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THE FIRST MIXED PROBLEM FOR

THE NONSTATIONARY LAMÉ SYSTEM

O. I. MAKHMUDOV AND N. TARKHANOV

Abstract. We find an adequate interpretation of the Lamé operator within
the framework of elliptic complexes and study the first mixed problem for the
nonstationary Lamé system.
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1. Introduction

In his work on a systematic dynamical theory of elasticity Gabriel Lamé in mid
1881 derived from Newtonian mechanics his basic equations which are also the
conditions for equilibrium. From those he went on to derive what are now known
as Lamé equations in elastodynamics

ρu′′
tt = −µ∆u+ (λ+ µ)∇ div u+ f, (1.1)

where u : X ×(0, T ) → R
3 is a search-for displacement vector, ρ is the mass density,

λ and µ are physical characteristics of the body under consideration called Lamé
constants, ∆u = −u′′

x1x1
−u′′

x2x2
−u′′

x3x3
is the nonnegative Laplace operator in R3,

and f is the density vector of outer forces, see [ES75], [KGBB76], [LL70], [TS82],
and elsewhere.

Here, X stands for a bounded domain in R3 whose boundary is assumed to
be smooth enough. Hence, to specify a particular solution of Lamé equations, we
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2 O. I. MAKHMUDOV AND N. TARKHANOV

consider the first mixed problem for (1.1) in the cylinder X × (O, T ) by posing the
initial conditions

u(x, 0) = u0(x), for x ∈ X ,
u′
t(x, 0) = u1(x), for x ∈ X ,

(1.2)

on the lower basis of the cylinder and a Dirichlet condition

u(x, t) = ul(x, t), for (x, t) ∈ ∂X × (0, T ), (1.3)

on the lateral surface.
When working in adequate function spaces surviving under restriction to the

lateral boundary, one can assume without loss of generality that ul ≡ 0, for if not,
one first solves the Dirichlet problem with data on ∂X × [0, T ] in the class of smooth
functions.

To a certain extent the theory of mixed problems for hyperbolic partial dif-
ferential equations with variable coefficients is a completion of the classical area
studying the Cauchy problem and mixed problem for the wave equation. The fun-
damental idea of J. Leray in the early 1950s is that the energy form corresponding
to a hyperbolic operator with simple real characteristics is an elliptic form with
parameter, which allows one to obtain estimates in the case of variable coefficients.
For a recent account of the theory we refer the reader to Chapter 3 in [GV96]. The
energy method for hyperbolic equations takes a considerable part in [GV96]. This
method automatically extends to 2b -parabolic differential equations with variable
coefficients. Within the framework of energy method the theories of hyperbolic and
parabolic equations can be combined into one theory of operators with dominating
principal quasihomogeneous part.

In this paper we apply the theory to the first mixed problem for a generalised
Lamé system. While the classical Lamé operator of (1.1) stems from dynamical
theory of elasticity, the generalised Lamé system is well motivated by its origin in
homological algebra.

2. Generalised Lamé system

The Lamé equations are easily specified within the framework of elliptic com-
plexes on the underlying manifold X . On introducing the de Rham complex of
X

0 −→ Ω0(X )
d−→ Ω1(X )

d−→ Ω2(X )
d−→ Ω3(X ) −→ 0

we can rewrite system (1.1) in the invariant form

ρu′′
tt = −µ∆u− (λ+ µ) dd∗ u+ f (2.1)

in the semicylinder X × [0,∞), where ∆ = d∗d + dd∗ is the Laplacian of the de
Rham complex.

Example 2.1. When restricted to functions, i.e., differential forms of degree i = 0,
equation (2.1) reads

ρu′′
tt = −µ∆u+ f,

which is precisely the wave equation in the cylinder X × (0, T ).

More generally, let X be a C∞ compact manifold with boundary of dimension n.
Consider a complex of first order differential operators acting in sections of vector
bundles over X ,

0 → C∞(X , F 0)
A0

→ C∞(X , F 1)
A1

→ . . .
AN−1

→ C∞(X , FN ) → 0, (2.2)
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where Ai ∈ Diff1(X ;F i, F i−1) satisfy Ai+1Ai = 0 for all i = 0, 1, . . . , N − 2.
Our basic assumption is that (2.2) is elliptic, i.e., the corresponding complex of
principal symbols is exact away from the zero section of the cotangent bundle
T ∗X , see [Tar95, 1.1.12]. We endow the manifold X and the vector bundles F i by
Riemannian metrics.

Set

F =

N
⊕

i=0

F i

and consider two first order differential operators A and A∗ in C∞(X , F ) given by
the ((N+1)× (N+1)) -matrices

A =

















0 0 0 . . . 0 0
A0 0 0 . . . 0 0
0 A1 0 . . . 0 0

. . .
0 0 0 . . . 0 0
0 0 0 . . . AN−1 0

















, A∗ =

















0 A0∗ 0 . . . 0 0
0 0 A1∗ . . . 0 0
0 0 0 . . . 0 0

. . .
0 0 0 . . . 0 AN−1∗

0 0 0 . . . 0 0

















,

where Ai ∈ Diff1(X ;F i+1, F i) stands for the formal adjoint of Ai. It is easily
verified that A ◦A = 0 and A∗ ◦A∗ = 0 and

∆ := A∗A+AA∗ =









∆0 0 . . . 0
0 ∆1 . . . 0

. . .
0 0 . . . ∆N









, (2.3)

where ∆i = Ai∗Ai + Ai−1Ai−1∗ for i = 0, 1, . . . , N are the so-called Laplacians of
complex (2.2). The ellipticity of complex (2.2) just amounts to that of its Laplacians
∆0,∆1, . . . ,∆N .

Lemma 2.2. Let r, s be real or complex numbers. Then rA + sA∗ ∈ Diff1(X ;F )
is elliptic if and only if rs 6= 0.

Proof. Necessity. If at least one of the scalars r and s vanishes then the operator
rA+sA∗ reduces to a scalar multiple of A or A∗, which operators can not be elliptic
because of their nilpotency.

Sufficiency. If both r and s are different from zero then a trivial verification
gives

(s−1A+ r−1A∗)(rA + sA∗) = AA∗ +A∗A,
(rA + sA∗)(s−1A+ r−1A∗) = AA∗ +A∗A,

showing the ellipticity of rA+ sA∗. �

By generalised Lamé operators related to complex (2.2) are meant the products
of two operators of the form rA+ sA∗, where rs 6= 0. These are precisely operators
L ∈ Diff2(X ;F ) of the form L = rA∗A + sAA∗, where rs 6= 0. They are elliptic
and preserve the grading of complex (2.2) in the sense that if u is a section of F i,
then so is Lu.

Consider the Dirichlet problem for the elliptic operator ∆2 = (A∗A)2 + (AA∗)2

on X with data
u = 0 at ∂X ,

(A+A∗)u = 0 at ∂X .
(2.4)
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This boundary value problem is elliptic and formally selfadjoint. As usual, it can
be treated within the framework of densely defined unbounded operators in the
Hilbert space L2(X , F ), cf. [ST03]. In particular, there is a bounded operator
G : L2(X , F ) → H4(X , F ) called the Green operator, such that u = Gf satisfies
(2.4) and

f = Hf +∆2(Gf) (2.5)

for all f ∈ L2(X , F ), where H is the orthogonal projection of L2(X , F ) onto the
finite-dimensional subspace of L2(X , F ) consisting of all h ∈ C∞(X , F ) which sat-
isfy (A+A∗)h = 0 in X and h = 0 at ∂X . The Green operator G is actually known
to be a pseudodifferential operator of order −4 in Boutet de Monvel’s algebra on
X .

If A+A∗ has the uniqueness property for the global Cauchy problem on X then
H = 0.

Lemma 2.3. Suppose that L = rA∗A + sAA∗ is a Lamé operator on X ′, where
rs 6= 0. Then P = (∆2/L)G, with ∆2/L = r−1A∗A+ s−1AA∗, is a parametrix of
L.

Proof. By the above, we get

LP = L(∆2/L)G

= ∆2G

= I −H

where H ∈ Ψ−∞(X ;F ). Hence, P is a left parametrix of L. Since L is elliptic, P
is also a right parametrix of L in the interior of X . �

Write

L = r∆ + (s− r)AA∗

= −µ∆− (λ + µ)AA∗,

where r = −µ and s = −λ − 2µ. Then for the ellipticity of L it is necessary and
sufficient that µ 6= 0 and λ+ 2µ 6= 0.

3. Wave equation

In the open cylinder CT =
◦
X × (0, T ) for some T > 0 we consider the hyperbolic

system

ρu′′
tt = −µ∆u− (λ+ µ)AA∗u+ f (3.1)

for a section u of the bundle (x, t) 7→ F i
x over X × [0, T ], which we write F i for

short, cf. Fig. 1. Assume ρ = 1 and µ > 0.

0
�

�	xn−1

-xn

6
t

T

HH

HH

Fig. 1. A cylinder CT
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A function u ∈ C2(CT , F i) ∩ C1(X × [0, 1), F i) satisfying equation (3.1) in CT ,
the initial conditions

u(x, 0) = u0(x), for x ∈
◦
X ,

u′
t(x, 0) = u1(x), for x ∈

◦
X ,

(3.2)

on the lower basis of the cylinder and a Dirichlet condition

u(x, t) = ul(x, t), for (x, t) ∈ ∂X × (0, T ), (3.3)

on the lateral surface is said to be a classical solution of the first mixed problem
for the generalised Lamé equation. Since the case of inhomogeneous boundary
conditions reduces easily to the case of homogeneous ones, we will assume ul ≡ 0
in the sequel.

Let u be a classical solution of the first mixed problem for the generalised Lamé
equation with f ∈ L2(CT , F i). Given any ε > 0, we multiply both sides of (3.1)
with g∗, where g is an arbitrary smooth function in the closure of CT−ε vanishing at
the lateral surface and the head of this cylinder, and integrate the resulting equality
over CT−ε. We will write the inner product of the values of f and g at any point
(x, t) ∈ CT−ε simply (f, g) when no confusion can arise. Using the Stokes theorem,
we get

∫

CT−ε

(f, g) dxdt =

∫

CT−ε

(u′′
tt + µ∆u+ (λ+µ)AA∗u, g) dxdt

= −
∫

X
(u1, g)dx+

∫

CT−ε

(−(u′
t, g

′
t) + µ(Au,Ag) + (λ+2µ)(A∗u,A∗g)) dxdt.

We exploit this identity to introduce the concept of weak solution of the first
mixed problem for the generalised Lamé system. We assume that f ∈ L2(CT , F i)
and u1 ∈ L2(X , F i).

A function u ∈ H1(CT , F i) is called a weak solution of the first mixed problem
for (3.1) in CT , if u satisfies

u(x, 0) = u0(x), for x ∈
◦
X ,

u(x, t) = 0, for (x, t) ∈ ∂X × (0, T ),

and
∫

CT

(−(u′
t, g

′
t) + µ(Au,Ag) + (λ+2µ)(A∗u,A∗g)) dxdt =

∫

X
(u1, g)dx+

∫

CT

(f, g) dxdt

(3.4)
for all g ∈ H1(CT , F i), such that

g(x, T ) = 0, for x ∈
◦
X ,

g(x, t) = 0, for (x, t) ∈ ∂X × (0, T ).
(3.5)

Just as classical solution, if u is a weak solution of the first mixed problem for
the generalised Lamé system in CT , then u is a weak solution of the corresponding
problem also in the cylinder CT ′ with any T ′ < T . Indeed, u belongs to H1(CT ′ , F i)
for all T ′ < T and it vanishes on the lateral boundary of CT ′ . Moreover, the identity
(3.4) is fulfilled for all g ∈ H1(CT , F i) with property (3.5). It is immediately verified
that if a function g belongs to H1(CT ′ , F i), the trace of g at the cross-section
{t = T ′} is zero and g = 0 in CT \ CT ′ , then g ∈ H1(CT ) and g(x, T ) = 0 for all
x in the interior of X . If moreover g = 0 at ∂X × (0, T ′), then g vanishes at the
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lateral boundary of CT . Hence it follows that the function u satisfies the integral
identity by means of which one defines the weak solution of the corresponding mixed
problem in CT ′ .

Note that we introduced the concept of weak solution of the first mixed problem
as natural generalisation of the concept of classical solution (with f ∈ L2(CT , F i)).
We have actually proved that the classical solution of the first mixed problem in
CT with f ∈ L2(CT , F i) is a weak solution of this problem in the smaller cylinder
CT−ε for any ε ∈ (0, T ).

Along with classical and weak solutions of the first mixed problem one can in-
troduce the notion of ‘almost everywhere’ solution. A function u is said to be an
‘almost everywhere’ solution of the first mixed problem if u ∈ H2(CT , F i) satisfies
equation (3.1) for almost all (x, t) ∈ CT , initial conditions (3.2) for almost all x in
the interior of X and the trace of u on the lateral surface vanishes almost every-
where. From the definition it follows immediately that if the classical solution of
the first mixed problem belongs to H2(CT , F i) then it is also an ‘almost everywhere’
solution. Moreover, if an ‘almost everywhere’ solution u of the first mixed problem
belongs to the class C2(CT , F i) ∩ C1(X × [0, 1), F i) then u is obviously a classical
solution, too.

Every ‘almost everywhere’ solution of the first mixed problem in CT is a weak
solution of this problem in CT . The converse assertion is also true.

Lemma 3.1. If a weak solution of the first mixed problem belongs to the space
H2(CT , F i) then it is an ‘almost everywhere’ solution of this problem. If a weak
solution of the first mixed problem belongs to C2(CT , F i) ∩ C1(X × [0, 1), F i) then
it is a classical solution of this problem.

Proof. This is a standard fact on functions with generalised derivatives, cf. Lemma 1
in [Mik76, p. 287]. �

We are now in a position to prove a uniqueness theorem for the weak solution
of the first mixed problem.

Theorem 3.2. Suppose µ ≥ 0 and λ + 2µ ≥ 0. Then the first mixed problem for
the generalised Lamé system has at most one weak solution.

Proof. Let u ∈ H1(CT , F i) be a weak solution of the first mixed problem with f = 0
in CT and u0 = u1 = 0 in the interior of X .

Pick an arbitrary s ∈ (0, T ) and consider the function

g(x, t) =







∫ s

t

u(x, θ)dθ, if 0 < t < s,

0, if s < t < T,

defined in CT . It is immediately verified that the function g has generalised deriva-
tives

g′xj(x, t) =







∫ s

t

u′
xj (x, θ)dθ, if 0 < t < s,

0, if s < t < T,

and

g′t(x, t) =

{

−u(x, t), if 0 < t < s,
0, if s < t < T,

in CT . Therefore, we get g ∈ H1(CT ). Moreover, g vanishes at the lateral boundary
and the head of the cylinder CT .
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Substituting the function g into identity (3.4) yields

∫

Cs

(

(u′
t, u) + µ(Au,

∫ s

t

Au(·, θ)dθ) + (λ+2µ)(A∗u,

∫ s

t

A∗u(·, θ)dθ)
)

dxdt = 0

for all s ∈ (0, T ). It is obvious that

ℜ
∫

Cs

(u′
t, u) dxdt =

1

2

∫

X
|u(x, s)|2dx.

Since
∫

Cs

(Au(x, t),

∫ s

t

Au(x, θ)dθ) dxdt =

∫

X

∫ s

0

(Au(x, t),

∫ s

t

Au(x, θ)dθ) dxdt

=

∫

X

∫ s

0

(

∫ θ

0

Au(x, t)dt, Au(x, θ)) dxdθ

which transforms to
∫

X
(

∫ s

0

Au(x, t)dt,

∫ s

0

Au(x, θ)dθ) dx −
∫

X

∫ s

0

(

∫ s

θ

Au(x, t)dt, Au(x, θ)) dxdθ

=

∫

X
|
∫ s

0

Au(x, t)dt|2 dx−
∫

Cs

(

∫ s

θ

Au(x, t)dt, Au(x, θ)) dxdθ,

we get

ℜ
∫

Cs

(Au(x, t),

∫ s

t

Au(x, θ)dθ) dxdt =
1

2

∫

X
|
∫ s

0

Au(x, t)dt|2 dx.

Similarly we obtain

ℜ
∫

Cs

(A∗u(x, t),

∫ s

t

A∗u(x, θ)dθ) dxdt =
1

2

∫

X
|
∫ s

0

A∗u(x, t)dt|2 dx

whence
∫

X
|u(x, s)|2dx+ µ

∫

X
|
∫ s

0

Au(x, t)dt|2 dx+ (λ+2µ)

∫

X
|
∫ s

0

A∗u(x, t)dt|2 dx = 0

(3.6)
for all s ∈ (0, T ).

Since µ ≥ 0 and µ+ 2λ ≥ 0, we conclude from (3.6) that
∫

X
|u(x, s)|2dx = 0

for all s ∈ (0, T ), and so u = 0 in CT , as desired. �

As mentioned, a classical solution of the first mixed problem is also a weak
solution of this problem in CT−ε for each ε ∈ (0, T ). Hence, Theorem 3.2 implies
the uniqueness of classical solution as well. Furthermore, since almost everywhere
solutions are weak solutions, we also deduce that, if µ ≥ 0 and µ + 2λ ≥ 0, then
the first mixed problem for the generalised Lamé system has at most one almost
everywhere solution.
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4. Existence of a weak solution

We now turn to showing the existence of solutions of the first mixed problem
for the generalised Lamé system. To this end we use the Fourier method which
consists in looking the solution of the mixed problem in the form of series over
eigenfunctions of the corresponding elliptic boundary value problem.

Let v be a weak eigenfunction of the first boundary value problem for the gen-
eralised Lamé system

−µ∆v − (λ+µ)AA∗v = κv in
◦
X ,

v = 0 at ∂X ,
(4.1)

where κ is a corresponding eigenvalue. This just amounts to saying that
∫

X
(−µ(Av,Ag)x − (λ+2µ)(A∗v,A∗g)x) dx− κ

∫

X
(v, g)xdx = 0 (4.2)

for all g ∈
◦
H1(X , F i).

Consider the orthonormal system (vk)k=1,2,... in L2(X , F i) consisting of all weak

eigenfunction of problem (4.1). Let (κk)k=1,2,... be the sequence of corresponding
eigenvalues. As usual we think of this sequence as nonincreasing sequence with
κ1 < 0 and each eigenvalue repeats himself in accord with his multiplicity. The
system (vk)k=1,2,... is known to be an orthonormal basis in L2(X , F i) and ϑk → −∞
when k → ∞. Moreover, the first eigenvalue κ1 is strongly negative, if µ > 0 and
λ+ 2µ > 0.

Suppose that the initial data u0 and u1 in (3.2) belong to L2(X , F i), and f
belongs to L2(CT , F i). By the Fubini theorem, f(·, t) ∈ L2(X , F i) holds for almost
all t ∈ (0, T ). We represent the functions u0 and u1 and the function f(·, t) for
almost all t ∈ (0, T ) as Fourier series over the system (vk)k=1,2,... of eigenfunction

of problem (4.1). To wit,

u0(x) =

∞
∑

k=1

u0,kvk(x), u1(x) =

∞
∑

k=1

u1,kvk(x),

where u0,k = (u0, vk)L2(X ,F i) and u1,k = (u1, vk)L2(X ,F i) for k = 1, 2, . . .. By the
Parseval equality, we get

∞
∑

k=1

|u0,k|2 = ‖u0‖2L2(X ,F i),

∞
∑

k=1

|u1,k|2 = ‖u1‖2L2(X ,F i).

(4.3)

Similarly we get

f(x, t) =

∞
∑

k=1

fk(t)vk(x),

where fk(t) =

∫

X
(f(·, t), vk)xdx for k = 1, 2, . . .. Since

|fk(t)|2 ≤
∫

X
|f(·, t)|2dx

∫

X
|vk|2dx =

∫

X
|f(·, t)|2dx,
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it follows that fk ∈ L2(0, T ) for all k = 1, 2, . . .. Moreover,

∞
∑

k=1

|fk(t)|2 =

∫

X
|f(·, t)|2dx

holds for almost all t ∈ (0, T ), which is due to the Parseval equality. This yields
readily

∞
∑

k=1

∫ T

0

|fk(t)|2dt =
∫

CT

|f(x, t)|2dxdt. (4.4)

Take first the k th harmonics u0,kvk and u1,kvk as initial data in (3.2), and
the function fk(t)vk(x) as function in the right-hand of (3.1), where k = 1, 2, . . ..
Consider the function

uk(x, t) = wk(t)vk(x), (4.5)

where

wk(t) = u0,k cos
√
−κkt+ u1,k

sin
√−κkt√−κk

+

∫ t

0

fk(t
′)
sin

√−κk(t− t′)√−κk

dt′.

Note that this formula still makes sense if κk = 0, for the limit of the right-hand
side exists as κk → 0. The function wk belongs obviously to H2(0, T ), satisfies the
initial conditions wk(0) = u0,k and w′

k(0) = u1,k and is a solution of the ordinary
differential equation

w′′
k − κkwk = fk (4.6)

for almost all t ∈ (0, T ).
Our next objective is to show that if vk is an eigenfunction of problem (4.1)

corresponding to the eigenvalue κk then uk(x, t) is a weak solution of the first
mixed problem for the equation

u′′
tt(x, t) = −µ∆u(x, t)− (λ+ µ)AA∗u(x, t) + fk(t)vk(x)

in CT with initial data

u(x, 0) = u0,kvk(x), for x ∈
◦
X ,

u′
t(x, 0) = u1,kvk(x), for x ∈

◦
X .

Indeed, the function uk given by (4.5) belongs to H1(CT , F i), satisfies the initial
conditions and vanishes at the lateral boundary of the cylinder. It remains to show
that

∫

CT

(−((uk)
′
t, g

′
t) + µ(Auk, Ag) + (λ+2µ)(A∗uk, A

∗g)) dxdt

=

∫

X
u1,k(vk, g)dx+

∫

CT

fk(t)(vk, g) dxdt

for all g ∈ H1(CT , F i) satisfying (3.5). It is sufficient to establish the above identity
only for functions g ∈ C1(CT , F

i) satisfying (3.5).
By (4.5) and integration by parts,

∫

CT

((uk)
′
t, g

′
t) dxdt =

∫

X

(

vk,

∫ T

0

w′
k(t)g

′
tdt

)

x
dx

=

∫

X

(

vk,−u1,kg(x, 0)−
∫ T

0

w′′
k (t)gdt

)

x
dx
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which reduces, by (4.6), to

−
∫

X
u1,k(vk, g(x, 0))x dx− κk

∫

CT

(uk, g) dxdt−
∫

CT

fk(t)(vk, g) dxdt.

Hence, the desired identity follows from (4.2), for
∫

CT

(µ(Auk, Ag) + (λ+2µ)(A∗uk, A
∗g)) dxdt

=

∫ T

0

wk(t)
(

∫

X
(µ(Avk, Ag)x + (λ+2µ)(A∗vk, A

∗g)x) dx
)

dt

= −
∫ T

0

wk(t)
(

κk

∫

X
(vk, g)xdx

)

dt,

as desired.
If one takes the partial sums

N
∑

k=1

u0,kvk(x),

N
∑

k=1

u1,kvk(x)

of the Fourier series for the functions u0 and u1, respectively, as initial data and
the partial sum

N
∑

k=1

fk(t)vk(x)

of the Fourier series for f as the right-hand side of the equation, then the weak
solution of the first mixed problem is

sN (x, t) =

N
∑

k=1

uk(x, t) =

N
∑

k=1

wk(t)vk(x).

In particular, the function sN satisfies the identity
∫

CT

(−((sN )′t, g
′
t) + µ(AsN , Ag) + (λ+2µ)(A∗sN , A∗g)) dxdt

=

∫

X

(

N
∑

k=1

u1,kvk, g
)

dx+

∫

CT

(

N
∑

k=1

fk(t)vk, g
)

dxdt

(4.7)

for all g ∈ H1(CT , F i) satisfying (3.5).
Thus it is to be expected that under certain assumptions on u0, u1 and f the

solution of the first mixed problem for the generalised Lamé system can be repre-
sented as series

u(x, t) =
∞
∑

k=0

wk(t)vk(x), (4.8)

where (vk)k=1,2,... are weak eigenfunctions of problem (4.1).

Theorem 4.1. Let u0 ∈
◦
H1(X , F i), u1 ∈ L2(X , F i) and f ∈ L2(CT , F i). Then the

first mixed problem possesses a weak solution given by series (4.8) which converges
in H1(CT , F i). Moreover,

‖u‖H1(CT ,F i) ≤ C
(

‖f‖L2(CT ,F i) + ‖u0‖H1(X ,F i) + ‖u1‖L2(X ,F i)

)

(4.9)
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with C a constant independent of u0, u1 and f .

Proof. From the formula for wk it follows that

|wk(t)| ≤ |u0,k|+
1

√

|λk|
|u1,k|+

1
√

|λk|

∫ T

0

|fk(t′)| dt′

for all t ∈ [0, T ] and k = 1, 2, . . .. Hence,

|wk(t)|2 ≤ 3 |u0,k|2 +
3

|λk|
|u1,k|2 +

3

|λk|
(

∫ T

0

|fk(t′)| dt′
)2

≤ c(T )
(

|u0,k|2 + |λk|−1 |u1,k|2 + |λk|−1

∫ T

0

|fk(t′)|2 dt′
)

.

(4.10)

Furthermore, since

|w′
k(t)| ≤

√

|λk| |u0,k|+ |u1,k|+
∫ T

0

|fk(t′)| dt′

for all t ∈ [0, T ], we get

|w′
k(t)|2 ≤ c(T )

(

|λk| |u0,k|2 + |u1,k|2 +
∫ T

0

|fk(t′)|2 dt′
)

. (4.11)

Since the function u0 belongs to
◦
H1(X , F i), its Fourier series over the orthonor-

mal system (vk)k=1,2,... converges to u0 actually in the H1(X , F i) -norm, see The-

orem 3 in [Mik76, p. 181] and elsewhere. Moreover, there is a constant c > 0 with
the property that

∞
∑

k=1

|λk| |u0,k|2 ≤ c ‖u0‖2H1(X ,F i) (4.12)

for all u0 ∈
◦
H1(X , F i).

Consider the partial sum sN (x, t) of Fourier series (4.8). Since both wk and w′
k

are continuous on [0, T ], for each fixed t ∈ [0, T ], the function sN and its derivative
in t belong to

◦
H1(X , F i).

To study the values of t 7→ sN (·, t) in
◦
H1(X , F i), it is convenient to endow this

space with the so-called Dirichlet scalar product

D(v, g) =

∫

X

(

µ(Av,Ag)x + (λ+2µ)(A∗v,A∗g)x

)

dx

and the Dirichlet norm D(v) :=
√

D(v, v). The system

( vk√−κk

)

k=1,2,...



12 O. I. MAKHMUDOV AND N. TARKHANOV

is obviously orthonormal with respect to the Dirichlet scalar product. By (4.10), if
1 ≤ M < N , then

D(sN (·, t)− sM (·, t))2 = D
(

N
∑

k=M+1

wk(t)vk

)2

=
N
∑

k=M+1

|wk(t)|2 |λk|

≤ c(T )
N
∑

k=M+1

(

|λk| |u0,k|2 + |u1,k|2 +
∫ T

0

|fk(t′)|2 dt′
)

for all t ∈ [0, T ]. Similarly, using (4.11), we get

‖(sN)′t(·, t)− (sM )′t(·, t)‖2L2(X ,F i)

= ‖
N
∑

k=M+1

w′
k(t)vk‖2L2(X ,F i)

=

N
∑

k=M+1

|w′
k(t)|2

≤ c(T )
N
∑

k=M+1

(

|λk| |u0,k|2 + |u1,k|2 +
∫ T

0

|fk(t′)|2 dt′
)

for t ∈ [0, T ]. Here, c(T ) stands for a constant which depends on T but not on M
and N , and which can be different in diverse applications.

On integrating these two inequalities in t ∈ [0, T ] and summing up them we
obtain immediately

‖sN − sM‖2H1(CT ,F i) ≤ c(T )

N
∑

k=M+1

(

|λk| |u0,k|2 + |u1,k|2 +
∫ T

0

|fk(t′)|2 dt′
)

(4.13)

for all 1 ≤ M < N . Combining (4.13) with (4.3), (4.4) and (4.12) we conclude that
(sN )N=1,2,... is a Cauchy sequence in H1(CT , F i). Therefore, series (4.8) converges

in this space and to a function u(x, t) in H1(CT , F i). Obviously, u satisfies the
initial conditions (3.2) and vanishes at the lateral boundary of CT . Letting N → ∞
in (4.7) we deduce that u is a weak solution of the first mixed problem for the
generalised Lamé system.

In much the same way we derive inequalities

D(sN (·, t))2 = D
(

N
∑

k=1

wk(t)vk

)2

=
N
∑

k=1

|wk(t)|2 |λk|

≤ c(T )

N
∑

k=1

(

|λk| |u0,k|2 + |u1,k|2 +
∫ T

0

|fk(t′)|2 dt′
)
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and

‖(sN)′t(·, t)‖2L2(X ,F i) = ‖
N
∑

k=1

w′
k(t)vk‖2L2(X ,F i)

=

N
∑

k=1

|w′
k(t)|2

≤ c(T )

N
∑

k=1

(

|λk| |u0,k|2 + |u1,k|2 +
∫ T

0

|fk(t′)|2 dt′
)

for all t ∈ [0, T ] and N ≥ 1. Integrating these inequalities in t ∈ [0, T ], summing up
them and using (4.3), (4.4) and (4.12) we establish estimate (4.9), thus completing
the proof. �

5. Galerkin method

There are also other proofs of the existence of weak solutions to mixed prob-
lems which do not exploit eigenfunctions. In this section we present the so-called
Galerkin method which allows one to also construct an approximate solution of the
mixed problem. In contrast to the Fourier method, the Galerkin method applies
also in the case where the coefficients of A depend not only on the space variables
but also on the time t.

As before, we assume u0 ∈
◦
H1(X , F i), u1 ∈ L2(X , F i) and f ∈ L2(CT ). Pick

an arbitrary system (vk)k=1,2,... in C2(X , F i) which satisfies vk = 0 at ∂X and is
complete in

◦
H1(X , F i).

Given any integer N ≥ 1, we solve problem (3.1), (3.2) and (3.3) with ul = 0 in
the finite-dimensional subspace VN of L2(X , F i) spanned by functions v1, . . . , vN .
More precisely, we look for a function uN in H2(CT , F i), such that uN (·, t) belongs
to the subspace VN for any fixed t ∈ [0, T ], uN satisfies conditions (3.2) with initial
data

u0,N(x) =
N
∑

k=1

u0,kvk(x),

u1,N(x) =
N
∑

k=1

u1,kvk(x)

being orthogonal projections of u0 and u1 onto VN , respectively, and the orthogonal
projections of (uN )′′tt + µ∆uN + (λ+µ)AA∗uN and f onto VN coincide for almost
all t ∈ [0, T ]. (Note that the orthogonality refers here to the inner product of
L2(X , F i).)

We thus search for functions w1(t), . . . , wN (t) inH2(0, T ) satisfying wk(0) = u0,k

and w′
k(0) = u1,k for all k = 1, . . . , N , and such that

uN(x, t) =
N
∑

k=1

wk(t)vk(x)

fulfills
∫

X
((uN )′′tt + µ∆uN + (λ+µ)AA∗uN , vk)x dx =

∫

X
(f, vk)x dx (5.1)
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for almost all t ∈ [0, T ] (for which f(·, t) ∈ L2(X , F i)), where k = 1, . . . , N . The
Galerkin method consists in approximating the solution u of mixed problem (3.1),
(3.2) and (3.3) with ul = 0 by solutions uN of the projected problems. To sub-
stantiate this method one ought to show that each projected problem has a unique
solution uN and the sequence (uN)N=1,2,... converges in some sense (weakly in

H1(CT , F i)) to u.
For simplicity, we restrict ourselves to the case of homogeneous initial conditions

u0 = 0 and u1 = 0. Then the coefficients u0,k and u1,k vanish and we are lead to
the system

wk(0) = 0,
w′

k(0) = 0
(5.2)

for all k = 1, . . . , N .
Equations (5.1) constitute a system of second order linear ordinary differential

equations with constant coefficients for unknown functions w1(t), . . . , wN (t). To
wit,

N
∑

j=1

(

w′′
j (t) (vj , vk)L2(X ,F i) + wj(t)D(vj , vk)

)

= fk(t) (5.3)

for k = 1, . . . , N , where

fk(t) =

∫

X
(f(·, t), vk)xdx

belongs to L2(X , F i).
Our task is to prove that system (5.3) has a unique solution w1, . . . , wN with com-

ponents in H1(0, T ) satisfying initial conditions (5.2). Since the system v1, . . . , vN
is linearly independent for all integer N ≥ 1, the (Gram-Schmidt) determinant of
the (N ×N) -matrix with entries (vj , vk)L2(X ,F i) is different from zero. Hence, sys-
tem (5.3) can be resolved with respect to the higher order derivatives. It follows
that problem (5.3), (5.2) reduces to the initial problem of canonical form on [0, T ],
namely

W ′(t) = AW (t) + F (t), if t ∈ (0, T ),
W (0) = 0,

(5.4)

where W = (w′, w)T and

A = −
(

0
(

(vj , vk)L2(X ,F i)

)−1
(D(vj , vk))

EN 0

)

.

The components of the 2N -column F (t) belong to L2(0, T ). We look for a solution
W of problem (5.4) in H1((0, T ),C2N). As usual, we replace this problem by the
equivalent system of integral equations

W (t) =

∫ t

0

AW (t′)dt′ +

∫ t

0

F (t′)dt′, (5.5)

the free term on the right-hand side belonging to H1((0, T ),C2N) and so being
continuous on [0, T ]. If W ∈ H1((0, T ),C2N) is a solution of (5.4), then it is
continuous on [0, T ] and satisfies equation (5.5). Conversely, if W : [0, T ] → C2N is
a continuous solution of equation (5.5), then it is actually of class H1((0, T ),C2N)
and satisfies (5.4). And the existence and uniqueness of a continuous solution to
equation (5.4) is a direct consequence of the Banach fixed point theorem. We
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have thus proved that system (5.3) has a unique solution w1, . . . , wN in H1(0, T )
satisfying (5.2).

Multiply equality (5.1) by w′
k(t), integrate over t ∈ (0, t′), where t′ is an arbitrary

number of [0, T ], and sum up for k = 1, . . . , N . Then we get
∫

Ct′

((uN )′′tt + µ∆uN + (λ+µ)AA∗uN , (uN)′t)x dxdt =

∫

Ct′

(f, (uN)′t)x dxdt. (5.6)

Using the Stokes formula one transforms the real part of the left-hand side of this
equality to

1

2

∫

X

(

|(uN )′t (x, t
′)|2 + µ |AuN (x, t′)|2 + (λ+2µ) |A∗uN (x, t′)|2

)

dx

for all t′ ∈ [0, T ]. On the subspace H1
b (CT , F i) of H1(CT , F i) consisting of those

functions which vanish on the laternal boundary of CT and its base, the norm can
be equivalently given by

‖u‖2H1

b
(CT ,F i) =

∫

CT

|u′
t|2dxdt+

∫ T

0

D(u(·, t))2dt,

where D(v) is the Dirichlet norm of v ∈
◦
H1(X , F i). Hence,

ℜ
∫ T

0

dt′
∫

Ct′

((uN )′′tt + µ∆uN + (λ+µ)AA∗uN , (uN )′t)x dxdt =
1

2
‖uN‖2H1

b
(CT ,F i)

and equality (5.6) yields

‖uN‖2H1

b
(CT ,F i) = 2ℜ

∫ T

0

dt′
∫

Ct′

(f, (uN)′t)x dxdt

= 2ℜ
∫

CT

(T − t) (f, (uN )′t)x dxdt

≤ 2T ‖f‖L2(CT ,F i)‖uN‖H1

b
(CT ,F i)

whence

‖uN‖H1

b
(CT ,F i) ≤ 2T ‖f‖L2(CT ,F i).

We have thus proved that the set of functions uN , where N = 1, 2, . . ., is
bounded in the Hilbert space H1

b (CT , F i). Therefore, this set is weakly compact in
H1

b (CT , F i), i.e., it has a subsequence which converges weakly in H1
b (CT , F i) to a

function u ∈ H1
b (CT , F i). By abuse of notation, we continue to write uN for this

subsequence.
We claim that u is the desired weak solution of the first mixed problem for the

generalised Lamé system. To show this it is sufficient to verify that the integral
identity

∫

CT

(−(u′
t, g

′
t) + µ(Au,Ag) + (λ+2µ)(A∗u,A∗g)) dxdt =

∫

CT

(f, g) dxdt (5.7)

holds for all g ∈ H1(CT , F i) which vanish at the laternal boundary of CT and the
cylinder head, cf. (3.4) with u1 = 0. Let us introduce the temporary notation
H1

c (CT , F i) for the (obviously, closed) subspace of H1(CT , F i) consisting of all such
g. It is actually sufficient to establish (5.7) for all g in a complete subset Σ of
H1

c (CT , F i).
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As Σ we take the set of all functions of the form z(t)vk(x), where k ≥ 1 is an
integer and z(t) a smooth function on [0, T ] satisfying z(T ) = 0. We first show that
equality (5.7) is true for each function g(x, t) = z(t)vk(x) and then that the linear
combinations of such functions are dense in H1

c (CT , F i). To this end, we multiply
equality (5.1) by z(t), integrate it over t ∈ (0, T ) and apply the Stokes formula,
obtaining
∫

CT

(−((uN )′t, g
′
t) + µ(AuN , Ag) + (λ+2µ)(A∗uN , A∗g))x dxdt =

∫

CT

(f, g)x dxdt

for all N ≥ k, where g = zvk. This implies readily (5.7), for uN → u weakly in
H1(CT , F i).

Our next goal is to show that the linear hull of Σ is dense in H1
c (CT , F i). To

do this it is sufficient to prove that each function g ∈ C2(CT , F
i) vanishing at the

laternal boundary of the cylinder and its head (the set of such functions is dense in
H1

c (CT , F i)) can be approximated in the H1(CT , F i) -norm by linear combinations
of functions in Σ. This last assertion is actually well known within the framework
of theory of Sobolev spaces. For a proof, we refer the reader to [Mik76, p. 302] and
elsewhere.

Remark 5.1. Since the weak solution of the first mixed problem exists and is unique,
not only a subsequence but also the sequence (uN)N=1,2,... itself converges weakly

in H1(CT , F i) to u.

6. Regularity of weak solutions

Assume that the boundary ∂X of X is of class Cs for some integer s ≥ 1. Then
the eigenfunctions (vk)k=1,2,... of problem (4.1) belong to Hs(X , F i) and satisfy the
boundary conditions

Livk = 0 at ∂X (6.1)

for i = 0, 1, . . . ,
[s− 1

2

]

.

Let Hs
D(X , F i) stand for the subspace of Hs(X , F i) consisting of all functions

v satisfying (6.1). We put additional restrictions on the data of the problem to
attain to a classical solution. More precisely, we require that u0 ∈ Hs

D(X , F i),

u1 ∈ Hs−1
D (X , F i) and f belongs to the subspace of Hs−1(CT , F i) consisting of all

functions satisfying
Lif = 0 at ∂X × (0, T ) (6.2)

for i = 0, 1, . . . ,
[ s

2

]

− 1.

For s = 1, the latter equations are empty and we arrive at f ∈ L2(X , F i), as
above.

Theorem 6.1. Under the above hypotheses, series (4.8) converges to the weak so-
lution u(x, t) in Hs(X , F i) uniformly in t ∈ [0, T ]. Given any j = 1, . . . , s, the
series obtained from (4.8) by the j -fold termwise differentiation in t converges in
Hs−j(X , F i) uniformly in t ∈ [0, T ]. Moreover, there is a constant c > 0 indepen-
dent of t, such that
s

∑

j=0

‖
∞
∑

k=1

w
(j)
k (t)vk‖2Hs−j(X ,F i)≤c

(

‖u0‖2Hs(X ,F i) + ‖u1‖2Hs−1(X ,F i) + ‖f‖2Hs−1(CT ,F i)

)

(6.3)
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for all t ∈ [0, T ].

Proof. The proof of this theorem runs similarly to the proof of Theorem 3 of [Mik76,
p. 305], if one exploits the techniques developed earlier in Sections 3 and 4. �

By (6.3), if 1 ≤ M < N , then

sup
t∈[0,T ]

∥

∥

∥

N
∑

k=M+1

w
(j)
k (t)vk

∥

∥

∥

2

Hs−j(X ,F i)
→ 0

as M → ∞. Hence, the partial sums of series (4.8) converge in Hs(CT , F i) and
from (6.3) it follows that

‖u‖Hs(CT ,F i) ≤ c′
(

‖u0‖Hs(X ,F i) + ‖u1‖Hs−1(X ,F i) + ‖f‖Hs−1(CT ,F i)

)

. (6.4)

Corollary 6.2. Under the above hypotheses, the weak solution of the first mixed
problem for the generalised Lamé system belongs to Hs(CT , F i). Moreover, series
(4.8) converges to the weak solution in the Hs(CT , F i) -norm and inequality (6.4)
holds true.

From Corollary 6.2 with s = 2 it follows that the weak solution of the first
mixed problem belongs to H2(CT , F i), and so it is a solution almost everywhere. If
moreover s > n/2 + 2, then the weak solution u belongs to the space C2(CT , F

i),
which is due to the Sobolev embedding theorem, and so u is a classical solution of
the problem.

Note that along with the smoothness of u0, u1 and f Theorem 6.1 assumes
that u0 satisfies (6.1), u1 satisfies (6.1) with s replaced by s − 1, and f satisfies
(6.2). The conditions are actually necessary. To show this, suppose s ≥ 2. Since
u0(x) = u(x, 0) is represented by series (4.8) which converges in Hs(X , F i), and
u1(x) = u′

t(x, 0) is represented by series (4.8) which is differentiated termwise in t
and converges in Hs−1(X , F i), we conclude readily that u0 satisfies (6.1) and u1

satisfies (6.1) with s replaced by s−1. Furthermore, since series (4.8) converges to u
in Hs(CT , F i), the series obtained from (4.8) by termwise applying the operators L
and the second derivative in t converge in Hs−2(CT , F i) to Lu and u′′

tt, respectively.
Hence, if s ≥ 3, then f = u′′

tt−Lu satisfies equalities (6.2) with s replaced by s− 1.
In case s is even, the last condition of (6.2) is superfluous indeed, see Corollary 2
in [Mik76, p. 311].

However, if one wants to prove the smoothness of the weak solution of the first
mixed problem rather than the convergence of the Fourier series in the correspond-
ing spaces, then conditions (6.1) and (6.2) can be essentially relaxed, see Theorem
3’ in [Mik76, p. 323].

7. Reduction to Schrödinger equation

There is a Lie algebraic connection between the wave equation and the Schrödin-
ger equation. This allows us to construct solutions of hyperbolic equations from
solutions of Schrödinger equation.

By the above, the unbounded operator −L in L2(X , F i), whose domain is the
set of all sections v ∈ H2(X , F i) vanishing at ∂X , is closed, selfadjoint and positive,
i.e. we have −L ≥ cI where c is a positive constant. Denote by

√
−L the square

root of −L and impose upon the domain D√
−L of this operator a Hilbert space
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structure by identifying it with the range of
√
−L, i.e. the norm in D√

−L just
amounts to

D(v) = ‖
√
−Lv‖L2(X ,F i).

We now split the solution of the first mixed problem (3.1) and (3.2), (3.3) (with
ul = 0) into two parts. To wit, we are looking for two differentiable functions
F, U : [0, T ] → L2(X , F i) with values in D√

−1 (i.e. curves in L2(X , F i)), which
satisfy

F ′
t = −ı

√
−LF + f, for t ∈ (0, T ),

F (0) = u1 − ı
√
−Lu0,

(7.1)

and
U ′
t = ı

√
−LU + F, for t ∈ (0, T ),

U(0) = u0.
(7.2)

If U : [0, T ] → L2(X , F i) is twice differentiable in t ∈ (0, 1), then combining (7.1)
and (7.2) yields

U ′′
tt = ı

√
−LU ′

t + F ′
t

= ı
√
−L

(

ı
√
−LU + F

)

− ı
√
−LF + f

= LU + f

in (0, T ) and
U(0) = u0,
U ′(0) = ı

√
−Lu0 + F (0) = u1.

It follows that u = U is a solution of the first mixed problem for the generalised
Lamé system in CT .

It is worth pointing out that ±ı
√
−L are skew-symmetric operators in L2(X , F i).

For direct constructions along more classical lines we refer the reader to [Fri54],
[Fri58], [FL65], [Agr69].
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