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A RADÓ THEOREM FOR p -HARMONIC FUNCTIONS

IBRAHIM LY AND NIKOLAI TARKHANOV

Abstract. Let A be a nonlinear differential operator on an open set X ⊂ Rn

and S a closed subset of X . Given a class F of functions in X , the set S is

said to be removable for F relative to A if any weak solution of A(u) = 0
in X \ S of class F satisfies this equation weakly in all of X . For the most

extensively studied classes F we show conditions on S which guarantee that

S is removable for F relative to A.
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Introduction

The problem under study lies in the following. Suppose A is a nonlinear differ-
ential operator on an open set X in R

n and S is a closed subset of X . For a given
class F of functions on X \ S, the set S is said to be removable for F with respect
to A if each function u ∈ F satisfying A(u) = 0 on X \ S extends to a solution of
this equation on the whole set X . What balance between the growth of functions
in F near S and the “smallness” of S is sufficient in order that S be removable for
F relative to A?

The first result of this type is perhaps the Riemann theorem on the removability
of one-point singularities for bounded holomorphic functions. For linear differential
operators with C∞ coefficients the problem was studied in [Boc56], [HP70], etc.
The paper [HP70] is of special importance for it singles out the crucial step in the
study of removable singularities. To wit, on assuming F to be a class of functions
on all of X one asks if any weak solution u to A(u) = 0 in X \ S satisfies this
equation weakly in all of X . This paper facilitated considerable progress in the
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2 I. LY AND N. TARKHANOV

study of removable sets for solutions of linear equations, see [Tar95, Ch. 1] and the
references given there.

A starting point for nonlinear differential equations is the pioneering work on
the local behaviour of solutions of quasilinear equations by Serrin [Ser64]. The
comparatively recent book [Ver96] presents in a unified way the development of the
theory of singularities for solutions of second order elliptic or parabolic quasilinear
equations starting from the linear equations and the work [Ser64]. As but one
motivation of the present paper we mention that the book [Ver96] does not contain
any reference to [HP70] while the approach of the latter paper may be undoubtedly
of use for nonlinear equations, too. For general nonlinear equations there is no
reasonable concept of a weak solution, however, one gets it immediately by turning
to a variational setting and relaxing the initial equation into the Euler-Lagrange
equation.

Specifically we discuss a Radó type theorem for p -harmonic functions on an
open set X in R

n which are defined to be weak solutions u ∈ W 1,p
loc (X ) of the

quasilinear equation div (|u′|p−2u′) = 0, where u′ stands for the gradient of u and
p > 1. The operator Δpu := div (|u′|p−2u′) is called the p -Laplace operator, it
is elliptic away from the critical points of u. The classical Radó theorem states
that if u is a continuous function on an open set X in the complex plane which is
holomorphic away from the set of zeroes then u is actually holomorphic on all of
X , see [Rad37]. By the very nature, this is a result on removable sets for the class
of continuous functions with respect to the Cauchy-Riemann operator in the plane.
In 1983 Král extended the Radó theorem to harmonic functions showing that each
C1 function on an open set X in R

n, which is harmonic away from the set of its
zeroes, is actually harmonic on all of X , see [Kra83]. The paper [GZ12] contains a
Radó type theorem for matrix factorisations of the Laplace operator in R

n. For a
deeper discussion see [Tar95, 1.3.4].

We now dwell on the contents of the paper. In Section 1 we remind of how
variational formulations of nonlinear equations lead to quasilinear relaxations of
these equations. This gives immediately rise to the natural concept of a weak
solution. In Section 2 we specify the notion of a removable set for solutions of
quasilinear partial differential equations. In Section 3 we adduce a fundamental
lemma of [HP70] which is of key importance in the study of removable sets for
solutions of linear equations. We show that the lemma is still useful in characterising
removable singularities for solutions of quasilinear equtions. Section 4 deals with
removable sets for functions of Sobolev classes while Section 5 does with removable
sets for classes of Cs functions. The results of Section 5 apply to study removability
of the zero sets in Section 6. In Section 7 we discuss shortly a Radó type theorem
for p -harmonic functions.

The paper [HP72] rises immediately from [HP70] to introduce a notion of capac-
ity which characterizes removable sets for solutions of linear equations. In [GP08], a
concept of nonlinear capacity related to a nonlinear operator is applied to blow-up
problems for diverse nonlinear partial differential equations including those with
nonlocal nonlinearities.

1. Lagrangian problems

Suppose that X is an open set in R
n. For a nonnegative integer s and 1 ≤ p ≤ ∞,

we denote by W s,p(X ) the space of all distributions in X whose derivatives up to
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order s belong to the Lebesgue space Lp(X ). This space is given a standard Banach
space structure.

When solving a partial differential equation for a function u ∈ Wm,p(X ), one
can often relax this problem to that of minimising a nonlinear functional

F (u) :=

∫
X
L(x, (∂βu(x))|β|≤m) dx

over all u ∈ Wm,p(X ), where L(x, (uβ)|β|≤m) is a real-valued function of its numer-
ical variables in X × ⊕|β|≤mR. The function L is usually referred to as Lagrange

function and the mapping NL(u) := L(x, (∂βu)|β|≤m) as Nemytskii operator. A
standing assumption on L is that NL is a differentiable mapping of Wm,p(X ) to
L1(X ).

If F takes on its local minimum at a function u ∈ Wm,p(X ), then, given any fixed
v ∈ Wm,p(X ), the function f(ε) := F (u + εv) of ε ∈ R takes on a local minimum
at ε = 0. Since f is differentiable at the origin, we conclude that f ′(0) = 0. Hence
it follows that ∫

X

∑
|α|≤m

L′
uα

(x, (∂βu(x))|β|≤m) ∂αv(x) dx = 0 (1.1)

for all v ∈ Wm,p(X ).
Choosing arbitrary v ∈ C∞

comp(X ) we deduce from (1.1) that u satisfies the
equation ∑

|α|≤m

(−∂)α L′
uα

(x, (∂βu(x))|β|≤m) = 0

in the sense of distributions in the interior of X . This is a nonlinear equation of gen-
eralised divergence form whose “coefficients” L′

uα
(x, (∂βu(x))|β|≤m) map Wm,p(X )

continuously into Lp′
(X ), where p′ = p/(p−1) is the dual exponent of p. Moreover,

if the “coefficients” are smooth enough then partial integration on the left-hand side
of (1.1) yields

∫
X

∑
|α|≤m

(−∂)α L′
uα

(x, (∂βu)|β|≤m) v dx−
∫
∂X

m−1∑
j=0

Bj(u)
( ∂

∂ν

)j

v ds = 0 (1.2)

for all v ∈ Wm,p(X ), where Bj are uniquely determined nonlinear differential op-
erators of order 2m− j − 1, ν the unit outward normal vector of the hypersurface
∂X and ds the area form on ∂X . Since (1.1) is fulfilled for all v ∈ Wm,p(X ), we
conclude readily that Bj(u) = 0 in a weak sense at the boundary of X , for each
j = 0, 1, . . . ,m− 1.

We have thus arrived at the so-called Euler-Lagrange equations for the local
minima u of the functional F , which actually constitute a Neumann type boundary
value problem in X .

Example 1.1. If L(x, (∂βu)|β|≤1) := (1/p) |u′|p, then the Euler-Lagrange equations
become

divL′
u′ = 0 in X ,

〈L′
u′ , ν〉x = 0 at ∂X ,

where L′
u′ = |u′|p−2u′.
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Using the notation of differential forms, the problem of Example 1.1 just amounts
to the Cauchy problem d∗U = 0 in X and ν(U) = 0 at ∂X for the 1 -form U = L′

u′

in X .

2. Removable sets for solutions of quasilinear equations

The Euler-Lagrange equations give rise to a broad class of nonlinear operators
in generalised divergence form

A(u) (x) :=
∑

|α|≤m

(−∂)α Aα(x, (∂
βu(x))|β|≤s−m), (2.1)

where s and m ≤ s are nonnegative integers, and Aα(x, (uβ)|β|≤s−m) complex-
valued functions of its numerical variables in X × ⊕|β|≤s−mC. The number s can
be thought of as the order of A. The following assumption on the “coefficients”
Aα will be needed throughout the paper. For every multi-index α with |α| ≤ m,

the Nemytskii operator NAα is required to map W s−m,p
loc (X ) continuously into the

space Lp′
loc(X ). As usual, the designations “loc” and “comp” specify the “local”

and “with compact support” versions of the corresponding global Sobolev spaces
in X .

Under this assumptions, the operator A is given the domain W s−m,p
loc (X ) to map

it continuously into the dual of Wm,p
comp(X ) (usually denoted by W−m,p′

loc (X )). More
precisely, we set

〈A(u), g〉 :=
∑

|α|≤m

〈Aα(x, (∂
βu)|β|≤s−m), ∂αg〉

for all g ∈ Wm,p
comp(X ).

Given any u ∈ W s−m,p
loc (X ), the image A(u) is specified within the framework

of distributions in X . In this way, a function u ∈ W s−m,p
loc (X ) is said to satisfy

A(u) = 0 on an open set U ⊂ X if A(u) = 0 in the sense of distributions in U , i.e.,
〈A(u), g〉 = 0 for all g ∈ C∞

comp(U). Hence, by solutions of A(u) = 0 are meant weak
solutions. This allows one to extend the definition of removable sets, introduced
in [HP70] for linear differential operators A, to solutions of nonlinear differential
equations.

Definition 2.1. Let S be a closed subset of X and F a class of functions in
W s−m,p

loc (X ). The set S is called removable for F relative to the differential operator
A if any function u ∈ F satisfying A(u) = 0 in X \ S actually satisfies A(u) = 0 in
all of X .

One may ask what conditions on the “size” of S are sufficient for S to be a
removable set for F relative to A. For a survey of results on removable singularities
we refer the reader to [Tar95, Ch. 1] and [Ver96]. For the most extensively stud-
ied classes F and differential operators A there have been known sharp sufficient
conditions on removable sets in terms of the Hausdorff measure of S. For both
necessary and sufficient conditions on removable sets one appeals to the so-called
capacity, see [HP72].

Example 2.2. The extreme case m = 0 is vapid. Indeed, in this case A reduces to
the Nemytskii operator NA0

(u) = A0(x, (∂
βu)|β|≤s) mappingW s,p

loc (X ) continuously

into Lp′
loc(X ). As the elements of Lp′

loc(X ) are defined up to functions vanishing
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almost everywhere in X , any closed set S ⊂ X of measure zero is removable for
F := W s,p

loc (X ) relative to A. Obviously, this condition is necessary provided that
NA0 is surjective.

3. A fundamental lemma

In order to characterize the removable sets in terms of the Hausdorff measure one
uses a fundamental lemma of [HP70]. We first recall the definition of the Hausdorff
measure.

For 0 ≤ d ≤ n we set

hd,ε(S) := inf
∑
ν

vd r
d
ν ,

where the infimum is taken over all countable coverings {Bν} of the set S by balls
with radii rν ≤ ε, and vd is the volume of the unit ball in R

d. Obviously, hd,ε(S)
is a monotone increasing function of ε → 0+, and so it has a limit as ε → 0+. The
number

hd(S) = lim
ε→0+

hd,ε(S)

is called the d -dimensional Hausdorff measure of the set S.
Hausdorff measure is a regular metric outer measure on R

n. Therefore, hd(S) = 0
if and only if hd(K) = 0 for each compact subset K ⊂ S. Note that hn agrees
with the standard Lebesgue measure in R

n. In most cases one is interested only
in whether the measure hd(S) is zero, finite, or infinite. From this point of view,
instead of coverings by balls in the definition of hd, we may use coverings by cubes or
arbitrary (convex) sets of diameter 2rv, because all such coverings lead to equivalent
measures.

Lemma 3.1. Suppose K is a compact subset of Rn. Then, for each d = n−mp and
ε > 0, there is a C∞ function χε with compact support in R

n, such that the support
of χε belongs to the ε -neighbourhood of K, χε ≡ 1 in a smaller neighbourhood of
K, and

‖∂αχε‖Lp(Rn) ≤ Cα εm−|α| (hd(K) + ε)
1/p

for all α with |α| ≤ m, where the constant Cα is independent of ε.

Proof. This is a refinement of a well-known lemma of [Boc56]. For a proof, see
[HP70] or [Tar95, 1.2.1]. �

It is worth pointing out that d is assumed to be nonnegative. Hence it follows
that n−mp ≥ 0, i.e., p ≤ n/m.

4. Removable sets for Sobolev functions

In this section we characterize removable sets for the class F := W s−m,p
loc (X ). As

mentioned, p is bounded away from the point at infinity unless m = 0, in which
case the problem is vapid.

Theorem 4.1. Let d = n−mp be nonnegative.
1) If 1 < p < ∞ and hn−mp(K) < ∞ for each compact set K ⊂ S, then S is

removable for W s−m,p
loc (X ) relative to A.

2) If p = 1 and hn−m(S) = 0, then the set S is removable for W s−m,1
loc (X ) relative

to A.
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For general linear partial differential operators A, Theorem 4.1 is contained in
[HP70].

Proof. Let u ∈ W s−m,p
loc (X ) satisfy A(u) = 0 in X \ S. Pick any g ∈ C∞

comp(X ) and
set K = S ∩ supp g. Then

〈A(u), g〉 = 〈A(u), χεg〉+ 〈A(u), (1− χε)g〉
for all ε > 0, where χε is the function of Lemma 3.1.

Since A(u) = 0 in X \ S and the support of (1 − χε)g is a compact subset of
X \ S, it follows that

〈A(u), g〉 = 〈A(u), χεg〉
=

∑
|α|≤m

〈NAα
(u), ∂α(χεg)〉

=
∑

|α|≤m

∑
β≤α

(α
β

)
〈NAα

(u), ∂α−βg ∂βχε〉

where, for multi-indices α = (α1, . . . , αn) and β = (β1, . . . , βn), by β ≤ α is meant
that βj ≤ αj for all j = 1, . . . , n. Consequently, by the Hölder inequality and
Lemma 3.1, we get

|〈A(u), g〉| ≤ C
∑

|α|≤m

∑
β≤α

‖NAα
(u)‖Lp′ (Kε)

‖∂βχε‖Lp(X )

≤ C ′ (hd(K) + ε)
1/p

∑
|α|≤m

εm−|α|‖NAα
(u)‖Lp′ (Kε)

(4.1)

for all sufficiently small ε > 0, where Kε stands for the ε -neighbourhood of K and
C, C ′ are constant independent of ε.

If p > 1, then p′ < ∞ and so ‖NAα(u)‖Lp′ (Kε)
→ 0 as ε → 0, for each multi-index

α. On the other hand, if p = 1 and hd(K) = 0, then (hd(K) + ε)
1/p

tends to zero
as ε → 0.

By the hypotheses of 1) or of 2), the right-hand side of (4.1) tends to zero as
ε → 0+. Thus, 〈A(u), g〉 = 0, as desired. �

The arguments of [Tar95, 1.2.2] show that the assumptios on S in Theorem 4.1
cannot be improved in terms of the Hausdorff measure.

Example 4.2. Assume that 1 < p < ∞ and hn−p(K) is finite for each compact

set K ⊂ S. Then the set S is removable for W 1,p
loc (X ) relative to the p -Laplace

operator.

5. Removable sets for smooth functions

In this section we will be concerned with removable sets for Cs−m
loc (X ) relative

to A. As usual, for k ≥ 0 an integer, we denote by Ck
loc(X ) the space of k times

continuously differentiable functions on X . In order to get substantial results, it
is necessary to put some restrictions on the coefficients Aα(x, (uβ)|β|≤s−m) of A.
Since this work is intended as an attempt at motivating the Radó type theorem for
p -harmonic functions, we choose the abstract setting of the p -Laplace equation.
To wit, assume that the Nemytskii operator NAα

maps Cs−m
loc (X ) continuously into

Cloc(X ), for |α| ≤ m.
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Theorem 5.1. Suppose hn−m(K) < ∞ for each compact set K ⊂ S. Then S is
removable for Cs−m

loc (X ) relative to A.

For m = 0, the set S is removable for Cs
loc(X ) relative to A = NA0

provided
that the interior of S is empty. If moreover A is onto Cloc(X ), then this condition
is also necessary.

Proof. Assume u ∈ Cs−m
loc (X ) satisfies A(u) = 0 on X \ S. Let g ∈ C∞

comp(X ), and
let K = S ∩ supp g.

Since the support of A(u) belongs to S, we obtain for the function χε from
Lemma 3.1 that

〈A(u), g〉 =
∑

|α|≤m

〈NAα(u), ∂
α(χεg)〉

=
∑

|α|≤m

(
〈∂αχεNAα(u), g〉+

∑
β≤α
β �=α

(α
β

)
〈NAα(u), ∂

α−βg ∂βχε〉
)
,

with ε an arbitrary positive number. Using the Hölder inequality and Lemma 3.1
we obtain

|〈NAα(u), ∂
α−βg ∂βχε〉| ≤ ‖∂α−βgNAα(u)‖L∞(X ) ‖∂βχε‖L1(X )

≤ Cα,β ε
m−|β| (hd(K) + ε) ,

where the constants Cα,β are independent of ε. Consequently, A(u) is the limit of
the net of continuous functions ∑

|α|≤m

NAα
(u) ∂αχε (5.1)

in the space of distributions on X .
By Lemma 3.1, we have ‖∂αχε‖L1(X ) ≤ Cα (hd(K) + ε) for all positive ε ≤ 1,

provided that |α| ≤ m. Since hd(K) < ∞, we can assert that the net ∂αχε is
bounded in L1(X ). Hence it follows that the net has a subsequence which converges
in the weak∗ topology of Cloc(X )′. The limit of this subsequence is necessarily zero,
for the net χε, and so also the net ∂αχε converges to zero in the sense of distributions
on X . Multiplication by NAα

(u), where |α| ≤ m, defines a continuous operator in
Cloc(X )′. Therefore, some subsequence of (5.1) converges to zero in the weak∗

topology of Cloc(X )′. Since, however, the net itself converges to A(u) in the space
of distributions on X , it follows that A(u) = 0 on X , as desired. �

Example 5.2. Suppose hn−1(K) < ∞ for each compact set K ⊂ S. Then S
is removable for continuously differentiable p -harmonic functions in X , with any
p > 1.

6. A Radó theorem

A Radó type theorem for solutions of linear differential equations was first formu-
lated in the monograph [Tar95, 1.3.4] whose original Russian edition was published
in 1991.

In order to formulate a Radó theorem in the context of nonlinear differential
equations, we ought to rearrange the operator A. Suppose that m = 1, i.e., A is of
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the form

A(u) = −
n∑

j=1

∂j Aj(x, (∂
βu)|β|≤s−1) +A0(x, (∂

βu)|β|≤s−1),

where the Nemytskii operatorsNA1
, . . . , NAn

andNA0
are assumed to map Cs−1

loc (X )
continuously into Cloc(X ).

By Theorem 5.1, if S is a closed subset of X with the property that hn−1(K) < ∞
for each compact set K ⊂ S, then S is removable for Cs−1

loc (X ) relative to A.

Lemma 6.1. Assume that S is a smooth hypersurface in X . Then S is removable
for Cs−1

loc (X ) relative to A.

Proof. Indeed, when restricted to subsets of a smooth submanifold S of X of di-
mension d, the Hausdorff measure hd is commensurable with the corresponding
surface measure on S induced by the Lebesgue measure in R

n. Hence it follows
immediately that hn−1(K) < ∞ for each compact set K ⊂ S, showing the desired
assertion. �

While Theorem 5.1 characterises those S ⊂ X which are removable for all so-
lutions u ∈ Cs−1

loc (X ) to A(u) = 0 in X \ S, the Radó type theorems deal with

individual solutions u ∈ Cs−1
loc (X ) of this equation. As S one takes the preimage of

a point by u, e.g., S = u−1(0) which is the set of all x ∈ X satisfying u(x) = 0.
Then, a Radó theorem for solutions of the nonlinear equation A(u) = 0 states that
if u ∈ Cs−1

loc (X ) satisfies A(u) = 0 in X \ u−1(0) then A(u) = 0 is actually fulfilled
in all of X .

Theorem 6.2. If u ∈ Cs−1
loc (X ) satisfies A(u) = 0 in X \ u−1(0), then A(u) = 0

away from the set of all x ∈ X satisfying ∂βu(x) = 0 for each multi-index β with
|β| ≤ s− 1.

Proof. We can certainly assume that s ≥ 2, since otherwise the assertion is obvious.
Set S = u−1(0), and so S is a closed subset of X . Denote by Sreg the subset of
S consisting of those x ∈ S which satisfy u′(x) �= 0. Clearly, Sreg is an open

set in S, and so the set S(1) := S \ Sreg, which consists of all x ∈ S satisfying
u(x) = u′(x) = 0, is closed in X . Each point x ∈ Sreg has a neighbourhood U in X ,
such that S ∩ U is a hypersurface in U . By Lemma 6.1, A(u) = 0 in U and hence
everywhere in X \ S(1).

Further, denote by S
(1)
reg the subset of S(1) consisting of those x ∈ S(1) such

that u′′(x) �= 0. (By u′′(x) is meant the tuple (∂βu(x))|β|=2, and similarly for

higher order total derivatives.) Then, S
(1)
reg is an open set in S(1), and hence the set

S(2) := S(1) \ S(1)
reg is closed in X . Each point x ∈ S

(1)
reg has a neighbourhood U in

X with the property that S(1) ∩U lies in some hypersurface {x ∈ U : ∂ju(x) = 0},
where j is one of the numbers 1, . . . , n. On using Lemma 6.1 we see that A(u) = 0
in U , and hence in all of X \ S(2).

Continuing this process, after s−1 steps, we conclude that the distribution A(u)
vanishes in X \S(s−1), where S(s−1) is the closed subset of X consisting of all x ∈ X
such that u(x) = u′(x) = . . . = u(s−1)(x) = 0. �

We now elucidate the main analytical problem in studying the Radó theorem for
solutions of the equation A(u) = 0. Let u ∈ Cs−1

loc (X ) satisfy A(u) = 0 in X \ S,
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where S = u−1(0). By Theorem 6.2, the function u satisfies A(u) = 0 away from
the closed set S(s−1) in X . In all interesting cases already studied the Hausdorff
dimension of the set S(s−1) is less than n − 1, and so the hypothesis of Theorem
5.1 is satisfied. By this theorem, one gets A(u) = 0 in all of X , showing the Radó
theorem. Clearly, no conclusion on the size of S(s−1) can be drawn in the case of
general operators A.

Example 6.3. Let u(x) be a nonzero C∞ function on X vanishing in a neigh-
bourhood of a point x0 ∈ X . Choose any continuous function A0(x, u) on X × R

which vanishes away from u−1(0)×R and is different from zero at (x0, 0). For the
Nemytskii operator A = NA0 , we obviously have A(u) = 0 in X \ u−1(0) but not
in all of X .

This example demonstrates rather strikingly that strong restrictions on the type
of A are necessary in order that the Radó type theorem might hold for solutions of
A(u) = 0.

7. A Radó theorem for p -harmonic functions

Throughout this section we assume that X is an open set in R
n and 1 < p < ∞

a fixed number.
The divergence operator Δpu := div (|u′|p−2u′) is called the p -Laplacian. The

p -Laplace equation Δpu = 0 just amounts to the Euler-Lagrange equation for the
variational problem ∫

X

1

p
|u′(x)|p dx �→ min

over all functions u ∈ W 1,p(X ).

The p -Laplace operator is given the domain W 1,p
loc (X ) and it maps W 1,p

loc (X )

continuously to W−1,p′
loc (X ), the latter space being the dual space of W 1,p

comp(X ),

where 1/p + 1/p′ = 1. Namely, we set < Δpu, v >:= − < |u′|p−2u′, v′ > for all
v ∈ W 1,p

comp(X ).

By a p -harmonic function in X is meant any solution u ∈ W 1,p
loc (X ) to Δpu = 0

in X . Thus, the p -harmonic functions are weak solutions to Δpu = 0 in X by the
very definition.

A Radó type theorem for p -harmonic functions reads as follows. If u is a C1

function on an open set X ⊂ R
n satisfying Δpu = 0 in X \ u−1(0), then u is

p -harmonic in all of X .
For n = 2, a proof can be found in [Kil94]. It relies on the intimate connec-

tion between quasiregular mappings and planar p -harmonic functions. Therefore,
the proof can be generalised neither for higher dimensions nor for more general
equations in the plane.

As is noted in [Kil94], the conclusion of the theorem fails to hold if one assumes
merely that u is Lipschitz. For let u be the nonnegative part of the first coordinate
x1 of x ∈ R

n, then u is a Lipschitz continuous function in R
n satisfying Δpu = 0

weakly for x1 �= 0 but not in all of Rn.
If n ≥ 3 and p �= 2, then it is not known whether the set {x ∈ X : u′(x) = 0}

can contain interior points, even if we knew a priori that u is nonconstant and
p -harmonic in X , see ibid.
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[Kil94] Kilpeläinen, T., A Radó type theorem for p -harmonic functions in the plane, Electronic
J. of Diff. Eq. (1994), no. 9, 1–4.
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