adapts this
configuration according to the current utilization (in terms of the CPU utilization)
of the node. In detail, this includes the following steps:

1. Find a node (refered to as “target node”) that provides enough free main
memory to process the import using a first fit approach.

2. Determine a suitable parameter configuration. Therefore, a procedure named
getConfig is called via hdbsql on the target node. The relevant parameters
(CPU utilization, size of dataset, number of rows and columns) are identified
at the OS-layer and passed to the procedure.

a) The canberra distance is computed for all datasets in the database (cf.
Equation 1).

b) Based on the distance, the best parameter combination is then deter-
mined by using the “Results”-table.

56

