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where Ai 2 Diff1(X ; F i; F i� 1) satisfy Ai+1Ai = 0 for all i = 0; 1; : : : ; N � 2.
Our basic assumption is that (2.2) is elliptic, i.e., the corresponding complex of
principal symbols is exact away from the zero section of the cotangent bundle
T � X , see [Tar95, 1.1.12]. We endow the manifold X and the vector bundles F i by
Riemannian metrics.

Set

F =
N

M

i=0

F i

and consider two first order differential operators A and A � in C1 (X ; F ) given by
the ((N +1) � (N +1)) -matrices

A =

0

B

B

B

B

B

B

@

0 0 0 : : : 0 0
A0 0 0 : : : 0 0
0 A1 0 : : : 0 0

: : :
0 0 0 : : : 0 0
0 0 0 : : : AN � 1 0

1

C

C

C

C

C

C

A

; A � =

0

B

B

B

B

B

B

@

0 A0 � 0 : : : 0 0
0 0 A1 � : : : 0 0
0 0 0 : : : 0 0

: : :
0 0 0 : : : 0 AN � 1 �

0 0 0 : : : 0 0

1

C

C

C

C

C

C

A

;

where Ai 2 Diff1(X ; F i+1; F i) stands for the formal adjoint of Ai. It is easily
verified that A � A = 0 and A � � A � = 0 and

∆ := A � A + AA � =

0

B

B

@

∆0 0 : : : 0
0 ∆1 : : : 0

: : :
0 0 : : : ∆N

1

C

C

A

; (2.3)

where ∆i = Ai� Ai + Ai� 1Ai� 1 � for i = 0; 1; : : : ; N are the so-called Laplacians of
complex (2.2). The ellipticity of complex (2.2) just amounts to that of its Laplacians
∆0; ∆1; : : : ; ∆N .

Lemma 2.2. Let r , s be real or complex numbers. Then rA + sA� 2 Diff1(X ; F )
is elliptic if and only if rs 6= 0.

Proof. Necessity. If at least one of the scalars r and s vanishes then the operator
rA +sA� reduces to a scalar multiple of A or A � , which operators can not be elliptic
because of their nilpotency.

Sufficiency. If both r and s are different from zero then a trivial verification
gives

(s� 1A + r � 1A � )(rA + sA� ) = AA � + A � A;
(rA + sA� )(s� 1A + r � 1A � ) = AA � + A � A;

showing the ellipticity of rA + sA� . �

By generalised Lamé operators related to complex (2.2) are meant the products
of two operators of the form rA + sA� , where rs 6= 0. These are precisely operators
L 2 Diff2(X ; F ) of the form L = rA � A + sAA � , where rs 6= 0. They are elliptic
and preserve the grading of complex (2.2) in the sense that if u is a section of F i,
then so is Lu .

Consider the Dirichlet problem for the elliptic operator ∆2 = (A � A)2 + (AA � )2

on X with data
u = 0 at @X ;

(A + A � )u = 0 at @X :
(2.4)
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lateral boundary of CT . Hence it follows that the function u satis�es the integral
identity by means of which one de�nes the weak solution of the corresponding mixed
problem in CT 0.

Note that we introduced the concept of weak solution of the �rst mixed problem
as natural generalisation of the concept of classical solution (withf 2 L 2(CT ; F i )).
We have actually proved that the classical solution of the �rst mixed problem in
CT with f 2 L 2(CT ; F i ) is a weak solution of this problem in the smaller cylinder
CT � " for any " 2 (0; T).

Along with classical and weak solutions of the �rst mixed problem one can in-
troduce the notion of `almost everywhere' solution. A function u is said to be an
`almost everywhere' solution of the �rst mixed problem if u 2 H 2(CT ; F i ) satis�es
equation (3.1) for almost all (x; t ) 2 CT , initial conditions (3.2) for almost all x in
the interior of X and the trace of u on the lateral surface vanishes almost every-
where. From the de�nition it follows immediately that if the classical so lution of
the �rst mixed problem belongs to H 2(CT ; F i ) then it is also an `almost everywhere'
solution. Moreover, if an `almost everywhere' solutionu of the �rst mixed problem
belongs to the classC2(CT ; F i ) \ C1(X � [0; 1); F i ) then u is obviously a classical
solution, too.

Every `almost everywhere' solution of the �rst mixed problem in CT is a weak
solution of this problem in CT . The converse assertion is also true.

Lemma 3.1. If a weak solution of the �rst mixed problem belongs to the space
H 2(CT ; F i ) then it is an `almost everywhere' solution of this problem. If a weak
solution of the �rst mixed problem belongs toC2(CT ; F i ) \ C1(X � [0; 1); F i ) then
it is a classical solution of this problem.

Proof. This is a standard fact on functions with generalised derivatives, cf. Lemma 1
in [Mik76, p. 287]. �

We are now in a position to prove a uniqueness theorem for the weak solution
of the �rst mixed problem.

Theorem 3.2. Suppose� � 0 and � + 2 � � 0. Then the �rst mixed problem for
the generalised Lam�e system has at most one weak solution.

Proof. Let u 2 H 1(CT ; F i ) be a weak solution of the �rst mixed problem with f = 0
in CT and u0 = u1 = 0 in the interior of X .

Pick an arbitrary s 2 (0; T) and consider the function

g(x; t ) =

8
<

:

Z s

t
u(x; � )d�; if 0 < t < s;

0; if s < t < T;

de�ned in CT . It is immediately veri�ed that the function g has generalised deriva-
tives

g0
x j (x; t ) =

8
<

:

Z s

t
u0

x j (x; � )d�; if 0 < t < s;

0; if s < t < T;
and

g0
t (x; t ) =

�
� u(x; t ); if 0 < t < s;

0; if s < t < T;

in CT . Therefore, we getg 2 H 1(CT ). Moreover, g vanishes at the lateral boundary
and the head of the cylinderCT .
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Substituting the function g into identity (3.4) yields
Z

Cs

�

(u0
t; u) + � (Au;

Z s

t
Au(�; � )d� ) + (� +2� )(A � u;

Z s

t
A � u(�; � )d� )

�

dxdt = 0

for all s 2 (0; T ). It is obvious that

<
Z

Cs

(u0
t; u) dxdt =

1
2

Z

X
ju(x; s)j2dx:

Since
Z

Cs

(Au(x; t );
Z s

t
Au(x; � )d� ) dxdt =

Z

X

Z s

0
(Au(x; t );

Z s

t
Au(x; � )d� ) dxdt

=
Z

X

Z s

0
(
Z �

0
Au(x; t )dt; Au (x; � )) dxd�

which transforms to
Z

X
(
Z s

0
Au(x; t )dt;

Z s

0
Au(x; � )d� ) dx �

Z

X

Z s

0
(
Z s

�
Au(x; t )dt; Au (x; � )) dxd�

=
Z

X
j
Z s

0
Au(x; t )dtj2 dx �

Z

Cs

(
Z s

�
Au(x; t )dt; Au (x; � )) dxd�;

we get

<
Z

Cs

(Au(x; t );
Z s

t
Au(x; � )d� ) dxdt =

1
2

Z

X
j
Z s

0
Au(x; t )dtj2 dx:

Similarly we obtain

<
Z

Cs

(A � u(x; t );
Z s

t
A � u(x; � )d� ) dxdt =

1
2

Z

X
j
Z s

0
A � u(x; t )dtj2 dx

whence
Z

X
ju(x; s)j2dx + �

Z

X
j
Z s

0
Au(x; t )dtj2 dx + (� +2� )

Z

X
j
Z s

0
A � u(x; t )dtj2 dx = 0

(3.6)
for all s 2 (0; T ).

Since � � 0 and � + 2� � 0, we conclude from (3.6) that
Z

X
ju(x; s)j2dx = 0

for all s 2 (0; T ), and so u = 0 in CT , as desired. �

As mentioned, a classical solution of the first mixed problem is also a weak
solution of this problem in CT � " for each " 2 (0; T ). Hence, Theorem 3.2 implies
the uniqueness of classical solution as well. Furthermore, since almost everywhere
solutions are weak solutions, we also deduce that, if � � 0 and � + 2� � 0, then
the first mixed problem for the generalised Lamé system has at most one almost
everywhere solution.
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4. Existence of a weak solution

We now turn to showing the existence of solutions of the first mixed problem
for the generalised Lamé system. To this end we use the Fourier method which
consists in looking the solution of the mixed problem in the form of series over
eigenfunctions of the corresponding elliptic boundary value problem.

Let v be a weak eigenfunction of the first boundary value problem for the gen-
eralised Lamé system

� � ∆v � (� +� )AA � v = κv in
�
X ;

v = 0 at @X ;
(4.1)

where κ is a corresponding eigenvalue. This just amounts to saying that
Z

X
(� � (Av; Ag)x � (� +2� )(A � v; A � g)x) dx � κ

Z

X
(v; g)xdx = 0 (4.2)

for all g 2
�
H 1(X ; F i).

Consider the orthonormal system (vk)k=1;2;::: in L 2(X ; F i) consisting of all weak
eigenfunction of problem (4.1). Let (κk)k=1;2;::: be the sequence of corresponding
eigenvalues. As usual we think of this sequence as nonincreasing sequence with
κ1 < 0 and each eigenvalue repeats himself in accord with his multiplicity. The
system (vk)k=1;2;::: is known to be an orthonormal basis in L 2(X ; F i) and #k ! �1
when k ! 1 . Moreover, the first eigenvalue κ1 is strongly negative, if � > 0 and
� + 2� > 0.

Suppose that the initial data u0 and u1 in (3.2) belong to L 2(X ; F i), and f
belongs to L 2(CT ; F i). By the Fubini theorem, f (�; t) 2 L 2(X ; F i) holds for almost
all t 2 (0; T ). We represent the functions u0 and u1 and the function f (�; t) for
almost all t 2 (0; T ) as Fourier series over the system (vk)k=1;2;::: of eigenfunction
of problem (4.1). To wit,

u0(x) =
1

X

k=1

u0;kvk(x); u1(x) =
1

X

k=1

u1;kvk(x);

where u0;k = (u0; vk)L2(X ;F i) and u1;k = (u1; vk)L2(X ;F i) for k = 1; 2; : : :. By the
Parseval equality, we get

1
X

k=1

ju0;kj2 = ku0k2
L2(X ;F i);

1
X

k=1

ju1;kj2 = ku1k2
L2(X ;F i):

(4.3)

Similarly we get

f (x; t ) =
1

X

k=1

f k(t)vk(x);

where f k(t) =
Z

X
(f (�; t); vk)xdx for k = 1; 2; : : :. Since

jf k(t)j2 �
Z

X
jf (�; t)j2dx

Z

X
jvk j2dx =

Z

X
jf (�; t)j2dx;
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it follows that f k 2 L 2(0; T ) for all k = 1; 2; : : :. Moreover,
1

X

k=1

jf k(t)j2 =
Z

X
jf (�; t)j2dx

holds for almost all t 2 (0; T ), which is due to the Parseval equality. This yields
readily

1
X

k=1

Z T

0
jf k(t)j2dt =

Z

CT

jf (x; t )j2dxdt: (4.4)

Take first the k th harmonics u0;kvk and u1;kvk as initial data in (3.2), and
the function f k(t)vk(x) as function in the right-hand of (3.1), where k = 1; 2; : : :.
Consider the function

uk(x; t ) = wk(t)vk(x); (4.5)
where

wk(t) = u0;k cos
p

� κkt + u1;k
sin

p
� κkt

p
� κk

+
Z t

0
f k(t0)

sin
p

� κk(t � t0)
p

� κk
dt0:

Note that this formula still makes sense if κk = 0, for the limit of the right-hand
side exists as κk ! 0. The function wk belongs obviously to H 2(0; T ), satisfies the
initial conditions wk(0) = u0;k and w0

k(0) = u1;k and is a solution of the ordinary
differential equation

w00
k � κkwk = f k (4.6)

for almost all t 2 (0; T ).
Our next objective is to show that if vk is an eigenfunction of problem (4.1)

corresponding to the eigenvalue κk then uk(x; t ) is a weak solution of the first
mixed problem for the equation

u00
tt(x; t ) = � � ∆u(x; t ) � (� + � )AA � u(x; t ) + f k(t)vk(x)

in CT with initial data

u(x; 0) = u0;kvk(x); for x 2
�
X ;

u0
t(x; 0) = u1;kvk(x); for x 2

�
X :

Indeed, the function uk given by (4.5) belongs to H 1(CT ; F i), satisfies the initial
conditions and vanishes at the lateral boundary of the cylinder. It remains to show
that

Z

CT

(� ((uk)0
t; g0

t) + � (Auk; Ag) + (� +2� )(A � uk; A � g)) dxdt

=
Z

X
u1;k(vk; g)dx +

Z

CT

f k(t)(vk; g) dxdt

for all g 2 H 1(CT ; F i) satisfying (3.5). It is sufficient to establish the above identity
only for functions g 2 C1(CT ; F i) satisfying (3.5).

By (4.5) and integration by parts,
Z

CT

((uk)0
t; g0

t) dxdt =
Z

X

�

vk;
Z T

0
w0

k(t)g0
tdt

�

x
dx

=
Z

X

�

vk; � u1;kg(x; 0) �
Z T

0
w00

k (t)gdt
�

x
dx
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with C a constant independent of u0, u1 and f .

Proof. From the formula for wk it follows that

jwk(t)j � j u0;k j +
1

p

j� k j
ju1;k j +

1
p

j� k j

Z T

0
jf k(t0)j dt0

for all t 2 [0; T ] and k = 1; 2; : : :. Hence,

jwk(t)j2 � 3 ju0;kj2 +
3

j� k j
ju1;kj2 +

3
j� k j

�

Z T

0
jf k(t0)j dt0

�2

� c(T )
�

ju0;kj2 + j� k j � 1 ju1;kj2 + j� k j � 1
Z T

0
jf k(t0)j2 dt0

�

:

(4.10)

Furthermore, since

jw0
k(t)j �

p

j� k j ju0;kj + ju1;k j +
Z T

0
jf k(t0)j dt0

for all t 2 [0; T ], we get

jw0
k(t)j2 � c(T )

�

j� k j ju0;kj2 + ju1;kj2 +
Z T

0
jf k(t0)j2 dt0

�

: (4.11)

Since the function u0 belongs to
�
H 1(X ; F i), its Fourier series over the orthonor-

mal system (vk)k=1;2;::: converges to u0 actually in the H 1(X ; F i) -norm, see The-
orem 3 in [Mik76, p. 181] and elsewhere. Moreover, there is a constant c > 0 with
the property that

1
X

k=1

j� k j ju0;kj2 � cku0k2
H1(X ;F i) (4.12)

for all u0 2
�
H 1(X ; F i).

Consider the partial sum sN (x; t ) of Fourier series (4.8). Since both wk and w0
k

are continuous on [0; T ], for each fixed t 2 [0; T ], the function sN and its derivative
in t belong to

�
H 1(X ; F i):

To study the values of t 7! sN (�; t) in
�
H 1(X ; F i), it is convenient to endow this

space with the so-called Dirichlet scalar product

D (v; g) =
Z

X

�

� (Av; Ag)x + (� +2� )(A � v; A � g)x

�

dx

and the Dirichlet norm D (v) :=
p

D (v; v). The system
� vkp

� κk

�

k=1;2;:::
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for all t 2 [0; T ].

Proof. The proof of this theorem runs similarly to the proof of Theorem 3 of [Mik76,
p. 305], if one exploits the techniques developed earlier in Sections 3 and 4. �

By (6.3), if 1 � M < N , then

sup
t2 [0;T ]










N
X

k=M+1

w(j)
k (t)vk










2

Hs� j(X ;F i)
! 0

as M ! 1 . Hence, the partial sums of series (4.8) converge in H s(CT ; F i) and
from (6.3) it follows that

kukHs(CT ;F i) � c0�

ku0kHs(X ;F i) + ku1kHs� 1(X ;F i) + kf kHs� 1(CT ;F i)
�

: (6.4)

Corollary 6.2. Under the above hypotheses, the weak solution of the first mixed
problem for the generalised Lamé system belongs to H s(CT ; F i). Moreover, series
(4.8) converges to the weak solution in the H s(CT ; F i) -norm and inequality (6.4)
holds true.

From Corollary 6.2 with s = 2 it follows that the weak solution of the first
mixed problem belongs to H 2(CT ; F i), and so it is a solution almost everywhere. If
moreover s > n=2 + 2, then the weak solution u belongs to the space C2(CT ; F i),
which is due to the Sobolev embedding theorem, and so u is a classical solution of
the problem.

Note that along with the smoothness of u0, u1 and f Theorem 6.1 assumes
that u0 satisfies (6.1), u1 satisfies (6.1) with s replaced by s � 1, and f satisfies
(6.2). The conditions are actually necessary. To show this, suppose s � 2. Since
u0(x) = u(x; 0) is represented by series (4.8) which converges in H s(X ; F i), and
u1(x) = u0

t(x; 0) is represented by series (4.8) which is differentiated termwise in t
and converges in H s� 1(X ; F i), we conclude readily that u0 satisfies (6.1) and u1
satisfies (6.1) with s replaced by s� 1. Furthermore, since series (4.8) converges to u
in H s(CT ; F i), the series obtained from (4.8) by termwise applying the operators L
and the second derivative in t converge in H s� 2(CT ; F i) to Lu and u00

tt, respectively.
Hence, if s � 3, then f = u00

tt � Lu satisfies equalities (6.2) with s replaced by s � 1.
In case s is even, the last condition of (6.2) is superfluous indeed, see Corollary 2
in [Mik76, p. 311].

However, if one wants to prove the smoothness of the weak solution of the first
mixed problem rather than the convergence of the Fourier series in the correspond-
ing spaces, then conditions (6.1) and (6.2) can be essentially relaxed, see Theorem
3’ in [Mik76, p. 323].

7. Reduction to Schrödinger equation

There is a Lie algebraic connection between the wave equation and the Schrödin-
ger equation. This allows us to construct solutions of hyperbolic equations from
solutions of Schrödinger equation.

By the above, the unbounded operator � L in L 2(X ; F i), whose domain is the
set of all sections v 2 H 2(X ; F i) vanishing at @X , is closed, selfadjoint and positive,
i.e. we have � L � cI where c is a positive constant. Denote by

p
� L the square

root of � L and impose upon the domain Dp
� L of this operator a Hilbert space
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structure by identifying it with the range of
p

� L , i.e. the norm in Dp
� L just

amounts to
D(v) = k

p
� Lv kL 2 (X ;F i ) :

We now split the solution of the �rst mixed problem (3.1) and (3.2), (3.3 ) (with
ul = 0) into two parts. To wit, we are looking for two di�erentiable funct ions
F; U : [0; T ] ! L 2(X ; F i ) with values in Dp

� 1 (i.e. curves in L 2(X ; F i )), which
satisfy

F 0
t = � {

p
� L F + f; for t 2 (0; T);

F (0) = u1 � {
p

� L u 0;
(7.1)

and
U0

t = {
p

� L U + F; for t 2 (0; T);
U(0) = u0:

(7.2)

If U : [0; T ] ! L 2(X ; F i ) is twice di�erentiable in t 2 (0; 1), then combining (7.1)
and (7.2) yields

U00
tt = {

p
� L U 0

t + F 0
t

= {
p

� L
�

{
p

� L U + F
�

� {
p

� L F + f

= LU + f

in (0; T) and
U(0) = u0;
U0(0) = {

p
� L u 0 + F (0) = u1:

It follows that u = U is a solution of the �rst mixed problem for the generalised
Lam�e system in CT .

It is worth pointing out that � {
p

� L are skew-symmetric operators inL 2(X ; F i ).
For direct constructions along more classical lines we refer the reader to [Fri54],
[Fri58], [FL65], [Agr69].
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