
On Synthesising Linux Kernel
Module Components from Coq

Formalisations

Mario Frank

A Dissertation Presented for the Degree of
Doctor Rerum Naturalium

in Theoretical Computer Science

University of Potsdam
Faculty of Science

Institute of Computer Science
Potsdam, Germany

2024-05-31

https://orcid.org/0000-0001-8888-7475

Unless otherwise indicated, this work is licensed under a Creative Commons License
Attribution 4.0 International.
This does not apply to quoted content and works based on other permissions.
To view a copy of this licence visit:
https://creativecommons.org/licenses/by/4.0

Doctoral Committee:

Main Supervisor, 1. Reviewer: Prof. Dr. Christoph Kreitz
Second Supervisor, 3. Reviewer: Prof. Dr. Anna-Lena Lamprecht

External Reviewer: Prof. Andrew W. Appel, PhD. (Princeton University)
Additional Members: Prof. Dr. Bettina Schnor

Prof. Dr-Ing. Ulrike Lucke
PD Dr. habil. Henning Bordihn

Frank, Mario
mario.frank@uni-potsdam.de
On Synthesising Linux Kernel Module Components from Coq Formalisations
Dissertation, Institute of Computer Science, Faculty of Science
University of Potsdam, 2024

Published online on the
Publication Server of the University of Potsdam:
https://doi.org/10.25932/publishup-64255
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-642558

II

https://doi.org/10.25932/publishup-64255
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-642558

Abstract
This thesis presents an attempt to use source code synthesised from Coq for-

malisations of device drivers for existing (micro)kernel operating systems, with a
particular focus on the Linux Kernel.

In the first part, the technical background and related work are described.
The focus is here on the possible approaches to synthesising certified software
with Coq, namely the extraction to functional languages using the Coq extraction
plugin and the extraction to Clight code using the CertiCoq plugin. It is noted
that the implementation of CertiCoq is verified, whereas this is not the case for
the Coq extraction plugin. Consequently, there is a correctness guarantee for the
generated Clight code which does not hold for the code being generated by the
Coq extraction plugin. Furthermore, the differences between user space and kernel
space software are discussed in relation to Linux device drivers. It is elaborated
that it is not possible to generate working Linux kernel module components using
the Coq extraction plugin without significant modifications. In contrast, it is
possible to produce working user space drivers both with the Coq extraction plugin
and CertiCoq. The subsequent parts describe the main contributions of the thesis.

In the second part, it is demonstrated how to extend the Coq extraction plu-
gin to synthesise foreign function calls between the functional language OCaml
and the imperative language C. This approach has the potential to improve the
type-safety of user space drivers. Furthermore, it is shown that the code being
synthesised by CertiCoq cannot be used in kernel space without modifications to
the necessary runtime. Consequently, the necessary modifications to the runtimes
of CertiCoq and VeriFFI are introduced, resulting in the runtimes becoming com-
patible components of a Linux kernel module. Furthermore, justifications for the
transformations are provided and possible further extensions to both plugins and
solutions to failing garbage collection calls in kernel space are discussed.

The third part presents a proof of concept device driver for the Linux Kernel.
To achieve this, the event handler of the original PC Speaker driver is partially
formalised in Coq. Furthermore, some relevant formal properties of the formalised
functionality are discussed. Subsequently, a kernel module is defined, utilising the
modified variants of CertiCoq and VeriFFI to compile a working device driver.
It is furthermore shown that it is possible to compile the synthesised code with
CompCert, thereby extending the guarantee of correctness to the assembly layer.
This is followed by a performance evaluation that compares a naive formalisation
of the PC speaker functionality with the original PC Speaker driver pointing out
the weaknesses in the formalisation and possible improvements. The part closes
with a summary of the results, their implications and open questions being raised.

The last part lists all used sources, separated into scientific literature, docu-
mentations or reference manuals and artifacts, i.e. source code.

III

Zusammenfassung
Die vorliegende Dissertation präsentiert einen Ansatz zur Nutzung von Quell-

code, der aus der Coq-Formalisierung eines Gerätetreibers generiert wurde, für
bestehende (Mikrokernel-)Betriebssysteme, im Speziellen den Linux-Kernel.

Im ersten Teil erfolgt eine Beschreibung der relevanten technischen Aspekte
sowie des aktuellen Forschungsstandes. Dabei liegt der Fokus auf der Synthese
von funktionalem Code durch das Coq Extraction Plugin und von Clight Code
durch das CertiCoq Plugin. Des Weiteren wird dargelegt, dass die Implemen-
tierung von CertiCoq im Gegensatz zu der des Coq Extraction Plugin verifiziert ist,
wodurch sich eine Korrektheitsgarantie für den generierten Clight Code ableiten
lässt. Darüber hinaus werden die Unterschiede zwischen User Space und Ker-
nel Space Software in Bezug auf Linux-Treiber erörtert. Unter Berücksichtigung
der technischen Einschränkungen wird dargelegt, dass der durch das Coq Extrac-
tion Plugin generierte Code ohne gravierende Anpassungen der Laufzeitumgebung
nicht als Teil eines Kernel Space Treibers nutzbar ist. Die nachfolgenden Teile der
Dissertation behandeln den Beitrag dieser Arbeit.

Im zweiten Teil wird dargelegt, wie das Coq Extraction Plugin derart erweit-
ert werden kann, dass typsichere Aufrufe zwischen den Sprachen OCaml und C
generiert werden können. Dies verhindert spezifische Kompilationsfehler aufgrund
von Typfehlern. Des Weiteren wird aufgezeigt, dass der durch CertiCoq gener-
ierte Code ebenfalls nicht im Kernel Space genutzt werden kann, da die Laufzei-
tumgebung technische Einschränkungen verletzt. Daher werden die notwendigen
Anpassungen an der vergleichsweise kleinen Laufzeitumgebung sowie an VeriFFI
vorgestellt und deren Korrektheit begründet. Anschließend werden mögliche Er-
weiterungen beider Plugins sowie die Möglichkeit der Behandlung von fehlschla-
genden Aufrufen der Garbage Collection von CertiCoq im Kernel Space erörtert.

Im dritten Teil wird als Machbarkeitsstudie im ersten Schritt der Event-Handler
des Linux PC Speaker Treibers beschrieben und eine naive Coq-Formalisierung
sowie wichtige formale Eigenschaften dargelegt. Dann wird beschrieben, wie ein
Kernel-Modul und dessen Kompilation definiert werden muss, um einen lauffähigen
Linux Kernel Treiber zu erhalten. Des Weiteren wird erläutert, wie die generierten
Teile dieses Treibers mit dem verifizierten Kompiler CompCert übersetzt werden
können, wodurch auch eine Korrektheit für den resultierenden Assembler-Code gilt.
Im Anschluss erfolgt eine Evaluierung der Performance des aus der naiven Coq-
Formalisierung generierten Codes im Vergleich zum originalen PC-Speaker Treiber.
Dabei werden die Schwächen der Formalisierung sowie mögliche Verbesserungen
diskutiert. Der Teil wird mit einer Zusammenfassung der Ergebnisse sowie der
daraus resultierenden offenen Fragen abgeschlossen.

Der letzte Teil gibt eine Übersicht über genutzte Quellen und Hilfsmittel, un-
terteilt in wissenschaftliche Literatur, Dokumentationen sowie Software-Artefakte.

IV

Contents

1 Introduction 1

I Technical Background and Related Work 3

2 Device Drivers 4
2.1 User Space vs. Kernel Space Software 4
2.2 Kernel Space Drivers . 7
2.3 User Space Drivers . 9

3 Verification and Synthesis of Software 10
3.1 Verification of Software . 10
3.2 Synthesis of Certified Software . 11

4 Discussion 17

II Synthesis and Runtimes for Device Drivers 20

5 Extending the Coq Extraction Plugin 21
5.1 Synthesis of Foreign Function Calls to C 21
5.2 Synthesis of OCaml Entry Points 25
5.3 Open Work . 26

6 Extracting Certified Device Driver Code to Clight 29
6.1 Adapting the CertiCoq Garbage Collection 29
6.2 Adapting the Synthesised Code and Other Runtime Components . . 38

7 Discussion 44

V

III A Partially Synthesised Device Driver 46

8 From Code to Formalisation 47

9 Constructing a Linux Device Driver 55

10 Performance Evaluation 60

11 Conclusion 62

IV Used Sources 64

12 Introduction 65

13 Literature 66

14 Reference Manuals and Documentations 71

15 Software Artifacts 75

VI

List of Figures

4.1 Comparing the process of verification and synthesis. 18
6.1 The original call graph when calling make_tinfo. 32
6.2 The call graph when calling make_tinfo with lazy failing. 33
6.3 The original call graph when calling garbage_collect. 34
6.4 The call graph when calling garbage_collect with lazy failing. . . 34
6.5 The original call graph when calling export_heap. 35
7.1 Comparison of the old and new extraction scheme. 45

VII

List of Listings

2.1 Device driver definition, adapted example from [62]. 8
5.1 Coq code for writing n|1 to a register. 23
5.2 OCaml code synthesised from write_val. 23
5.3 C wrapper function for outb_c. 24
5.4 Compilation error after changing types of outb. 24
5.5 OCaml code synthesised from write_val with extended synthesis. . 25
5.6 Coq code for writing n|1 to register 0x61. 26
5.7 Synthesised code for writing n|1 to register 0x61. 27
5.8 C wrapper functions for outb_c_wrap and outb_c. 28
6.1 Function definitions in the gc_stack.h of CertiCoq. 31
6.2 Making garbage_collect dependently fail. 36
6.3 A custom memory allocation compilation unit, certicoq_alloc.c. 38
6.4 A custom stdio wrapper header. 40
6.5 Extract from nat printing functionality. 41
6.6 Part of the CertiCoq values.h. 43
6.7 Extract from the function uint63_to_Z. 44
8.1 The original code of the PC Speaker event handler. 48
8.2 Partial formalisation of pcspkr_event. 50
8.3 Definitions of “truth” according to the ISO/IEC C specification. . . 50
8.4 Computing the value from the code. 51
8.5 First refinement of pcspkr_evt. 51
8.6 First property of the first refinement of pcspkr_evt. 51
8.7 Computing the count from the value. 52
8.8 Second refinement of pcspkr_evt. 52
8.9 The sound switch conditional. 53
8.10 Computing the value from the code. 54
8.11 Conditional based formalisation of enable_sound. 54
8.12 Conditional based formalisation of locking enable_sound. 55
9.1 The code initialising and calling the synthesised code. 56
9.2 Relevant Makefile contents for GCC compilation. 58
9.3 Relevant Makefile contents for CompCert compilation. 59

VIII

IX

Chapter 1

Introduction

In recent decades, numerous initiatives have been undertaken with the objective
of enhancing the security and reliability of software. These efforts are justified by
the fact that errors in software are not only annoying but also can be dangerous
in terms of monetary loss and, in the most severe cases, even loss of human life.
Approaches as unit testing [25] have shown to be highly applicable in software
engineering and do have a positive impact on software quality. However, it is also
true that these approaches are limited since only the potential errors which the
engineer is aware of will be covered.

In this context, software verification can be applied to certify the properties of
software, based on the source code. With appropriate tool support, it is even pos-
sible to formalise the functionality of a software and then generate source code that
is guaranteed to be conforming to the specification. While both approaches are
nowadays commonly used for ordinary programs, the most critical portions of soft-
ware are those running in privileged mode directly on hardware, i.e. the operating
system. Attempts have been made to enhance the safety of operating systems like
Linux by introducing memory-safe programming languages like Rust [30]. While
this is a step in the right direction, it does not guarantee correctness. Moreover,
there is much research been and being conducted on the verification of operating
systems and device drivers. Nevertheless, numerous questions remain unanswered.

In this thesis, one of those questions will be raised and answered: namely,
whether it is possible to synthesise1 fully functional Linux Kernel components from
functionality specifications using a proof assistant, here Coq [10]. The rationale for
choosing Coq is mostly originated from the VerSeCloud [21] project which shares
common ground with the aims of this thesis.

1The term “synthesis” is used here to distinguish it from normal compilation, and to provide
a more general term for compilation and extraction. The main motivation stems from the fact
that proof assistants like Coq allow users to define software in a specification language that has
a higher level of formality and clearer semantics than programming languages like C or OCaml.

1

CHAPTER 1. INTRODUCTION

The main contributions of this thesis are to show that the

• code generated by the Coq extraction plugin [38] cannot be usilised for Linux
kernel space drivers without significant modifications to the runtime being
necessary while it can be used for user space device drivers

• Coq extraction plugin can be extended to generate foreign function calls,
thereby enhancing the type-safety of those calls

• code generated by the CertiCoq [2] plugin can be utilised for kernel space
drivers provided necessary modifications to the relatively small runtime

• modifications to the CertiCoq runtime can be proven to be correct

• same correctness guarantees apply to the code generated by CertiCoq for
both user and kernel space

• code generated by CertiCoq can be compiled by the certified compiler Com-
pCert for kernel space which implies that the correctness guarantees can be
extended to the assembly level for kernel space as well.

The thesis commences with an introduction to the pertinent aspects of and
research on software verification, software synthesis and the difference between
ordinary (i.e. user space) programs and Linux Kernel (kernel space) components.
Additionally, general considerations on combining generated with manually writ-
ten code are given, and the part closes with a discussion of the relevant aspects. In
the second part, the suitability of the different synthesis pipelines of Coq, namely
the Coq extraction plugin and CertiCoq, is discussed. Simultaneously, the nec-
essary steps and transformations to make the generated source code compatible
components of a Linux Kernel module are presented. This part concludes with a
discussion of the results, poses new open questions and leads to the third part.
In the third part, a proof of concept will be presented which demonstrates that
it is indeed possible to generate fully functioning Linux Kernel components given
adapted runtimes for that purpose. Furthermore, it will be shown that it is possi-
ble to apply certified compilation to the generated kernel space components. Thus,
it will be confirmed that the correctness guarantees given by the used synthesis
and compilation do hold for both user and kernel space software being generated
by Coq. Furthermore, it will be argued that the same results that hold for the
Linux Kernel can be applied to other comparable operating systems. The part
concludes with a summary of the results, their implications and open questions
that could not be addressed in the course of this thesis. The last part lists all the
literature, documentation, specifications and source code that were used.

2

Part I

Technical Background and
Related Work

3

Chapter 2

Device Drivers

This chapter examines the distinctions between user space and kernel space soft-
ware in general and device drivers in particular. These differences are of vital
importance when formalising and synthesising functionality, as different Applica-
tion Programming Interfaces (APIs) have to be used depending on the target. In
the following section, the main differences between user space and kernel space
software are described. Then, specialities on user space and kernel space device
drivers are introduced. It is important to note that the original de facto reference
manual [16] on Linux Device Drivers, has not been updated for almost two decades
despite significant developments in the Linux Kernel and, in particular, the struc-
ture of device drivers. Consequently, for the most up-to-date information on these
topics, the documentation of the Linux Kernel itself is consulted and cited.

2.1 User Space vs. Kernel Space Software
The distinction between user space and kernel space software is multifaceted, even
when both are implemented in C. The primary distinction lies in the capability
of user space software to utilise the C standard library, commonly referred to as
the libc. There are various implementations of the libc, including the glibc [87]
and the uClibc-ng [102]. All of these libraries provide fundamental functionality
for user space software, including the ability to print to a stream (e.g. the console)
by fprintf, to allocate and deallocate heap memory by malloc and free, or
to instantiate threads using pthreads. These functionalities internally trigger a
system call to the Linux Kernel, i.e. the named functions are interfaces to Linux
Kernel functionality. In contrast, kernel space software, such as kernel modules,
does not run in user space and normally does not have access to the C standard
library. Consequently, they must communicate with the Linux Kernel directly via
the more low-level kernel standard library.

4

CHAPTER 2. DEVICE DRIVERS

For example, the Linux Kernel does not include a printf or fprintf function.
Instead, for example the printk [71] function from the header linux/printk.h
can be employed to print messages into the kernel log files. The printk function
requires a log level as input, typically KERN_INFO, a format string and, if the format
string includes placeholders, additionally a colon-separated list of arguments. The
primary distinctions between printf and printk are the log level and the different
header files. In addition to KERN_INFO, numerous other log levels can be used,
depending on the severity of the message. Furthermore, there is a special log
level for continuing the preceding message (KERN_CONT). However, this log level is
discouraged in most situations. It should only be used in the early boot process
by core or architecture-specific code as it may not be SMP1 safe otherwise [110,
Line 20–22]. Furthermore, printk is subject to inherent limitations, for example,
floating-point conversion specifiers are not supported. In general, floating-point
operations in kernel space can be problematic. It is therefore recommended to
avoid floating-point operations since the Floating Point Unit context must be
saved and restored manually and context switches must be avoided [66, 104]. An
alternative would be to use fixed point arithmetic instead. Another limitation
is the absence of an alternative for fprintf, i.e. for printing into files. While it
is theoretically possible to achieve this [33], it is strongly discouraged since, for
example, the directory layout is not necessarily fixed and consistent between Linux
distributions.

Furthermore, memory allocations [70] are also quite different in kernel space.
One aspect is that when a kernel module allocates memory, it has to be stated
whether this memory is used only by the module itself or potentially also by some
user space software. This is determined by whether the module allocates the
memory for itself (private) or shared. Consequently, kernel modules employ the
functions kmalloc, kmalloc_array and kzalloc from the Linux linux/slab.h
file instead of using malloc from the libc. All those functions have in common
that they have, apart from the memory size that shall be allocated, an additional
parameter GFP_FLAGS (Get Free Page Flags). That parameter states how the
memory shall be allocated. For example, GFP_USER signifies that the memory to
be allocated shall not be movable and that the kernel must have direct access
to it. Furthermore, kzalloc initialises the memory with zeros to ensure that no
previously stored data is leaked. Finally, kmalloc_array is specifically designed
to facilitate the allocation of arrays in a more secure manner than multiplying
the element size with the cell count - a functionality that does not exist in the
user space libc. The release of memory is also carried out by kfree instead of
free. However, there are variant functions for freeing memory that must be used
depending on how the memory was allocated.

1Symmetric multiprocessing, i.e. multiple (identical) processors using shared memory

5

CHAPTER 2. DEVICE DRIVERS

While dynamic allocations, i.e. heap allocations, can be employed in principle
without problems, there is a rather strict limit on the stack size. According to the
“basic kernel hacking rules” [66], the stack is limited to 3K to 6K for most 32-bit
architectures and about 14K for most 64-bit architectures. In the case of the the
x86_64 architecture, for instance, the stack size for an active thread is limited to
four pages where a page has a size of 4K [67] resulting in a maximum stack size for
each active thread of 16K. While the user space stack limits can be set by ulimit
to a verbatim value [77], there is no such functionality for kernel space since the
stack size is defined during the compilation of the kernel. Furthermore, exceeding
the stack size in user space produces a segmentation violation, which results in the
termination of the program. In kernel space, exceeding the stack space is much
more serious, as kernel space software is part of the kernel and the violation will
not be handled. This can lead to overwriting vital parts of the system memory,
resulting in a system freeze. Thus, deep recursion has to be avoided.

It is also important to note that user space code can use the exit [93, §7.22.4.4]
call from the stdlib.h, e.g. when encountering an error. This does not hold for
kernel modules since the exit function is a libc functionality. Kernel modules are
expected to catch encountered errors and return an error value from the function
implementing the event handling, for example. While there is some kernel space
functionality to exit from a process comparable to the user space exit, namely the
function do_exit [114], this function can only be used for kernel threads (kthread).
Thus, it would be in principle possible to wrap the call to synthesised code into
a kthread and call do_exit on error. However, kernel threads are meant to be
used as workers, e.g. for handling network packages in parallel. Consequently, this
would be a misuse and would additionally result in the production of unnecessary
computational overhead due to the scheduling of threads. Comparably to exit,
the “non-local jumps” (setjmp and longjmp) [93, §7.13.1.1 & §7.13.2.1] are defined
in the user space standard library, e.g. glibc [86]. Those functions can be used to
set a jump target position in the code and jump back, respectively. Although the
functions are defined in assembly code [111], they are not used in kernel space
code2 [108], indicating that they are not usable.

A commonly used functionality in C code are assertions [85]. These check
whether an expected condition holds and if it does not, an error is emitted with
details on the failed assertion including the exact position in the source code. Ad-
ditionally, the process (i.e. the program) is stopped. However, assertions are auto-
matically eliminated when compiling C code with the definition NDEBUG. For kernel
space software, a comparable functionality does exist with the macro BUG_ON [113,
Line 71]. However, the main problem here is that the process that would be
stopped when this assertion fails is the Linux Kernel itself. Consequently, an error

2Apart from uses in the tools subdirectory where user space functionality is located.

6

CHAPTER 2. DEVICE DRIVERS

condition would not only stop the kernel module but the complete system (with
a “Kernel Panic”) which is discouraged [105]. While assertions are automatically
removed in user space when using NDEBUG as a compilation definition, this is not
possible in kernel space. Instead, the use of BUG_ON produces a Kernel Panic if
the definition CONFIG_BUG is set and leads to an infinite loop, otherwise [113, Line
159]. Both effects are undesirable when considering safety-critical systems, such
as those used in the operation of trains. A failing control driver in a train has the
potential to be a risk to life. Consequently, errors in kernel space should neither
result in a panic nor in an infinite loop. Instead, errors should be propagated and
returned by an error value by the most outer function of the module.

All of the aforementioned limitations3 apply for all parts of the Linux ker-
nel, including device drivers. Furthermore, Linux Kernel components as drivers
are normally no standalone programs. Normal programs are started with a main
function (in C), potentially together with some command line arguments. They
frequently perform a single operation4, for example converting one image format
into another. In contrast, device drivers rather register themselves (e.g. to the ker-
nel) to serve as event handlers [16, Ch. 2, “Kernel Modules Versus Applications”],
for example. Thus, they have a more concrete life cycle, i.e. they can be started
and stopped. In the following section, the distinction between (Linux) kernel space
and user space drivers will be described.

2.2 Kernel Space Drivers
Linux device drivers can be constructed in two distinct ways: as loadable modules
or as part of the monolithic kernel. In the context of this thesis, the former
variant is considered since the proof of concept is demonstrated on a loadable
module. Linux kernel space drivers follow a driver model which is defined as a
static structure (as shown in Listing 2.1) and every driver must at least define its
name and the bus fields it uses [62]. Nevertheless, according to [62], not all existing
drivers adhere to this model, and it will not be possible to convert all drivers fully
to this driver model.

In addition to the necessary definitions, callbacks can be defined. These are
automatically called on specific events. For example, the callbacks .suspend and
.resume are called when the system enters a low power state (e.g. standby) and
when it resumes from this state. The .probe callback is called when the driver is
started (via insmod or modprobe), and then binds the driver to the device. The
.remove callback is called when the driver is unloaded (via rmmod) to unbind the
driver and apply any necessary cleanup routines.

3Other limitations may also apply but are not relevant for the proof of concept.
4which may be quite complex, nevertheless.

7

CHAPTER 2. DEVICE DRIVERS

1 static struct device_driver some_driver = {
2 .name = "driver_name",
3 .bus = &pci_bus_type,
4
5 .probe = my_probe,
6 .remove = my_remove,
7 .suspend = my_suspend,
8 .resume = my_resume,
9 };

Listing 2.1: Device driver definition, adapted example from [62].

However, the Linux Kernel supports different classes of drivers that may sup-
port additional callbacks. For example, the platform device driver model [72]
supports additional callbacks for shutdown, suspend_late and resume_early.
The shutdown callback is triggered when the system is to be shut down, and
the others are used to support extended power management phases [63]. That
is, resume_early is called before resume, for example to perform preparatory
configurations on the device [63, “Leaving System Suspend”] or to undo config-
urations applied by suspend_late [63, “Entering System Suspend”]. Depending
on the device type, additional functionality may be used. The Linux PC Speaker
driver [116], for example, is a platform device driver and manages an input de-
vice [65]. This provides the ability to bind to the physical device isa0061/input0
during the probing phase, and to set the event callback to a function that handles
incoming events.

Once a device driver has been implemented for the Linux Kernel, it can be
built as an external module [60]. This can be done using the kbuild build system
and requires the definition of a Makefile [82]. To compile a module, the Makefile
must at least define which module to build by specifying the name of the resulting
object file in a variable declaration, e.g. obj-m := my_driver.o. The suffix of the
variable defines whether it is a built-in driver (y) or a loadable module (m). In
this case, the file my_driver.c (or my_driver.S) is automatically compiled into
my_driver.o, and the compilation results in a kernel object named my_driver.ko.
However, it is possible to add other necessary objects to the my_driver module
by specifying the variable my_driver-y := f1.o. Here the prefix my_driver is the
relevant aspect, i.e. the variable must have this prefix, while the suffix y can also be
set to objs for composite host programs [60, Host Program Support]. This allows
the toolchain to recognise that any named object file must be compiled from an
existing C file of the same name, but with a .c suffix. To speed up compilation of
the Linux Kernel or module, .cmd files have been introduced [22]. These files are
created by the compilation toolchain for each f.c that is compiled into f.o, and

8

CHAPTER 2. DEVICE DRIVERS

contain all the compilation parameters and additional information. This allows
the toolchain to detect if a file has already been built, and also to detect changes
in the compilation parameters and rebuild in that case [61, “Command change
detection”].

One notable option, which will become relevant in Section 9, is the ability
to use binary blobs [60, §3.3], i.e. shipped object files. This option can be used
to link precompiled object files, e.g. files built with another compiler or for pro-
prietary components for which no source code is available. For example, if the
module requires a file called prims.o, it is possible to use ocamlopt to compile
the file prims.ml as prims.o_shipped. Here the file is indeed a normal object
file. But the suffix _shipped is recognised by the toolchain and it will copy the file
prims.o_shipped to prims.o, thus resolving the dependency. But for shipped ob-
jects, the compilation toolchain has no information about how they were compiled,
because it did not compile them itself. Furthermore, it expects that for each f.o
file, there is a f.o.cmd file after compilation, which leads to an error when using
a shipped object. To circumvent this, the .cmd file must be created separately for
the shipped objects, but it can be empty5.

The compilation of a kernel module involves many compilation parameters
which greatly affect the compilation itself. A discussion of all possible parameters
is beyond the scope of this thesis, as the parameters depend on many aspects
such as the target architecture and the configuration of the kernel itself, as can be
seen in the Makefile [118]. Therefore, the relevant compilation parameters will be
discussed later in the respective parts of this thesis.

2.3 User Space Drivers
While Linux device drivers are kernel space software, it is also possible to im-
plement driver functionality in user space. In this case, the drivers are normal
programs that register as services. This can be a good solution when a device is
used exclusively by one process [73, 94]. However, while user space drivers do exist
for Linux [137] [1, 18], most drivers are implemented in kernel space. For operat-
ing systems such as the L4Re Operating Systems Framework [133] which consists
of a small microkernel [134] and a user space runtime environment, drivers are
implemented almost entirely in user space. Even complex drivers such as the
NVME [135] block device driver are implemented entirely in user space, which is
unusual for Linux. Similar to Linux, all drivers register themselves to the kernel as
servers and respond to potentially multiple clients communicating with the NVME
server. The advantage of user space drivers is that the limitations of kernel space
software, especially stack size, do not apply.

5This approach and the origin of the error message have been discussed for example in [98].

9

Chapter 3

Verification and Synthesis of
Software

3.1 Verification of Software
There have been many projects attempting to prove the correctness of software,
and there are many possible approaches. As mentioned previously, unit testing is
not a proof of correctness. Sophisticated techniques such as static analysis [12] are
able to find specific errors in existing source code, even in the absence of input
data. Model checking [8] goes further by reasoning about the state of a program.
Proof assistants such as Coq [10] and Isabelle [45] allow both the specification of
software and the proof of its properties. However, they differ in their theoretical
foundations and specification languages.

Using separation logic [51], which is an extension of Hoare logic [26], it is possi-
ble to reason about mutable data structures or (the ownership of) pointers. Since
operating systems like the Linux Kernel contain many functions that manipulate
memory, formalisms like separation logic can be useful for proving their correct-
ness. Research programmes such as DeepSpec [6] play an important role here, as
they attempt to verify a wide variety of aspects of software in general and operat-
ing systems in particular, and in many of the projects that are part of DeepSpec,
formalisations and verifications have been carried out in the Coq Proof Assistant.

For example, the Verified Software Toolchain (VST) [5] uses higher-order sep-
aration logic to reason about software properties while using proofs in Coq. This
toolchain has been used for several related applications, such as reasoning about
the communication [40] of the verified operating system CertiKOS [23], which is
also part of the DeepSpec programme. Also, the verified foreign function interface
VeriFFI [32] [144] between Coq and C uses the VST. Other parts of DeepSpec
include the verification of embedded systems based on the RISC-V [106] architec-

10

CHAPTER 3. VERIFICATION AND SYNTHESIS OF SOFTWARE

ture, including their software, i.e. compilers, drivers and applications [19]. The
most relevant DeepSpec project for this thesis is CompCert [35, 36, 37, 29]. Com-
pCert is a compiler for the C language and has been verified to correctly compile
the preprocessed C code up to the generation of assembly code. As an intermediate
step, the compiler transforms the C code into the Clight [11] fragment of C, which
has a clearer mechanised semantics. CertiCoq [2] closes the gap between a Coq for-
malisation and the Clight code, i.e. it is a compiler that generates Clight code that
is equivalent to the Coq formalisation in terms of the implemented functionality.
CertiCoq is described in more detail in the next section.

In fact, CertiKOS is not the only operating system that has been formally
verified. For example, the seL4 [31] microkernel operating system has been verified
in Isabelle/HOL, based on its C source code. There is also research research into
the verification of the seL4 Core Platform [49] and device drivers based on seL4.
For example, a BSD device driver has been automatically translated to Isabelle
and then verified in Isabelle/HOL [44].

3.2 Synthesis of Certified Software
When a formalisation of a piece of software is available, it is desirable to syn-
thesise source code that is correct, i.e. that conforms to a formal specification.
The formalisation in Coq usually consists of a functional model, i.e. a functional
representation of the algorithm in the Gallina language [91] [10], and a formal spec-
ification, which defines the high-level properties that the functional model should
have. However, it is also possible to postulate the existence of a function that
satisfies the high-level properties. To prove its existence, such a function must be
derived or given. This function, also called a witness, can then be extracted by
projection and stored as a Coq function. In this way, the functional model can
be derived from the formal specification. In any case, synthesis is done using the
functional model. This section describes how to synthesise the correct code from
a formalisation. Extraction into functional languages using the Coq extraction
plugin is described in Subsection 3.2.1, while the Subsection 3.2.2 describes the
generation of Clight [11] code by the CertiCoq plugin and gives a comparison with
the Coq extraction plugin in terms of trustworthiness and performance. The con-
siderations on the synthesis of certified software are completed by a description and
comparison of other proof assistants’ synthesis approaches in Subsection 3.2.3 and
general considerations about combining generated code with hand-written code in
Subsection 3.2.4.

11

CHAPTER 3. VERIFICATION AND SYNTHESIS OF SOFTWARE

3.2.1 The Coq Extraction Plugin
The Coq extraction plugin [38] supports the synthesis of functional code from
Coq formalisations, and the languages currently supported OCaml, Haskell and
Scheme1. Compared to the previous version [50] of the Coq extraction plugin,
which only supported a subset of the Coq specification language, the new extrac-
tion mechanism introduced in Coq 7.3 has closed this gap. But even more impor-
tantly, the new extraction was introduced together with a proof of a theoretical
model of the new extraction.

However, while the theoretical model may be correct, this does not mean that
the plugin itself is implemented correctly. Therefore, the plugin itself cannot be
considered verified and fully trustworthy. Nevertheless, the plugin is relevant to the
scope of this thesis and will therefore be described in more detail. The synthesis
of functional code from Coq formalisations can be done, for example, by using the
Coq command Extraction @qualid or Recursive Extraction @qualid [92, “Gener-
ating ML Code”]. This will extract the term specified by @qualid in the selected
functional language, by default OCaml. Normally these commands only display
the extracted terms in Coq. For the former variant, however, a version is provided
that allows specifying an output file name, which leads to the synthesis of the
terms in a pair of ml and mli files.

It is also possible to define ML code that implements functions for axiomatic
Coq functions using the Coq command Extract Constant @qualid [92, “Realizing
axioms”], while specifying a mapping from @qualid to the ML function. Similarly,
it is possible to extract inductive types or constructors to specific ML types or
constructors [92, “Realizing inductive types”].

However, it is not possible to call foreign (C) functions from the synthesised
code without first extracting an ML function, which must then explicitly call C
code via the foreign function interface. And these calls are particularly relevant
to the goal of synthesising device driver functionality since this usually involves
calling C functions. Nevertheless, the Coq extraction plugin can be a viable option
for synthesising device driver components with at least some limited guarantees of
correctness, although not being fully verified.

Once the source code has been synthesised using the Coq extraction plugin, the
code still needs to be compiled to produce an executable program. Both Haskell
and OCaml include rather large runtime libraries that need to be linked with the
synthesised code [90, 100] when producing binary files. But this also means that
the respective runtimes have to comply with kernel space restrictions. And there
are many problematic places in the runtime, taking OCaml as an example2.

1In the referenced article, only OCaml and Haskell were supported extraction targets, and
Scheme extraction was a work in progress.

2And similar examples can easily be found for Haskell, e.g. in the file rts/Weak.c [101].

12

CHAPTER 3. VERIFICATION AND SYNTHESIS OF SOFTWARE

For example, the OCaml runtime uses the exit function wrapped in the
caml_do_exit [124] function. In addition, assertions are emulated by the OCaml
caml_failed_assert [119] wrapper function, which uses the abort function from
libc. OCaml also has its own memory management [121], which uses the libc
malloc function to allocate heap memory. Finally, the runtime includes floating-
point operations [120, 122], including the printing of floating-point expressions.

These examples already show that making the runtime fully compatible with
the kernel space would require huge changes. And while it is possible to achieve
this, the benefits would be doubtful. Still, the trustworthiness would be broken by
the compiler, as neither ocamlc, nor ocamlopt, nor gch are verified. Thus, using
OCaml or Haskell as extraction languages for Linux Kernel modules is not a viable
approach, while it is for user space drivers.

The Scheme programming language can be compiled using a number of differ-
ent compilers [76], and there are several dialects of the language. Also, there are
compilers that produce C code [139] [74, 78, 81], JVM code [139] [75] and native
code [145] [88] directly. Some of these require a runtime to compile the native
code [138, 140] [74, 79, 80, 81], where the same issues arise as with OCaml. For
example, the code generated by the Chicken [74] compiler needs the runtime.c,
which also contains the libc functionality used. And this applies to some ex-
tent to all named compilers targeting C. This is not really surprising, since basic
functionality such as memory management and IO is usually done with libc func-
tionality3. Apart from the runtimes, none of these named implementations are
verified. Therefore, the correctness of the compilation is not guaranteed. While a
verified compiler did exist for VLISP [24], up-to-date information on its status is
not easily findable, making it difficult to assess its usability.

Thus, the target languages of the Coq extraction plugin do not appear to be
viable options for kernel space use, but still viable options for user space drivers.

3.2.2 The CertiCoq Plugin
As mentioned earlier, the correctness of the Coq extraction plugin has not been
proven in terms of the implementation. Here the CertiCoq [2, 9] plugin promises
a much stronger correctness guarantee, i.e. the complete original pipeline from the
Gallina specification language to the generated Clight code has been verified. The
verification and parts of the pipeline are based on MetaCoq [53] and Template-
Coq [39], while the elimination of Coq-specific sorts (i.e. Type and Prop) is based
on the metatheory of the Calculus of Inductive Constructions [15]. Furthermore,
the Type and Prop erasure was proved to be correct [54]. The continuation pass-

3Loko Scheme [145] can produce freestanding binaries, but they then contain an assembly
code runtime.

13

CHAPTER 3. VERIFICATION AND SYNTHESIS OF SOFTWARE

ing style (CPS [55]) transformation is based on [4], and optimisations on the CPS
representation were also shown to be correct [47, 7]. All these results provide a
strong argument for the trustworthiness of CertiCoq’s generation of Clight code
from a Coq specification.

Another advantage of this synthesis is that the resulting code can be compiled
with GCC [84] and clang [103] but even more importantly with CompCert, which
itself has been verified to be correct as described in Section 3.1. Thus, it is possi-
ble to obtain a full correctness guarantee for the code generated by the CertiCoq
pipeline and extend it to assembly code generation when using CompCert. Al-
though the preprocessing of CompCert is not verified, this is not a major problem
for the code generated by CertiCoq, as the use of preprocessing commands to
generate the code is minimal.

Regardless of which compiler is used to compile the generated Clight code,
additional source files are required [99]. These are some headers (values.h, m.h,
config.h) that are required because the CertiCoq code generation uses the OCaml
objects formats [41, Ch. 20], including the definition of the value type. In addi-
tion, and most importantly, garbage collection is required because Clight is a subset
of C and therefore memory allocations must be managed manually. The garbage
collection used is a generational garbage collector that has been verified using the
CertiGraph [58, 52] framework. The corresponding GitHub repository [125] con-
tains both the original source code of the garbage collector and the formalisation
and verification of its functionality. Together, the named headers and the garbage
collection form the runtime for any Clight program. And this is another advantage
of CertiCoq, i.e. the runtime is small compared to those of OCaml and Haskell.

However, there are two drawbacks. First of all, it has been shown in [9] that the
runtime performance of source code synthesised by CertiCoq and compiled with
CompCert is significantly weaker compared to synthesised OCaml code when com-
piled natively (with ocamlopt). More specifically, for the selected examples, the
runtime performance is typically between that of comparable interpreted OCaml
and natively compiled OCaml code. However, this drawback can be reduced with
improvements in the code generation or with additional optimisation steps, such
as those introduced in [46, 48], for example. For the scope of this thesis, the
second drawback is much more relevant. When the Coq formalisation prog.v is
transformed (with CertiCoq Compile), the files prog.c and prog.h are synthesised.
These files do not directly use any libc functionality. However, there are header
files for primitive operations that are imported by default when using the import
clause From CertiCoq.Plugin Require Import CertiCoq. However, the includes can
be omitted by importing the Loader module instead4. This way the synthesised
code can be used as a component of a kernel module without modifications to the

4This hint was given in private communication by Matthieu Sozeau from the CertiCoq team.

14

CHAPTER 3. VERIFICATION AND SYNTHESIS OF SOFTWARE

internal functionality. This more or less also holds for the glue code that provides
transformations between C and Coq types and can be generated by the command
CertiCoq Generate Glue. Only minor modifications to this code are necessary to
make it usable in kernel space, as will be shown in Subsection 6.2.2. But the
garbage collection utilises much functionality that is not usable in kernel space.
This includes the libc functionality discussed in Section 2.1 but also the loss of
control flow by exit. Nevertheless, these aspects can be resolved, and will be in
Section 6.1.

3.2.3 Related Synthesis Approaches
The approach most closely related to this thesis is the verified extraction of Coq
terms to OCaml, published as a preprint in 12/2023 [20]. This work attempts
to address the most critical aspect of the current Coq extraction plugin, namely
correctness. The new pipeline defines the extraction in Coq itself rather than in
OCaml, using MetaCoq and extracting to an intermediate language of the OCaml
compiler presented in [17], since OCaml has no formal specification. While the
verified variant is a significant improvement for the synthesis of user space driver
components, the lack of compatibility of the OCaml runtime with kernel space
drivers remains. Also, the new extraction does not include the synthesis of foreign
function calls to C.

In [3], the synthesis of Gallina terms to a subset of the Rust language was
presented, and the approach is also able to synthesise other functional program-
ming languages like Elm. While Rust is being introduced into the Linux Kernel,
making this synthesis option relevant, there does not appear to be a verified Rust
compiler. Therefore, for kernel space applications, the combination of CertiCoq
and CompCert still seems to be the most viable approach.

The Œuf [42] [126] compiler is able to generate assembly code from a subset of
Gallina terms, using CompCert to generate the assembly code. The Gallina func-
tions are reflected to Œuf source code, which includes a guarantee of equivalence
using computational denotation. It has also been shown that the resulting assem-
bly code behaves equivalently to the original Gallina term. However, the compiler
only accepts a subset of Gallina, i.e. dependent types are not supported, and this
limitation does not seem to apply to CertiCoq [9]. Moreover, the set of supported
types is limited, e.g. the language does not support function types as arguments
of type constructors. Also, the runtime required to compile Gallina terms to as-
sembly is not verified, whereas the minimal runtime of CertiCoq (i.e. the garbage
collector) has been verified using CertiGraph. Nevertheless, the runtime is quite
small, and it might be possible to adapt it for use in kernel space. But according
to the GitHub repository [126], there have been no changes to Œuf since 2019,
and the last supported version is Coq 8.5.

15

CHAPTER 3. VERIFICATION AND SYNTHESIS OF SOFTWARE

Of course, there are other at least partially verified compilers. Some of them
do not have Gallina as source language or generate target languages that require
comparable effort to make them usable in kernel space, which makes them unsuit-
able for the use case of this thesis. For example, both Pilsner [43] and Lambda
Tamer [13, 14] use an ML-like language as an input language and produce an assem-
bly like language using CPS as an intermediate language. The approach presented
in [57] compiles a C-like language (Cito) into assembly, while the compiler itself is
formalised in Coq. For the language of Isabelle/HOL [45], a verified synthesis to
CakeML [34] does exist [27]. Also, CakeML can be compiled to machine code by
a verified compiler backend [56], which is also utilised by other projects such as
PureCake [28]. While this provides a high level of trust, kernel space drivers still
need to communicate with the low-level functionality of the Linux Kernel, which
includes calls to C functions. In principle, this could be done using CakeML’s for-
eign function interface. But the implementation of the foreign function interface
contains libc functionality [141, basis/basis_ffi.c], which would have to be adapted
for kernel space. Nevertheless, it would be an alternative approach.

3.2.4 Combining Generated and Plain Code
When combining synthesised code with preexisting code, there are aspects to con-
sider in order to avoid unnecessary development effort. That is, the synthesised
code should always remain unchanged. There are two main reasons for this. The
first is that it would be hard to argue that the synthesised code is still correct after
modifications. The second reason is more from the point of view of software engi-
neering. Synthesised code has a life cycle just like any other code. Whenever the
formalisation from which the code was extracted changes, another extraction will
produce potentially significantly different code. For instance, both the Coq extrac-
tion plugin and CertiCoq write synthesised code to files specified in the Vernacular
files. Any manual changes made to these files are thus automatically overwritten
by the synthesis. So any necessary modifications to that code would have to be
stored in additional files, e.g. patch files. But even patches are not necessarily
applicable, e.g. if a previously defined function that needs to be modified does not
exist in the new synthesis. Modifying the synthesised code can therefore have a
serious impact on the maintainability of the whole software project, and synthe-
sised code should always be considered as “drop-in” code, accessed only through
well-defined interfaces.

16

Chapter 4

Discussion

In Section 2.1, the differences between ordinary software (user space software) and
operating system components (kernel space software) were discussed. It was shown
that there are very different constraints on the two types of software. It was also
discussed in Section 3.1 that it is possible to verify existing software, both user
space and kernel space functionality with different methods. In Section 3.2, differ-
ent approaches of synthesising formally correct software were discussed. In order
to outline the main differences between verification and synthesis, see Figure 4.1.

Formalised Properties Specification

Original Source Code Synthesised Source Code

Compiled Software

a
n
a
ly
se

syn
th
esise

co
m
p
ile

verify

Figure 4.1: Comparing the process of verification and synthesis.

When only the source code is available, the source code needs to be analysed
and the properties that should hold for the software must be defined and proved
in Coq. This can be done manually or with tool support. However, if the original
source code is to be adapted or extended, this involves changes to the original
source code, the formalised properties and the verification. Depending on the
complexity of the changes to the source code, the required changes to the formalised
properties and verification may be more or less extensive.

17

CHAPTER 4. DISCUSSION

The situation is different if there is a formal specification from which a func-
tional model can be derived. If the specification changes, the functional model
can be derived again as long as the specification is constructive. And if there
is a functional model and a formal specification, together with a proof that the
former satisfies the latter, then extensions and changes to the functional model
only require changes to these components. And that is a clear advantage. In both
cases, the functional model can be used to generate source code, which can then
be compiled. And, as mentioned earlier, this is possible in a certified process.

In both the verification and synthesis processes, it is important to consider
that device vendors typically do not publish a freely available specification of
how the driver should behave. In the best case, there is an open source driver
implementation that can be analysed. And in worst case, open source drivers are
created by reverse engineering existing binary drivers [95]. Therefore, verification
of the source code and functional model may not cover all the necessary aspects.

As pointed out in the Subsections 3.2.1 and 3.2.2, it is possible to synthesise
OCaml code and Clight code from Coq formalisations using the Coq extraction
plugin and CertiCoq respectively. This code is of course usable for user space
software, including user space drivers. In fact, the author of this thesis has shown
that it is possible to compile synthesised OCaml code into a user space driver
for the L4Re Operating Systems Framework using a generalised cross compilation
approach [132] as part of the VerSeCloud [21] project.

Furthermore, it was discussed in Subsection 3.2.2 that the synthesis by Cer-
tiCoq is verified, unlike that of the Coq Extraction plugin. In addition, using
CompCert to compile the Clight code extends the correctness guarantee to the
assembly layer. Thus, the verified OCaml extraction for Coq [20] would definitely
be more appropriate than the Coq extraction plugin for user space device drivers.
However, it was not available at the time of implementing the extensions to the
Coq extraction plugin. Furthermore, the verified extraction also lacks the synthe-
sis of foreign function calls, and the results of the extensions to the Coq extraction
plugin can be applied as part of future work. Since the synthesised OCaml code
tends to have better runtime performance when compiled natively than the Clight
code when compiled with CompCert, the Coq extraction plugin (or in the future
the verified OCaml extraction) may still be a viable solution for user space drivers.

It has also been pointed out that the code generated by the Coq extraction
plugin will not be usable as a kernel space component without significant changes
to the runtimes, and this also applies to the verified extraction to OCaml. While
CertiCoq also has a runtime, it is significantly smaller than that of OCaml, for
example.

Concluding, there is a consensus that it is possible to synthesise certified user
space software, but it does not seem to have been addressed whether synthesised

18

CHAPTER 4. DISCUSSION

code can be used as a Linux kernel space component. And improving the reliability
of Linux is desirable, since this operating system is undoubtedly in widespread use1

although not being verified (unlike seL4 and CertiKOS).
Therefore, the possibility of extending the Coq extraction plugin with foreign

function call synthesis and the usability of CertiCoq for the synthesis of kernel
space software will be evaluated in the following. It will be shown that even the
source code produced by CertiCoq cannot be used for kernel space without mod-
ifying either the source code itself or necessary runtime components of CertiCoq.
But it will be shown that the necessary modifications can be applied with moder-
ate effort and can be justified in such a way that their correctness can be proven.
Also, it will be shown that the same correctness guarantees apply to synthesised
kernel space software when using CertiCoq and CompCert.

1Although users may not be conscious about that fact.

19

Part II

Synthesis and Runtimes for
Device Drivers

20

Chapter 5

Extending the Coq Extraction
Plugin

For the scope of driver synthesis, it is necessary to communicate with plain C
functionality, and there are two ways to communicate between C and OCaml.

The first direction of interest is calling C code from OCaml, which will be
covered in Section 5.1. The necessity of calling C functions arises from the fact
that low-level functionality, like writing a value to a register, is usually defined in
a C library. While it is possible to implement these operations in OCaml, e.g. by
using inline assembly code [59], doing so would be like reinventing the wheel.

The other direction of interest is calling synthesised OCaml code from C and
will be discussed in Section 5.2. This direction is particularly important when
replacing existing device driver code with synthesised code.

5.1 Synthesis of Foreign Function Calls to C
The OCaml language supports foreign function calls to C [89] by declaring an
OCaml term to be an external function with a specific name and type. For example,
the OCaml addition can be redirected to a C addition function by defining external
add : int -> int -> int = "add_c". The function add_c then has to be defined

as a C function and can be linked with the OCaml code. But the Coq extraction
plugin does not support the extraction of such external definitions, but only the
extraction of axiomatic functions to plain OCaml terms, i.e. let expressions.

As an example, consider the Coq script in Listing 5.1. The script defines a
function write_val that writes a value into a given register, ensuring that the last
bit of the value is set by applying a bitwise or with 1. The write operation itself
is performed by an axiomatic function outb.

21

CHAPTER 5. EXTENDING THE COQ EXTRACTION PLUGIN

1 Require Extraction.
2 Require Coq.extraction.ExtrOcamlNatInt.
3
4 (* outb val reg_id *)
5 Axiom outb : nat → nat → unit.
6
7 Definition set_last_bit (val : nat) := Nat.lor val 1.
8 Definition write_val (val reg : nat) :=
9 outb (set_last_bit val) reg.

10
11 Extract Inlined Constant Nat.lor ⇒ "(lor)".
12 Extract Constant outb ⇒ "C_bindings.outb".
13 Extraction Inline set_last_bit.
14
15 Recursive Extraction write_val.

Listing 5.1: Coq code for writing n|1 to a register.

The extraction performs some general transformations, i.e. extracting the type
nat as the OCaml type int (line 2), the bitwise function Nat.lor to the OCaml
specific operation (line 10) and inlining set_last_bit (line 12). Additionally,
the axiomatic function outb is extracted to an OCaml function outb from the
C_bindings module (line 11). A recursive extraction on write_val then produces
the OCaml code shown in Listing 5.2. It is also possible to inline the definition of
outb. However, this is omitted for comprehensiveness.

1 (** val outb : int -> int -> unit **)
2 let outb = C_bindings.outb
3
4 (** val write_val : int -> int -> unit **)
5 let write_val val0 reg =
6 outb ((lor) val0 (Stdlib.Int.succ 0)) reg

Listing 5.2: OCaml code synthesised from write_val.

The advantage of extraction is obvious; the correctness of the extracted code
can be at least partially assumed, as pointed out in Subsection 3.2.1. How-
ever, in order to successfully compile the program, the implementation of the
C_bindings.outb function must still be provided by adding a file c_bindings.ml.
That is, the definition external outb : int -> int -> unit = "outb_c"1 is re-
quired, which states that the evaluation of outb is done by calling an external

1The Linux outb implementation is a void function returning nothing.

22

CHAPTER 5. EXTENDING THE COQ EXTRACTION PLUGIN

function outb_c. The C function itself can be defined in a C file as shown in
Listing 5.3. This function is called by OCaml and transforms the given value pa-
rameters to the correct C types, i.e. unsigned 8-bit integers, performs the intended
functionality and then returns a value to OCaml, in this case the unit type. It
is important to note that a type mismatch between C_bindings.outb and the C
function outb_c cannot be detected. This is due to the fact that OCaml propagates
the type value for parameters and return values. Thus, the ocamlopt compiler
will not produce any compilation errors. It is therefore up to the developer to
ensure that the parameters are correctly interpreted on the C side. However, it is
possible to omit the type transformation by passing unboxed values [89, Sec. 11]
which will also be discussed in Section 5.3.

1 CAMLprim value
2 outb_c (value o_val, value o_reg_id){
3 // Interpret reg_val and reg_id as unsigned integers
4 uint8_t reg_val = (uint8_t)Unsigned_int_val(o_val);
5 uint8_t reg_id = (uint8_t)Unsigned_int_val(o_reg_id);
6 // call the C function implementation
7 return (Val_unit);
8 }

Listing 5.3: C wrapper function for outb_c.

But the workflow of extracting an axiomatic function as an OCaml function
and then redirecting it to an external C function in an additional module is quite
cumbersome. Problems also arise if the type of the axiomatic function is changed
in Coq for some reason. For example, if the extraction is changed from type nat
to int or vice versa, the developer needs to adapt both the C wrapper function
and the C_bindings module. That is, if lines 2 and 11 in Listing 5.1 are removed,
compilation will produce the type mismatch error shown in Listing 5.4. While the
adjustment of the wrapper function cannot be easily avoided, the modification of
the external function declaration can be solved automatically. Especially since the
target type of the extraction is defined internally in Coq.

1 File "write_val.ml", line 87, characters 7-24:
2 87 | outb (lor0 val0 (S O)) reg
3 ^^^^^^^^^^^^^^^^^
4 Error: This expression has type nat but an expression was expected
5 of type
6 int

Listing 5.4: Compilation error after changing types of outb.

23

CHAPTER 5. EXTENDING THE COQ EXTRACTION PLUGIN

It is therefore clearly more desirable to be able to synthesise the external
declaration during Coq extraction. This functionality has been implemented for
OCaml extraction by the author of this document in the following way. A new
Coq command Extract Foreign Constant @qualid ⇒ @string, which is similar to
the existing Extract Constant command has been introduced. While the original
command marks the axiomatic function referenced by @qualid as a (potentially
inlined) custom term, the new command marks it as foreign custom term with
the name @string.

During extraction, both cases are handled by the same implementation. In gen-
eral, the Coq extraction plugin synthesises an mli file containing the OCaml term
declarations, i.e. the interface, and an ml file containing the term definitions, i.e. the
implementation. For both Extract Constant and Extract Foreign Constant, a val
declaration is synthesised in the output mli file. When synthesising the ml file,
the extraction plugin then distinguishes between foreign custom and custom
terms. While custom terms are synthesised as regular OCaml terms (i.e. let
expressions) as before, foreign custom terms are synthesised as external ex-
pressions including the type. Thus, when replacing Line 12 in Listing 5.1 with
Extract Foreign Constant outb ⇒ "outb_c"., the result of the extraction is as
shown in Listing 5.5.

1 (** val outb : int -> int -> unit **)
2 external outb: int -> int -> unit = "outb_c"
3
4 (** val write_val : int -> int -> unit **)
5 let write_val val0 reg =
6 outb ((lor) val0 (Stdlib.Int.succ 0)) reg

Listing 5.5: OCaml code synthesised from write_val with extended synthesis.

The obvious advantage here is that the necessary changes in the Coq script are
minimal, i.e. using foreign extraction instead of normal extraction. In addition,
the type-correctness of outb is guaranteed, which eliminates potential sources of
compilation errors. The changes to the Coq extraction plugin described here have
been submitted as a Pull Request for inclusion in Coq [130] and will be part
of Coq 8.20. They also include the possibility to display the currently defined
foreign functions with the command Print Extraction Foreign. In the following,
the synthesis of calls from C to OCaml is discussed.

24

CHAPTER 5. EXTENDING THE COQ EXTRACTION PLUGIN

5.2 Synthesis of OCaml Entry Points
In an iterative process of replacing unverified C code with synthesised OCaml code,
it is necessary to be able to call the synthesised code. OCaml has the functionality
to expose functions by global names as closures and make them callable from C
code [89, Sec. 7]. Registering an OCaml function, e.g. compute_val with an int
parameter, as a callable closure is done with the command

let _ = Callback.register "compute_val" compute_val. 2

On the C side, the OCaml runtime must first be initialised. Then the closure can
be searched with caml_named_value("compute_val"), which returns the closure as
value * variable, e.g. clo.

This closure can then be called with the caml_callback(*clo, Val_int(n)))
function, which evaluates the closure and returns its return value. It is clearly

possible and not much effort to define the callback registrations for each synthesised
function to be exposed manually. However, when refactoring Coq formalisations,
for example, it is not uncommon for the names of some functions to change, making
manual adjustments to the callback registration necessary. Furthermore, in order
not to modify the synthesised OCaml files, all callback registrations must be stored
in an additional file.

This effort can be avoided because the Coq script also contains the information
about the name of the extracted function. Therefore, the Coq extraction plugin
was extended to also synthesise closure registration calls. This was done by intro-
ducing the Coq command Extract Callback @string_opt @qualid. This command
marks the specified @qualid with the optional name given as @string_opt as a
callback in an internal map. During extraction, whenever the OCaml code for a
function is synthesised, the implementation checks whether it is a callback function
and adds the callback registration call after the function definition. As an exam-
ple, consider Listing 5.1, which uses write_val from Listing 5.6. Here a function
is defined that calls write_val with a fixed register value and is then declared as
a callback function accessible by the global name write_reg.

1 Definition write_pcspkr_reg (val : nat) := write_val val 0x61.
2 Extract Callback "write_reg" write_pcspkr_reg.
3 Recursive Extraction write_pcspkr_reg.

Listing 5.6: Coq code for writing n|1 to register 0x61.

The new extraction scheme then produces the result shown in Listing 5.7. The
call to Callback.register (line 12) is fully qualified according to the OCaml

2The expression “let _” can be used instead of “let ()” and the global name can be arbitrary
but must be unique.

25

CHAPTER 5. EXTENDING THE COQ EXTRACTION PLUGIN

standard library to ensure that no naming conflict when a formalisation includes
a function Callback.register3.

1 (** val outb : int -> int -> unit **)
2 external outb: int -> int -> unit = "outb_c"
3
4 (** val write_val : int -> int -> unit **)
5 let write_val val0 reg =
6 outb ((lor) val0 (Stdlib.Int.succ 0)) reg
7
8 (** val write_pcspkr_reg : int -> unit **)
9 let write_pcspkr_reg val0 =

10 write_val val0 (Stdlib.Int.succ [...])
11
12 let () = Stdlib.Callback.register "write_reg" write_pcspkr_reg

Listing 5.7: Synthesised code for writing n|1 to register 0x61.

As shown, these extensions of the Coq extraction plugin do have a positive im-
pact on the overall development process and maintainability. The internal name of
the registered callback can be automatically updated while preserving the global
name, which eliminates the possibility of compilation errors when changing the
function name in the Coq formalisation. It is also easy to add and remove exposed
OCaml functions in the proof script. Finally, no additional files containing the
callback registrations are required. However, the synthesis of the callback regis-
tration does not have any impact on the correctness of the complete software at
runtime. The modifications to the Coq extraction plugin described here have also
been submitted as part of the Pull Request [130] for inclusion in Coq and will be
part of Coq 8.20. They also include the possibility to display the currently defined
callbacks with the command Print Extraction Callback and to reset them with
Reset Extraction Callback.

5.3 Open Work
While the extensions presented can be considered as improvements, they can and
should also be seen as a starting point for further extensions. As noted, the
extraction of foreign function calls and callbacks is limited to OCaml. But the Coq
extraction plugin is also able to synthesise Haskell and Scheme. While there are
syntactical differences between the OCaml, Haskell and Scheme FFI, the concept

3This was a review suggestion given by Gaëtan Gilbert (Inria).

26

CHAPTER 5. EXTENDING THE COQ EXTRACTION PLUGIN

for OCaml extraction can in principle be applied for extracting the other languages,
too.

There are even more possible extensions for OCaml extraction. The most
important are performance-critical optimisations supported by the OCaml lan-
guage [89, Sec. 11] when compiling code natively, i.e. with ocamlopt. As described
in Section 5.1, the C-side functions receive parameters as value types and must
transform the values into the correct C types, i.e. unbox them. Return values must
also be boxed to the value type. But OCaml has the functionality to work with
unboxed values if the OCaml types are float, int32, int64 or nativeint [89,
Sec. 11.1]. In this case, the types can be transformed to the C types double,
int32_t, int64_t or intnat, respectively. According to the documentation, the
following changes are required if, for example, the function outb from Section 5.1 is
called with parameters of type int64. Instead of defining the external by external
outb: int64 -> int64 -> unit = "outb_c", the int64 types can be annotated,

i.e. written as (int64 [@unboxed]), while the function body can then be defined
as "outb_c_wrap" "outb_c". This tells the OCaml compiler to call the C func-
tion outb_c_wrap, which then calls outb_c while unboxing the input parameters.
On the C side, the functions outb_c_wrap and outb_c then need to be defined as
shown in Listing 5.8.

1 void outb_c (int64_t val, int64_t reg_id) {
2 // check if val and reg_id are <= max_uint8
3 // write the val to reg_id.
4 return;
5 }
6
7 CAMLprim value outb_c_wrap (value o_val, value o_reg_id) {
8 // call outb_c with reg_val and reg_id as int64_t
9 outb_c(Int64_val(o_val), Int64_val(o_reg_id));

10 return (Val_unit);
11 }

Listing 5.8: C wrapper functions for outb_c_wrap and outb_c.

The advantage here is that outb_c_wrap is rather generic. In fact, this function
could even be synthesised by Coq, although this is not a trivial task. While floats
are defined in the Coq standard library, there seem to be no definitions for int32
and int64. Instead, there is a 63-bit definition of integers. However, if a Coq
formalisation contains proofs that certain integral (or nat) values supplied to an
axiomatic function are in the range of int64, extracting them unboxed would be
type-safe.

Under this assumption, the Coq extraction plugin could be extended by a com-

27

CHAPTER 5. EXTENDING THE COQ EXTRACTION PLUGIN

mand Extract Foreign Constant Unboxing @qualid ⇒ @string. This command
would have to mark the @qualid as a foreign unboxing custom, for example.
During extraction, the type of such a function must be analysed in detail. When-
ever the target type segment is float or int, the output type segment for the
external definition should be (float [@unboxed]) or (int64 [@unboxed]) re-
spectively. For the int64 case, any function that uses the axiomatic function
must be synthesised to use the transformation of an int parameter p to int64
by applying StdLib.Int64.of_int p. Additionally, the extraction could synthe-
sise C wrappers, i.e. for the given @string, a function @string_wrap could be
generated as shown in Listing 5.8. This way, the @string_wrap function would
be type-safe. Additionally, the compiler would then be able to type-check the
call to outb, which would increase the type-safety for integral or floating-point
parameters and return values.

Another interesting concept that can be used when compiling OCaml natively
is the use of the [@@noalloc] annotation [89, Sec. 11.2]. This annotation sig-
nals to the compiler that the external function will not allocate memory, e.g. by
malloc, nor will it raise exceptions or release the “master lock” [89, Sec. 12.2].
This is especially true for register write operations, which are common in driver
development. Annotating the function accordingly has the effect that the call
to the function is not wrapped in the caml_c_call function, which would nor-
mally apply garbage collection. In this way, the overhead of garbage collection
can be omitted. [89, Sec. 11.2] Extending the OCaml extraction plugin in this
case is much simpler than for unboxing. It is sufficient to define a Coq function
Extract Foreign Constant Noalloc @qualid ⇒ @string which marks the @qualid
as a foreign noalloc custom. For instance, when synthesising outb with the
Noalloc extension, the extraction would then have to synthesise

external outb: int -> int -> unit = "outb_c" [@@noalloc].
But additionally, the Coq command should emit a warning to to the user, that it
is necessary to check whether the function really fulfils the preconditions.

While it is possible to reset the callbacks as described in Section 5.2, it is not
possible to do the same for foreign functions. In fact, this is not even possible for
axiomatic extraction to OCaml functions with the Extract Constant [130] com-
mand. While there is a Reset Extraction Inline command, it merely removes the
information that the axiomatic functions should be inline. The reason for this is
that when marking an axiomatic function as custom, a substitution from @qualid
to @string is stored internally in Coq in a “superglobal_object”. This means that
the substitution applies whenever the module in which it was defined is required
by another module. It is therefore not trivial to remove the substitution. This
issue has raised by the author in the Pull Request [130].

28

Chapter 6

Extracting Certified Device
Driver Code to Clight

In the last chapter, the extraction of formalised and verified software to OCaml
source code was discussed. But as described in Subsection 3.2.2, it is possible
to synthesise Clight code using CertiCoq. While the Clight code generated from
the formalisation by CertiCoq can be used without modification in both user and
kernel space, this is not the case for the additional required files. As described in
Subsection 3.2.2, CertiCoq provides a set of files that are needed to compile the
generated source. These are the generated glue code, some headers (values.h,
m.h, config.h) and additionally, and most importantly, the garbage collection.
For the scope of this document, the stack-based garbage collection (gc_stack) will
be considered. Also, if the provided primitive files (e.g. prim_int63) shall be used,
these are also required. For compiling user space device drivers, no modifications
are required, as a libc is usable. However, for compiling kernel modules, changes
are required, as implied in Section 2.1.

In the following, the transformation of the CertiCoq runtime and changes to
the glue code files are discussed, starting with the most complex aspect, i.e. the
garbage collection.

6.1 Adapting the CertiCoq Garbage Collection
Since the garbage collection (GC) has to run in kernel space, it is necessary to
get rid of the loss of control flow caused by calls to exit and assert. As pointed
out in Section 2.1, these functions should not, and partially even cannot be used
in kernel space. To solve these issues, the garbage collection should react lazily
on failure, i.e. the GC has to be transformed so that errors are propagated to the
public functions. This way, the errors can be handled by the calling code.

29

CHAPTER 6. EXTRACTING CERTIFIED DEVICE DRIVER CODE TO
CLIGHT

The garbage collection exposes 8 functions (by making them accessible in the
header gc_stack.h [142]), as shown in Listing 6.1. In the following, the origi-
nal source code [142, gc_stack.c] is discussed. The make_tinfo function allocates
heap memory for the execution of the synthesised code and returns a thread_info
structure containing the closure (the synthesised function to be called), its pa-
rameters and its return value. The garbage_collect function removes unused
data from previous computations and is called by the synthesised code itself.
The free_heap function frees the heap memory allocated by make_tinfo, while
reset_heap only clears the heap without freeing it. The functions export_heap
and extract_answer can be used to copy the closure return value and the com-
plete heap respectively. These functions are not necessarily used by synthesised
code. Also, the stack-based garbage collection implementation file does not contain
an implementation of extract_answer. The certicoq_modify function applies
a mutable write barrier to the thread_info, and finally the print_heapsize
function does exactly what its name implies - it prints the allocated, used and
remembered heap size.

1 struct thread_info *make_tinfo(void);
2 void garbage_collect(struct thread_info *ti);
3 void free_heap(struct heap *h); // @safe
4 void reset_heap(struct heap *h); // @safe
5 value* extract_answer(struct thread_info *ti);
6 void* export_heap(struct thread_info *ti, value root);
7 void certicoq_modify(struct thread_info *ti, value *p_cell,
8 value p_val);
9 void print_heapsize(struct thread_info *ti); // @safe

Listing 6.1: Function definitions in the gc_stack.h of CertiCoq.

Some of the functions will never fail, i.e. call assertions or exit1. These func-
tions are free_heap, reset_heap and print_heapsize, as indicated by the @safe
documentation tag in the listing. The most important functions, make_tinfo and
garbage_collect, may fail. Although extract_answer and export_heap are not
automatically used by the synthesised code, and are not necessary for kernel space
drivers, they can fail and the failures should be handled.

When analysing the garbage collector in depth, there is one main observation:
All functions that may fail are either functions that return void, i.e. nothing, or
functions that return a pointer. And this opens up the possibility of a schematic
approach to adapting the garbage collection. That is, for each function f that
returns void, it is possible to construct a function f ′ that returns the boolean

1Precisely, exit is called via a wrapper function abort_with that additionally prints an error.

30

CHAPTER 6. EXTRACTING CERTIFIED DEVICE DRIVER CODE TO
CLIGHT

value false whenever the original function f evaluates to exit or assert, and
true otherwise. Furthermore, for any function f that returns a pointer, it is
possible to construct a function f ′ that returns NULL (the null pointer) whenever
the original function f evaluates to exit or assert. Returning a null pointer is
a viable solution because this value is generally considered to be an invalid value.
Also, if f would have returned a null pointer under normal conditions, f ′ would
do the same. Once these modified functions have been constructed, the functions
that call them have to be adapted to propagate the errors to the public functions.
This schematic approach will be used in the following to transform the garbage
collection.

The certicoq_modify function has a fairly simple structure, as it only sets
a mutable write barrier, does not call any other functions, and only fails with
an assertion if ti->alloc < ti->limit does not hold, i.e. if the alloc pointer
reaches or exceeds the limit. This can be easily solved by making the function
return boolean values, and making it behave differently depending on whether it
is compiled for user space or kernel space2. Then the function can still use the
assertion in user space, while printing an error message before returning false (0)
in kernel space. Also, in both cases, the function has to return true (1) at the end
of the function body. In the following, the transformation of the more complex
functions is described.

6.1.1 Making make_tinfo Fail Lazily
When the public function make_tinfo is called, the private functions create_heap
and create_space are involved in the call graph, as shown in Figure 6.1, and the
edges are labelled with the order of execution.

struct thread info
*make tinfo

struct heap
*create heapvoid *malloc int exit

12
2 fails

1 1 fails

void create space

21
1 fails

Figure 6.1: The original call graph when calling make_tinfo.
2Using the compile barrier #ifdef CERTICOQ_KERNEL_SPACE . . . #else . . . #endif.

31

CHAPTER 6. EXTRACTING CERTIFIED DEVICE DRIVER CODE TO
CLIGHT

Here, make_tinfo first calls create_heap, allocates the thread_info and calls
exit if the allocation fails. The function create_heap itself tries to allocate the
heap memory, and calls exit on failure. If the memory allocation is successful,
create_space is called. Then create_space attempts to allocate the next gen-
eration and calls exit on failure.

This functionality can be transformed using a lazily failing approach by start-
ing with create_space, i.e. the bottom of the call graph. As can be seen,
create_space is a void function in the original implementation, i.e. it returns
nothing. To catch and propagate failures, the function has to be redefined to
return a boolean value, for example. Then, instead of exiting on a failed space
allocation, the function can return false, while returning true on success.

Now that create_space propagates failures to create_heap, the behaviour
of create_heap can be adapted by returning NULL if either the allocation of
the heap returns NULL or the call to create_space evaluates to false. Thus,
create_heap returns NULL if and only if malloc or create_space fails.

This transformation allows make_tinfo to detect a failed call to create_heap.
Again, NULL can be returned if either create_heap returned NULL, or if the allo-
cation of the thread_info failed, making the call to exit obsolete. The resulting
call graph is shown in Figure 6.2.

struct thread info
*make tinfo

struct heap
*create heap

void *malloc

1

2

NULL

1

NULL

bool create space

2

1

false

Figure 6.2: The call graph when calling make_tinfo with lazy failing.

The advantage of this transformation is that errors propagated by the private
functions create_heap and create_space can also be caught by other public
functions.

6.1.2 Making garbage_collect Fail Lazily
When the garbage_collect function is called, it in turn calls the private func-
tions create_space, do_generation and resume. Also, do_generation calls the
functions forward_remset, forward_roots and do_scan which in turn all call the
function forward, as shown in Figure 6.3. With the changes presented in the last
subsection, the functions create_space and forward are both safe, as indicated
by the dotted border. Since forward_roots and do_scan do not exit or assert and

32

CHAPTER 6. EXTRACTING CERTIFIED DEVICE DRIVER CODE TO
CLIGHT

void garbage collectvoid create space int exit

void do generation void resume

void forward remset void forward roots void do scan

void forward

assert

1

2 3

oog

1 2 3

no heap

n
u
m

a
ll
o
cs

lim
it
ex
ce
ed
ed

Figure 6.3: The original call graph when calling garbage_collect.

use the safe forward function, they can remain unchanged. The only functions
that do exit or assert are forward_remset, resume and garbage_collect itself.
Specifically, resume exits if not enough space has been freed and garbage_collect
exits if the GC has run out of generations. And all these functions are void func-
tions in the original implementation. Thus, their return value can be changed to
boolean, as was done for create_space. The result of the transformation is shown
in Figure 6.4, omitting the functions that did not need to be changed.

bool garbage collect

bool do generation

bool resume

bool forward remset

false

2

3

1
false

false

false

Figure 6.4: The call graph when calling garbage_collect with lazy failing.

Here, resume returns false if no heap has been allocated (previously assertion)
or the nursery is too small. Otherwise it returns true. The forward_remset
function returns false if the assertion fails, and true otherwise. This return value
is then propagated by do_generation to garbage_collect.

Finally, garbage_collect returns false if and only if one of the mentioned
functions (or create_space) failed or if the GC has run out of generations, i.e. no

33

CHAPTER 6. EXTRACTING CERTIFIED DEVICE DRIVER CODE TO
CLIGHT

additional spaces can be created.

6.1.3 Making export_heap Fail Lazily
The public function export_heap calls the functions create_space, create_heap,
garbage_collect_all and do_generation, as shown in Figure 6.5.

void *export heap

int garbage collect all

void do generationvoid create space

void create heap

1

2,4 3,5

1

2

Figure 6.5: The original call graph when calling export_heap.

Here the functions create_space, create_heap and do_generation have al-
ready been transformed, as indicated by the dotted borders. And indeed, neither
export_heap nor garbage_collect_all do fail by calling exit or assertions. But
garbage_collect_all does call create_heap and do_generation. Thus, the
function has to be transformed to propagate failures from these functions. Both
functions return false on error after transformation. And garbage_collect_all
returns an integer, which makes propagation more complicated, but not impossi-
ble.

The solution here is that garbage_collect_all returns a value i which is
defined by an iteration in the interval [0, MAX_SPACES − 2]3. So any value
outside this interval is an error value. And since the return value has to be of type
int (which is actually signed int), a valid error return value is −1. So the function
can be redefined to return −1 if and only if create_heap or do_generation fails.

Then it is possible to catch a failed garbage_collect_all in export_heap
and the function must also catch failed calls to create_space and do_generation
functions. Additionally, there are two memory allocations that create memory for
spaces to do the export. These memory allocation calls are not guarded in any way
in the original implementation. Thus, a failed allocation would produce a NULL
pointer, which must also be handled by returning NULL in this case. In summary,
export_heap must return NULL if and only if one of the memory allocations or
calls to the described functions fails. It is also necessary to ensure that successfully
allocated memory is freed when one of the functions fails, and this has been done
in the course of the GC transformation.

3The loop expression limits i to satisfy the condition i < MAX_SPACES − 1.

34

CHAPTER 6. EXTRACTING CERTIFIED DEVICE DRIVER CODE TO
CLIGHT

6.1.4 Considering Purely Private Functions and Failing
After having transformed all public functions and functions called by them to lazily
failing variants, there are still private functions that need to be addressed. One
of these functions is uintnat gensize(uintnat words), which is actually disabled
by guarding it with an “if false” macro4. This function computes the size of the
next generation and calls exit via abort_with if the size exceeds the size of an
unsigned integer, i.e. would be too big for the address space. Also, the function
asserts that the size of the next generation is at least twice the size of the current
one. Assuming that the current generation cannot have a size of 0, the size must
be positive. Thus, the size of the next generation must also be positive. And since
the return value is uintnat, which includes the value 0, this value can be used as
the error value. Now the call to the exit function can be replaced by returning 0.
And similar to the transformed version of certicoq_modify, the assertion can be
an assert for user space and return 0 in kernel space.

Now that all calls to abort_with have been removed, the function itself can
also be removed. Also, no assertions are called when the code is compiled for
kernel space. Consequently, the include to assert.h can be guarded by a compile
barrier5 to ensure that it is removed for kernel space.

To ensure that the new garbage collection works as before, it must still fail
in user space code. In particular, the call to garbage_collect from synthesised
code must still exit in user space, but not in kernel space. And since it is the only
garbage collector function that is always called by the synthesised code, no other
functions need to explicitly call the exit function, as invalid values can be caught
by the calling plain C code. The garbage_collect function in the implementation
file6 can then be renamed to do_garbage_collect, for example. The dependent
failing can then be implemented as shown in Listing 6.2.

1 // In lazily_failing_gc_stack.h
2 #ifdef CERTICOQ_KERNEL_SPACE
3 _Bool
4 #else
5 void
6 #endif
7 garbage_collect(struct thread_info *ti);
8
9 // in lazily_failing_gc_stack.c

10 #ifdef CERTICOQ_KERNEL_SPACE

4#if 0 . . . #endif.
5#ifndef CERTICOQ_KERNEL_SPACE . . . #endif.
6lazily_failing_gc_stack.c

35

CHAPTER 6. EXTRACTING CERTIFIED DEVICE DRIVER CODE TO
CLIGHT

11 inline _Bool garbage_collect(struct thread_info *ti) {
12 return do_garbage_collect(ti);
13 }
14 #else
15 inline void garbage_collect(struct thread_info *ti) {
16 if (0==do_garbage_collect(ti))
17 exit(1);
18 }
19 #endif

Listing 6.2: Making garbage_collect dependently fail.

In the header file, the return type is made dependent on whether the file
is compiled for kernel or user space. In the implementation file, the new im-
plementation of the garbage_collect function then returns the result of the
do_garbage_collect function in kernel space, and exits in user space if the return
value of the function is 0, i.e. false. With all these changes, the garbage collection
is still compatible with user space applications. While lazy failing introduces a
latency before the eventual call to the exit function, this latency is not relevant
in user space, since both the original and the modified garbage collection will fail
in user space and stop the process as a result. Also, the lazily failing GC can be
a basis for other UNIX operating systems (e.g. BSD) where the same restrictions
on the use of exit and assert apply.

6.1.5 Specialising for Linux Kernel Modules
Once the garbage collector implementation has been transformed, it needs to be
specialised for kernel module applications, preferably in new files. As described
in Section 2.1, the functions printf, fprintf, malloc and free cannot be used.
Therefore, the specialised implementation has to use functions provided by the
Linux Kernel headers.

The easiest aspect to solve is the printing functionality. All calls to printf and
fprintf (if the output is stderr) can be replaced by calls to printk. Specifically,
all informational printing instructions are set to log level KERN_INFO, and all error
messages, e.g. the ones introduced in the transformation into a lazily failing GC, are
set to log level KERN_ERR. Since printk does not support floating-point conversion
specifiers, the occupancy logging output in do_generation must print floating-
point values as integral values, which clearly reduces precision. Furthermore, as
described in Section 2.1, there is no alternative to fprintf in kernel space, and
reading or writing files from kernel modules is discouraged. Thus, the printtree
function effectively cannot be used, and the in_heap function is never called.
While these functions are only compiled when the DEBUG flag is set, they should

36

CHAPTER 6. EXTRACTING CERTIFIED DEVICE DRIVER CODE TO
CLIGHT

generally be ignored when compiling for kernel space. This is done by compiling
them only if CERTICOQ_KERNEL_SPACE is not defined. Additionally, the dependent
include of assert.h and all assertions and user space specific implementations can
be removed.

Also, kernel modules are compiled with many warnings enabled, like -Werror=
strict-prototypes. This option causes a warning to be issued when a function
declaration or definition does not contain argument types. If a function has no
arguments, as is the case with create_heap, then the argument type of the func-
tion must be void. And in this case, this warning is even treated as an error. It is
of course possible to override this warning, but from an engineering point of view,
garbage collection code should satisfy the same constraints as any other kernel
module component.

What remains is the adaption of memory allocations to the Linux Kernel. As
pointed out in Section 2.1, kernel space software must use kernel-specific functions
to allocate and free heap memory. But so far, the garbage collection still uses
malloc and free from the user space standard library. The garbage collection
allocates memory in the functions create_heap, create_space, make_tinfo and
export_heap. It is important to note that create_space actually allocates an
array of n cells. Thus, it is possible to use kmalloc_array in create_space
and kzalloc in the remaining functions. One hurdle is that the kernel-specific
functions are defined in linux/slab.h. And this header file transitively imports
the header thread_info.h, which contains a definition of - as can be expected
- a thread_info structure. Thus, when including linux/slab.h in the garbage
collection instead of stdlib.h, the garbage collection compilation will eventually
fail because of the redefinition. But this problem can be solved by defining a new
memory allocation implementation file, as shown in Listing 6.3.

1 #include "certicoq_alloc.h"
2 #include <linux/slab.h> // for kzalloc, kmalloc_array and kfree.
3
4 void * alloc(size_t sz)
5 { return kzalloc(sz, GFP_KERNEL); }
6
7 void * alloc_array(size_t n, size_t sz)
8 { return kmalloc_array(n, sz, GFP_KERNEL); }
9

10 void free(const void *objp)
11 { kfree(objp); }

Listing 6.3: A custom memory allocation compilation unit, certicoq_alloc.c.

37

CHAPTER 6. EXTRACTING CERTIFIED DEVICE DRIVER CODE TO
CLIGHT

Here, the include of slab.h is done in the additional C file, which is compiled
as a separate compilation unit. And in this file, no redefinition of thread_info
will occur. In fact, the thread_info definition from the Linux Kernel header
is not even used, and is thus eliminated. When exposing the functions alloc,
alloc_array and free in the header file for the new compilation unit, and in-
cluding the file in garbage collection instead of stdlib.h, the new functions can
be used. That is, alloc is used in create_heap, make_tinfo and export_heap,
while alloc_array is used in create_space.

A side effect of not using the stdlib.h is that the stdint.h, which contains
definitions of integral types (e.g. size_t), is not included. But these definitions
are needed for memory allocation. This can also be easily solved by including
linux/types.h in the memory allocation header file.

While it is possible to free or reset the heap, there is no explicit function to
deallocate the thread_info. Although it is possible to do this manually by first
calling free_heap and then freeing the thread_info itself, it is easy to forget
to free the heap. Thus, a public function free_tinfo has been implemented to
simplify this task.

Now the garbage collection is fully compliant for use in Linux kernel space.
However, there are still other files required during compilation that need to be
adapted. In the following section, all changes to the original CertiCoq files or
synthesised files are discussed.

6.2 Adapting the Synthesised Code and Other
Runtime Components

As described in Subsection 3.2.2, CertiCoq synthesises Clight code representing
the formalised functionality and the result of the synthesis is a C and header file,
e.g. prog.c and prog.h. Also, CertiCoq is able to synthesise glue code producing
the files glue.c and glue.h, for example. The necessary changes to these files or
the files they include are described below.

6.2.1 Adapting the Synthesised Code
The files containing the synthesised functionality do not directly use any libc
functionality. The only headers being included by the code are prim_floats.h,
prim_int63.h, coq_c_ffi.h and gc_stack.h, which provide primitive operations
for floating-point and integer arithmetic, communication with Coq and the garbage
collection respectively. All these files are part of the CertiCoq runtime [142]. How-
ever, the includes of the primitives and the Coq FFI files can be omitted as de-
scribed in Subsection 3.2.2. Also, the synthesised code can use the GC that was

38

CHAPTER 6. EXTRACTING CERTIFIED DEVICE DRIVER CODE TO
CLIGHT

specialised for kernel space in the last section instead of the original one. Conclud-
ing, if the default includes are omitted, no changes are required to the synthesised
code itself.

Communication with Coq is not necessary for kernel modules, and this in-
clude is definitely superfluous. However, the primitives files may be useful and
necessary if primitives are used by the synthesised code, and these files actually
use libc functionality. For example, the primitive integer operations implementa-
tion uses printing functionality (from stdio.h) and also includes both stdlib.h
and gc_stack.h. Again, while the specialised GC can be used safely, the other in-
cludes must be addressed separately. The printing functionality is used via a trace
macro, which expands to printf if CERTICOQ_TRACE is defined, and otherwise to
a comment.

1 #ifdef CLIGHT_KERNEL_CODE
2 #include <linux/printk.h>
3 #ifdef CERTICOQ_TRACE
4 #define trace(...) printk(KERN_INFO __VA_ARGS__)
5 #else
6 #define trace(...) //printk(KERN_INFO __VA_ARGS__)
7 #endif
8 #else
9 #include <stdio.h>

10 #ifdef CERTICOQ_TRACE
11 #define trace(...) printf(__VA_ARGS__)
12 #else
13 #define trace(...) //printf(__VA_ARGS__)
14 #endif
15 #endif

Listing 6.4: A custom stdio wrapper header.

This can be easily solved by defining a wrapper file, e.g. certicoq_stdio.h as
shown in Listing 6.4. Here, the new file includes linux/printk.h for kernel space
and stdio.h for user space, and redirects trace to the appropriate implemen-
tation. Then, when including this file instead of the original, printing will work
transparently for both user and kernel space. The include to stdlib.h done by the
primitive file is not even used by the file itself. Also, the include to the GC itself
already includes memory allocations, and the include to stdlib.h is superfluous
and can be removed7.

The implementation of primitive floating-point operations uses the primitive
integer operations provided by the file prim_int63.h, and additionally includes

7This was confirmed by Matthieu Sozeau in private communication.

39

CHAPTER 6. EXTRACTING CERTIFIED DEVICE DRIVER CODE TO
CLIGHT

the stdint.h (for integral type definitions) and the math.h. Both the stdint.h
and math.h includes can be replaced by includes of certicoq_stdint.h and
certicoq_math.h. The file certicoq_stdint.h will then include linux/types.h
for kernel space and stdint.h for user space, and the header file certicoq_math.h
will include either linux/math.h or math.h. However, the math library should be
used with care, as discussed in Section 2.1.

6.2.2 Adapting the Glue Code
As noted in Subsection 3.2.2, the glue code includes functionality to construct
Coq types (such as nat or Z) with C functions. These functions do not use any
libc functionality and can be used as components of a kernel module without
modification. But the files also contain functions for printing Coq types to the
console. Here again, the use of stdio.h breaks the usability of the Clight code in
kernel modules. In principle, it would be possible to use the certicoq_stdio.h
described in the previous subsection and extend it with wrapper functions for
printf that redirect to printk in kernel space. However, this would not give the
expected result. The reason is that printing is done recursively on the structure of
the given type. For example, when printing a value of type nat with the function
print_Coq_Init_Datatypes_nat, the function processes the value recursively, as
shown in Listing 6.5.

1 printf(lparen_lit);
2 printf(*(names_of_Coq_Init_Datatypes_nat + $tag));
3 printf(space_lit);
4 print_Coq_Init_Datatypes_nat(*((value *) $args + 0));
5 printf(rparen_lit);

Listing 6.5: Extract from nat printing functionality.

When redirecting printf to printk, each parenthesis, S and O would be printed
on a separate line, as the default log level (KERN_INFO) is defined this way. It is
possible to use the continuation log level (KERN_CONT) here, which will give the
expected result. But as described in Section 2.1, this log level may not be secure.

So there are three possible solutions. The simplest is to remove the printing
functionality, as it is only used for debugging purposes and is not necessary for
compilation8. Also, removing the functionality does not affect the correctness of
the remaining code, as long as it is not used by the synthesised code. A better
solution here would be to provide a variant of the glue code generation for CertiCoq
that omits the printing functionality, but this approach is beyond the scope of this

8This is the option taken for the example driver implementation.

40

CHAPTER 6. EXTRACTING CERTIFIED DEVICE DRIVER CODE TO
CLIGHT

work. The most elegant solution would be to split the printing into two stages.
The first stage (string_of_nat) should construct a string, represented as char *.
Then the function print_Coq_Init_Datatypes_nat could just print the generated
string. In principle, the string could be constructed using the strcat or strncat
functions, which are supported for both user space (string.h) and kernel space
(linux/string.h), but are considered unsafe [69]. Instead, the documentation
recommends using the scnprintf function. But to use this function, the size
of the string to be produced must be known (i.e. computed) a priori. And this
computation introduces additional overhead. Although this would be the best and
most portable solution, it would require significant changes to CertiCoq that are
beyond the scope of this thesis.

With these changes, the glue code for constructing and destructing Coq types
can be used in kernel space. But when communicating between C and synthesised
Clight code, the use of raw glue code functions can be quite cumbersome. This
can be solved using primitives, and is discussed in the following subsection.

6.2.3 Adapting Types, Transformations and Primitives
When communicating between synthesised Clight code and plain C code, all pa-
rameters and return values must be of type value. This and other primitive types
are defined in CertiCoq’s values.h, which is intended to be compatible with the
definitions in OCaml’s mlvalues.h [123], as noted in Subsection 3.2.2. And, as
noted in Section 2.2, kernel modules are compiled with many parameters, making
it necessary to adapt part of values.h [142], in particular some of the definitions
shown in Listing 6.6.

The macros Tag_val (lines 4/7), Tag_hp (lines 5/8) and Byte_u (line 16) all re-
turn an unsigned char * as value. But Bp_hp (line 1), Bp_val (line 12) and Byte
(line 15) return a char *. Although not explicitly stated, the definition of Byte as
char * and Byte_u as unsigned char * suggests that the macros are intended
to return different types. This assumption is supported by the C ISO/IEC stan-
dard, which states that “The three types char, signed char, and unsigned char
are collectively called the character types. The implementation shall define char
to have the same range, representation, and behavior as either signed char or
unsigned char” [93, §6.2.5.15]. And according to the GCC compiler documen-
tation, the default representation of char is determined by the ABI, i.e. platform
specific [83, §4.4, item 5]. For the AMD64 ABI, for example, both char and
signed char are represented as signed byte [97, p. 16, fig. 3.1]. Thus, on a
standard machine, the type char * should have the same range, representation
and behaviour as signed char *.

However, Linux kernel modules on an average Ubuntu 22.04 x86_64 machine
are compiled with the -funsigned-char option, which contradicts these assump-

41

CHAPTER 6. EXTRACTING CERTIFIED DEVICE DRIVER CODE TO
CLIGHT

tions. For example, in this case Byte(x, i) and Byte_u(x, i) would have the
same type, which may not be the expected result. Thus, when compiling for the
Linux Kernel, the expected representation of char * should be explicitly specified.
Assuming that char * shall have the semantics of signed char *, the types have
been adapted for kernel space compilation. As these macros appear to be unused,
it would also be possible to remove them. However, they may be useful in the
future.

1 #define Bp_hp(hp) ((char *) Val_hp (hp))
2 ...
3 #ifdef ARCH_BIG_ENDIAN
4 #define Tag_val(val) (((unsigned char *) (val)) [-1])
5 #define Tag_hp(hp) (((unsigned char *) (hp)) [sizeof(value)-1])
6 #else
7 #define Tag_val(val) (((unsigned char *) (val)) [-sizeof(value)])
8 #define Tag_hp(hp) (((unsigned char *) (hp)) [0])
9 #endif

10 ...
11 /* Pointer to the first byte */
12 #define Bp_val(v) ((char *) (v))
13 #define Val_bp(p) ((value) (p))
14 /* Bytes are numbered from 0. */
15 #define Byte(x, i) (((char *) (x)) [i])
16 #define Byte_u(x, i) (((unsigned char *) (x)) [i])

Listing 6.6: Part of the CertiCoq values.h.
The type transformations, e.g. from nat or Z to unsigned int or int and vice

versa can be implemented as primitive operations. The VeriFFI project [144], for
instance, aims to improve this communication and is an ongoing effort to provide
a verified foreign function interface for Clight code. This project also contains
many examples of type transformations, e.g. between uint63 and Z [143, uint63z]
or uint63 and nat [143, uint63nat]. The transformation functions here follow the
naming scheme uint63_from_t and uint63_to_t where t is the source and target
Coq type, respectively. On the C side, however, uint63 is a rather unusual type.
The usual type would be uint64_t (or int64_t), for example.

But here again, VeriFFI includes functions to encode and decode between int63
and int64_t [144, c/int63.c]. So it is quite easy to define the transformation
between int64_t and Z, using the examples from VeriFFI.

However, there are two aspects to consider. The first is that the C types
uint64_t and int64_t. This is where certicoq_stdint.h, described in Subsec-
tion 6.2.1, can be used instead of the includes of stdint.h to make the transfor-
mations work in both user and kernel space.

42

CHAPTER 6. EXTRACTING CERTIFIED DEVICE DRIVER CODE TO
CLIGHT

A problem arises when using the uint63_to_z [143, uint63z/prims.c] transfor-
mation function, as shown in Listing 6.7. Here, the expression “(1 << i)”(line 4)
is interpreted as shifting a signed integer by the unsigned integer value i, according
to the ISO/IEC C standard [93, §6.4.4.1]. But if the size of the type value is 8
bytes, i.e. 64 bits, which is the default case, the expression

unsigned int i = sizeof(value) * 8 - 1 (line 3)
evaluates to unsigned int i = 63. Thus, in the first iteration of the loop, the
integer value 1 (which is 32 bits) is shifted left by 63 bits which is a shift overflow.

1 value uint63_to_Z(struct thread_info *tinfo, value t) {
2 ...
3 for (unsigned int i = sizeof(value) * 8 - 1; i > 0; i--) {
4 _Bool bit = ((size_t)t & (1 << i)) >> i;
5 ...
6 }
7 return alloc_make_Coq_Numbers_BinNums_Z_Zpos(tinfo, temp);
8 }

Listing 6.7: Extract from the function uint63_to_Z.

However, no error is provoked when compiling the above example file from
VeriFFI using GCC for user space. But when adding the -fsanitize=shift com-
piler flag which is used by default for compiling kernel modules a runtime error
(shift-out-of-bounds) is generated. The solution here is to add the suffix “ULL”
to the integer constant 1.

With the changes described in this chapter, any synthesised code that does not
explicitly use libc functionality or floating-point operations should in principle be
a compatible component of a Linux Kernel module. All changes to the CertiCoq
files have been applied to a fork [128] of the original CertiCoq repository. Changes
to VeriFFI have been applied to a fork [129] of the original VeriFFI repository.

43

Chapter 7

Discussion

Chapter 5 described how to extend the Coq extraction plugin to support the
synthesis of foreign function calls. These changes have the potential to increase
the type-safety of a software that contains both synthesised OCaml code and plain
OCaml and C code. Consider Figure 7.1, which shows a comparison of the original
extraction scheme and the new one.

Coq
Extraction

write reg.ml✓
c bindings.ml

callbacks.ml

write reg.ml✓

ocamlopt
wrapper.c

main.c

Binary

old
new

Figure 7.1: Comparison of the old and new extraction scheme.

Here, solid arrows indicate partially trusted processing, while dotted paths in-
dicate untrusted. In the old scheme, both the bindings and the callbacks have
to be implemented in additional files, which may only be one file. This can lead
to type mismatches between the externals definitions in the bindings.ml and
write_reg.ml if the Coq formalisation changes. In the new scheme, the extrac-
tion plugin ensures that the types of the extracted terms match. In both cases,
type-safety between the OCaml externals and the C wrapper function cannot be
guaranteed. This also applies to OCaml closure definitions and C closure calls.

As pointed out in Section 5.3, there is still potential to improve type-safety

44

CHAPTER 7. DISCUSSION

between OCaml externals and C wrapper functions by unboxing extraction. Sup-
porting non-allocating extraction for externals would improve the performance
of the generated software. In principle, the changes made to OCaml extraction
can also be applied to Haskell and Scheme extraction, and potentially to verified
OCaml extraction for Coq. But this was beyond the scope of this thesis. The
development of the extensions was supported by reviews by Gaëtan Gilbert, Jim
Fehrle and Guillaume Melquiond from the Coq team.

The changes described in Chapter 6 make it possible to compile code synthe-
sised by CertiCoq as components of a Linux kernel module. As will be shown later,
it will even be possible to use this as a basis for compiling both the synthesised
and the glue code using CompCert. However, there are aspects that need to be
considered. In Section 6.1, the changes to the garbage collection implementation
were described using a schematic approach, which justifies the correctness of the
transformations. What still needs to be done, but is beyond the scope of this
thesis, is a formal proof of the correctness of the transformations. However, since
the transformations lead to a more functional definition of the garbage collection,
the proof can be expected to be a moderate effort.

One even more important aspect is that the garbage_collect function is called
by the synthesised code. In user space, both the original and the lazily failing
garbage collection will eventually exit on failure. But this is not true for the
kernel space variant, since the kernel variant cannot exit without stopping the
whole system, as described in Section 2.1. Also, the “non-local jump” seems
to be unusable. And this is a problem that cannot be solved without changes
to the CertiCoq code generation. Although the new garbage_collect function
returns false on error, no check on the return value is synthesised by CertiCoq.
Conceptually, a possible approach could be that when synthesising a function
f : A → B (with b ∈ B) containing the garbage collection call, the function
should be synthesised to return the type option B. Then the result of f should
be None if the garbage collection failed and Some b otherwise. Furthermore, any
function calling f would then also have to check whether f returned None and
propagate that error value. In principle, the outermost function called by plain
C code could then also return None, which would make it possible to detect a
garbage collection failure. But this approach would inevitably introduce additional
runtime complexity. And since this is only necessary for kernel space applications,
this synthesis should be explicitly selectable, e.g. with a new CertiCoq option.

But even without actually handling a garbage collection error, a proof of con-
cept can be given. The following part will present a partially synthesised Linux
device driver. This is done by first deriving a functional model from the original
code, and then showing how the synthesised code can actually be compiled for
kernel space.

45

Part III

A Partially Synthesised Device
Driver

46

Chapter 8

From Code to Formalisation

As mentioned in Section 2.2, the PC Speaker driver [116] is both a platform device
driver and manages an input device. So the callback function event is set to the
function pcspkr_event. The event function takes as input a pointer to the input
device, an unsigned integer type and code, and a signed integer value, as shown
in Listing 8.1, copied1 from the Linux Kernel GitHub repository [116].

As mentioned earlier, there is usually no formal specification of how a driver
should behave. And also in this case, the original driver does not reference any
specification. So both a functional model and its formal properties have to be
derived from the original source code. This was done in the course of the PhD
project formalisation [127], and the following description briefly discusses its key
points. The approach was to first manually derive a functional model and then
state the logical properties and prove that the functional model actually satisfies
them.

In the following, references to lines always refer to the original C code. Apart
from the fact that the device pointer is unused in this case, the type can be used to
determine whether the driver should react to the event. The code then identifies
the driver mode, while the value represents the frequency value.

1 static int pcspkr_event(struct input_dev *dev, unsigned int type,
2 unsigned int code, int value)
3 {
4 unsigned int count = 0;
5 unsigned long flags;
6
7 if (type != EV_SND) return -EINVAL;
8
9 switch (code) {

1With slight modifications to the layout.

47

CHAPTER 8. FROM CODE TO FORMALISATION

10 case SND_BELL: if (value) value = 1000; break;
11 case SND_TONE: break;
12 default: return -EINVAL;
13 }
14
15 if (value > 20 && value < 32767)
16 count = PIT_TICK_RATE / value;
17
18 raw_spin_lock_irqsave(&i8253_lock, flags);
19
20 if (count) {
21 /* set command for counter 2, 2 byte write */
22 outb_p(0xB6, 0x43);
23 /* select desired HZ */
24 outb_p(count & 0xff, 0x42);
25 outb((count >> 8) & 0xff, 0x42);
26 /* enable counter 2 */
27 outb_p(inb_p(0x61) | 3, 0x61);
28 } else {
29 /* disable counter 2 */
30 outb(inb_p(0x61) & 0xFC, 0x61);
31 }
32
33 raw_spin_unlock_irqrestore(&i8253_lock, flags);
34
35 return 0;
36 }

Listing 8.1: The original code of the PC Speaker event handler.

Since type and code are unsigned integers, and thus can be formalised as values
of the Coq type nat, the frequency value is signed and can be represented in the
Coq type Z. However, for performance reasons, unsigned integers should rather be
represented by the Coq type N. Also, the function shall return a signed integer,
which is also represented as type Z.

The first property that can be derived is that the event handler shall re-
turn the value -EINVAL (i.e. −22 [109]) if and only if the type is not EV_SND
(i.e. 0x12/18 [112]) or if the code is neither SND_BELL (i.e. 0x01/1) nor SND_TONE
(i.e. 0x02/2). Otherwise the handler shall return 0.

And indeed, the event handler first checks whether the event type is the ex-
pected one, i.e. EV_SND, and returns -EINVAL if it is not. This can be easily
modelled in Coq, as shown in Listing 8.2.

48

CHAPTER 8. FROM CODE TO FORMALISATION

1 Definition pcspkr_evt (type code : nat) (value : Z) : Z :=
2 if (type =? 0x12)
3 then go_on code value
4 else −22.

Listing 8.2: Partial formalisation of pcspkr_event.

Here the function go_on is a dummy function that will be refined later, and the
value EV_SND is unfolded according to its definition. It then checks whether code
is one of the two supported values and returns -EINVAL if it is not. In lines 10 and
20 it is checked whether some integer values, here value and count, evaluate to
the boolean value true. According to the ISO/IEC specification, an integral value
is evaluated as true in C if and only if it is non-null [93, §6.8.4.1, Sentence 2] in
an if statement. However, since value and count have different types, i.e. signed
(Z) and unsigned (nat), two definitions are needed to model this, as shown in
Listing 8.3. In both cases, the function evaluates to true if and only if the given
value does not match with O or Z0. The specification for z_true_in_c to be proved
is also given in the listing.

1 Definition nat_true_in_c (a : nat) : bool :=
2 match a with
3 | O ⇒ false
4 | _ ⇒ true
5 end.
6
7 Definition z_true_in_c (a : Z) : bool :=
8 match a with
9 | Z0 ⇒ false

10 | _ ⇒ true
11 end.
12
13 Lemma z_true_in_c_spec : ∀ (val : Z), val ̸= 0 ↔ z_true_in_c val = true.

Listing 8.3: Definitions of “truth” according to the ISO/IEC C specification.

The overall semantics of the switch statement (lines 9–13) is twofold: to return
an error value if necessary, and to manipulate the value input parameter if code
is SND_BELL (0x01) and value is not zero. This means that in the SND_BELL
mode value will always be either 1000 or 0. In SND_TONE (0x02) mode, value will
remain unchanged. Thus, the switch statement can be modelled by the function it
computes, which is computing the value from the code, as shown in Listing 8.4.

49

CHAPTER 8. FROM CODE TO FORMALISATION

1 Definition filter_val (val : Z) : Z :=
2 if (z_true_in_c val) then 1000%Z else val.
3
4 Definition snd_of_nat (code : nat) : option snd :=
5 if (code =? 0x01) then Some Bell else
6 if (code =? 0x02) then Some Tone
7 else None.
8
9 Definition val_of_code (code : nat) (val : Z) : option Z :=

10 match (snd_of_nat code) with
11 | Some Bell ⇒ Some (filter_val val) (*Line 10*)
12 | Some Tone ⇒ Some (val) (*Line 11*)
13 | None ⇒ None (*Line 12*)
14 end.

Listing 8.4: Computing the value from the code.
The snd_of_nat function maps a natural number to an option type, where the

result is Some a if code is valid and None otherwise. The function val_of_code
then propagates None for an undefined code and returns the value wrapped in
Some in the other cases. While in the Tone case it returns the original value, in
the Bell case it returns 1000 if and only if the value was not zero. Now pcspkr_evt
can be refined by replacing go_on as shown in Listing 8.5.

1 Definition pcspkr_evt (type code: nat) (val : Z) : Z :=
2 if (type =? 0x12) then
3 match (val_of_code code val) with
4 | Some a ⇒ go_on2 a
5 | None ⇒ −22
6 end
7 else −22.

Listing 8.5: First refinement of pcspkr_evt.
This refinement uses pattern matching on the result of val_of_code and re-

turns -EINVAL if the code was invalid and compute the count (line 16) otherwise.
On this basis, the specification of when the functional model will return -EINVAL
can be given as shown in Listing 8.6.

1 Lemma pcspkr_evt_einval_spec : ∀ (type code : nat) (val : Z),
2 is_ev_snd type = false ∨ val_of_code code val = None
3 ↔ pcspkr_evt type code val = einval.

Listing 8.6: First property of the first refinement of pcspkr_evt.

50

CHAPTER 8. FROM CODE TO FORMALISATION

The behaviour after the switch statement can now be formalised. Initially, the
variable count is set to 0 (in line 4) and the variable is only changed if value
is in the interval [21, 32766] by computing PIT_TICK_RATE/value (line 16).
Setting the count can be modelled as shown in Listing 8.7.

1 Definition is_valid_value (val : Z) : bool :=
2 (20 <? val) && (val <? 32767).
3
4 Definition set_count (val : Z) (count : nat) : nat :=
5 if (is_valid_value val) then PIT_TICK_RATE / (Z.to_nat val)
6 else count.

Listing 8.7: Computing the count from the value.

The test of whether value is in the interval is modelled by a less relation, and
the count is computed in the same way as in the original code. The transforma-
tion of value to nat is indeed safe here, since the division is only computed if
and only if value is in the frequency interval, which includes being non-negative.
However, set_count must take 0 as count parameter, as in the second refinement
of pcspkr_evt shown in Listing 8.8.

Here, set_count is computed and passed to the sound_switch function, which
is a dummy that will be refined in the following. This function represents the
conditional in line 20 of the original code and then either activates (lines 21–27)
or deactivates (lines 29–30) the PC Speaker.

1 Definition pcspkr_evt (type code: nat) (val : Z) : Z :=
2 if (type =? 0x12) then
3 match (val_of_code code val) with
4 | Some a ⇒ sound_switch (set_count a 0)
5 | None ⇒ −22
6 end
7 else −22.

Listing 8.8: Second refinement of pcspkr_evt.

It is important to note that the conditional on count is wrapped in a lock guard,
i.e. a lock is acquired before entering the conditional and released after leaving it.
However, as the locking is rather a side effect (the calls to raw_spin_lock_irqsave
and raw_spin_unlock_irqrestore are actually macros that return nothing [117,
lines 241ff and 279ff]), it is not possible to formalise them purely functionally.

For formalisation, locking and unlocking has been defined as an axiomatic func-
tion Axiom linux_lock : Z → Z. This function takes an input specifying whether a

51

CHAPTER 8. FROM CODE TO FORMALISATION

lock is to be acquired (value 1) or released (value 0). The C-side implementation
of the function will acquire or release the lock accordingly, always returning the
value 0. While this is not an optimal solution, it was the simplest for preliminary
testing. A better solution would be to use, for example, the IO monads from
coq-simple-io [107]. But this was beyond the scope of this thesis. Also, the
functions outb and outb_p, which write an 8-bit word into a given register, do not
return anything [115, lines 581, 624 and 661]. The functions outb, outb_p, inb,
inb_p and also the locking are therefore considered as primitive functions for the
purpose of this document and can be defined as axioms. And it is important to
note that the functions must be executed in this order. However, it is possible to
prove that the functions outb and outb_p are correctly used in the original code
by looking again at the sound switching conditional in Listing 8.9.

1 if (count) {
2 /* set command for counter 2, 2 byte write */
3 outb_p(0xB6, 0x43); // 182
4 /* select desired HZ */
5 outb_p(count & 0xff, 0x42);
6 outb((count >> 8) & 0xff, 0x42);
7 /* enable counter 2 */
8 outb_p(inb_p(0x61) | 3, 0x61);
9 } else {

10 /* disable counter 2 */
11 outb(inb_p(0x61) & 0xFC, 0x61);
12 }

Listing 8.9: The sound switch conditional.

As already noted, the outb functions expect 8-bit unsigned integers, but the
count is an unsigned integer and therefore 64 bits wide on an x86_64 architecture.
And for unsigned 8-bit integers, the maximum value is 255.

The first call to outb_p writes the value 0xB6, which is 182 in decimal notation
and therefore in range. In lines 5 and 6, a bitwise and with 0xff (255) is applied
to count and count >> 8, which sets all but the last 8 bits to 0. Obviously,
the semantics of these lines is to write the last byte first and then the previous
byte into register 0x42, as shifting by 8 removes the last byte. In line 8, the PC
Speaker register (0x61) is read (which yields an unsigned 8-bit value) and this
value is written back after applying a bitwise or with 3 (binary 11). This sets the
last 2 of the 8 bits and the value written has an 8-bit word size. For disabling
the sound, the PC Speaker register is read and a bitwise and with 0xFC, which
is binary 11111100, is written back, i.e. the last two bits are unset. All these
properties were proven during the PhD project.

52

CHAPTER 8. FROM CODE TO FORMALISATION

The behaviour of the sound switch can then be formalised in Coq, as shown in
Listing 8.10.

1 Definition sound_switch (count : nat) :=
2 if nat_true_in_c count
3 then enable_sound (last_byte count) (prev_byte count)
4 else disable_sound 0x61
5
6 Definition pcspkr_evt (type code: nat) (val : Z) : Z :=
7 if (type =? 0x12) then
8 match (val_of_code code val) with
9 | Some a ⇒ sound_switch (set_count a 0)

10 | None ⇒ invalid_val
11 end
12 else invalid_val.

Listing 8.10: Computing the value from the code.

The function sound_switch calls enable_sound and disable_sound according
to the original definition in the C code. But here enable_sound can take the last
and the previous byte of the count as parameters, while disable_sound takes
the PC Speaker register as input. Both last_byte and prev_byte can be easily
formalised in Coq. The former is in fact nothing more than Nat.shiftr code 8,
while the latter is last_byte (Nat.land 0xff count). However, enable_sound
and disable_sound can be defined as axiomatic functions that return a fixed value
of 0. Returning a fixed value is safe here, since the calls to outb and outb_p and
the locking do not return anything. Additionally, the C implementations used as
primitives have to do the locking. This way, pcspkr_evt will return −22 if and
only if either type or code are invalid, and 0 otherwise.

Alternatively, and as done in the PhD project, enable_sound can be formalised
as shown in Listing 8.11.

1 Definition enable_sound (last_byte prev_byte : nat) : Z :=
2 if ((out8_p snd_command Cmd) =? 0) then
3 if ((out8_p last_byte Data2) =? 0) then
4 if ((out8 prev_byte Data2) =? 0) then
5 (out8_p (set_last_2_bits (in8_p Pc_spk)) Pc_spk)
6 else 1
7 else 1
8 else 1.

Listing 8.11: Conditional based formalisation of enable_sound.

53

CHAPTER 8. FROM CODE TO FORMALISATION

Here the commands are executed in a cascade of conditionals, always expecting
to have a return value of 0 on successful execution of the primitives and 1 on error.
Since Coq itself is not aware of the fact that the primitives always return 0, this
formalisation enforces sequential execution (even when extracting to OCaml).

To ensure that a lock is acquired before writing to registers and released
afterwards, a wrapper function can be defined to do the locking and execute
enable_sound, as shown in Listing 8.12.

1 Definition enable_sound_locking (lb pb : nat) : Z :=
2 if linux_lock 1 =? 0 (* Acquire Lock*)
3 then
4 let result := enable_sound lb pb in
5 if (result =? 0) (* enable_sound success, return unlock result *)
6 then linux_lock 0
7 else (* enable_sound failed with 1, try unlock*)
8 if linux_lock 0 =? 0
9 then result

10 else 1 (* Unlocking failed *)
11 else 1. (* Locking failed*)

Listing 8.12: Conditional based formalisation of locking enable_sound.

Again, the locking, execution of enable_sound and unlocking is done in a cas-
cade of conditionals, enforcing sequential execution. It is possible to prove that
the enable_sound_locking function always returns 0. But this requires two as-
sumptions: That linux_lock always returns 0, and that outb and outb_p always
return either 0 or 1. Both assumptions are valid, since according to the Linux ker-
nel documentation, the locking always succeeds and the register write operations
return nothing. And in both cases, the calls to the concrete Linux implementa-
tions can be wrapped in a primitive that always returns 0. Nevertheless, a goal
of future work is to formalise the sound switch without these assumptions, e.g. by
using IO monads.

On this basis, the following chapter shows how to construct a working Linux
kernel space device driver.

54

Chapter 9

Constructing a Linux Device
Driver

Given the formalisation, CertiCoq can be used to synthesise the Clight code and
the necessary glue code. However, more is required to construct a Linux device
driver. The description here briefly follows the author’s prototypical implemen-
tation [131], which has been successfully tested both in an emulated environment
and on native hardware. For instance, parts of the original implementation [116]
are needed. Apart from the pcspkr_event function formalised in the last chapter,
the implementation contains necessary includes of Linux kernel headers that can
be reused without modification. Additionally, the implementation contains static
functions that define the callbacks (probe, remove, suspend, shutdown) and static
structures that define the power management options (pcspkr_pm_ops) and the
platform driver (pcspkr_platform_driver). While these functions and structures
can remain unchanged, the pcspkr_event function can be eroded, i.e. redefined
to merely call an external function (e.g. defined in clight_iface.c) that calls
the Clight code. A restructured snippet of this function is shown in Listing 9.1.
The code first initialises the thread_info using the make_tinfo function from the
CertiCoq garbage collection adapted in Chapter 6.1 and returns -EINVAL if the
thread_info could not be created. It then uses the VeriFFI type transformations
adapted in Subsection 6.2.3 to transform the parameters to nat and Z respectively.

1 struct thread_info *ti = make_tinfo();
2 if (ti == 0) return -22;
3
4 value type_coq = int64_to_nat(ti, type);
5 value code_coq = int64_to_nat(ti, code);
6 value val_coq = int64_to_Z(ti, val);
7

55

CHAPTER 9. CONSTRUCTING A LINUX DEVICE DRIVER

8 value tmp = body(ti);
9 tmp = call(ti, tmp, type_coq);

10 tmp = call(ti, tmp, code_coq);
11 tmp = call(ti, tmp, val_coq);
12
13 int result = int64_from_Z(tmp);
14 free_tinfo(ti);
15 return result;

Listing 9.1: The code initialising and calling the synthesised code.

The thread_info is then used to instantiate the functionality of the synthe-
sised function using the function body from the synthesised Clight file. To start
the synthesised function, it is applied to the Coq type representations using the
function call from the synthesised glue code. When the last value, i.e. val_coq, is
applied, the synthesised function is automatically evaluated. Finally, the result of
the function, which must be either 0 or −22 according to the formalisation, is trans-
formed into a signed integer and returned after freeing the heap and thread_info
using the function introduced in 6.1.5.

Thus, the driver needs at least the eroded original C file, the Clight interface file
and the garbage collection and runtime from CertiCoq. Additionally, all primitive
functions have to be defined in C (either plain or synthesised), including register
I/O functions, locking and type transformations. The latter can be done by reusing
functionality from VeriFFI.

Given that the main file, i.e. the eroded original implementation, has been
renamed to certpcspkr_mod.c, a Makefile must be created for this module ac-
cording to the descriptions in Section 2.2. As described, the Makefile must contain
at least the definition of obj-m, i.e. the name of the output object that will form
the kernel object. However, in this use case, some additional definitions need to be
provided, as shown in Listing 9.2. That is, all the necessary object files are added
sequentially to an ADD_OBJS list (lines 3–8). These are the objects from the syn-
thesised code, the CertiCoq and VeriFFI files, the code called by the synthesised
code (line 6), the implemented low-level functionality and the interface between
the module and the synthesised code. Then certpcspkr-objs is defined and the
prefix certpcspkr tells the compilation toolchain that the named objects together
form the certpcspkr.o object.

Also, additional compiler flags are required. Noteworthy are the definitions
CLIGHT_KERNEL_CODE=1 and CERTICOQ_TRACE=1. While the former ensures that
the printtree function of the garbage collection is excluded, the latter is used
to enable tracing in the CertiCoq primitives file as described in Subsections 6.1.5
and 6.2.1. Although the synthesised code can be expected to be correct, it contains

56

CHAPTER 9. CONSTRUCTING A LINUX DEVICE DRIVER

switch statements that are in fact empty1. And while all synthesised functions
are supposed to return a value type result, these expressions return nothing.
The GCC, for example, detects this. While this is normally only signalled by
a warning, Linux kernel modules are compiled by default to treat this warning
as an error. And since this missing return statement can be considered irrele-
vant, as the code synthesised by CertiCoq can be expected to be correct, the flag
-Wno-error=return-type has to be set to allow successful compilation.

1 obj-m += certpcspkr.o
2
3 ADD_OBJS = pcspkr_evt_linux.o glue.o
4 ADD_OBJS += gc_stack.o kmod_alloc.o prim_int63.o
5 ADD_OBJS += int6x_nat.o int6x_z.o int64.o
6 ADD_OBJS += nat_ffi.o regio_ffi.o locking_ffi.o z_ffi.o
7 ADD_OBJS += regio.o locking.o pit.o
8 ADD_OBJS += clight_iface.o
9

10 certpcspkr-objs := certpcspkr_mod.o $(ADD_OBJS)
11
12 EXTRA_CFLAGS = -O2 -Wno-error=return-type -I$(PWD)
13 EXTRA_CFLAGS += -D CLIGHT_KERNEL_CODE=1 -D CERTICOQ_TRACE=1
14
15 all:
16 make -C /lib/modules/$(shell uname -r)/build M="$(PWD)"\
17 CONFIG_FUNCTION_TRACER= modules

Listing 9.2: Relevant Makefile contents for GCC compilation.

With the described definitions in the Makefile, it is possible to compile the
synthesised code into a working Linux kernel module. Moreover, the synthesised
part can be expected to be correct up to source level, which is definitely an im-
provement. Thus, the research question of whether it is possible to construct at
least partially certified Linux kernel modules using CertiCoq is answered in the
affirmative.

However, this result is rather limited, since much more is possible for user
space code, as described in Subsection 3.2.2. That is, if CompCert is used to
compile the synthesised Clight code, the correctness of the generated assembly
code can be expected. Thus, an obvious question is whether it would be possible to
compile Linux kernel modules at least partially using CompCert, i.e. at least for the
synthesised Clight code. As discussed in Subsection 6.2.3, the -funsigned-char
and -fsanitize=shift options are used by default by the Linux Kernel module

1Examples can be easily found in the file synthesised/pcspkr_evt_linux.c [131].

57

CHAPTER 9. CONSTRUCTING A LINUX DEVICE DRIVER

compilation toolchain. However, according to the CompCert manual [96], these
options are not supported. There are also other options used by the toolchain,
such as -MMD and -fno-PIE, which appear to be unsupported by CompCert. So
it will not be possible to use CompCert to compile the whole module. But this is
where the functionality to provide shipped objects described in Section 2.2 comes
into play. If it were possible to compile the synthesised code and the glue code with
CompCert, and give the resulting object files the o_shipped extension, it could
be possible to link those files to the module. But as pointed out, a .cmd file must
accompany all object files after compilation, and must be created separately for
shipped objects. Thus, the Makefile needs to be extended as shown in Listing 9.3.

1 %.o_shipped : %.c
2 ccomp -c -o $@ -D CLIGHT_KERNEL_CODE=1 -D CERTICOQ_TRACE=1\
3 -I$(PWD) $<
4
5 %.o_shipped.cmd : %.o_shipped
6 touch .$(basename $^).o.cmd
7 touch $@
8
9 CCOMP_OBJS := pcspkr_evt_linux.o_shipped glue.o_shipped

10 CCOMP_OBJS_CMD := pcspkr_evt_linux.o_shipped.cmd glue.o_shipped.cmd
11
12 with_compcert : $(CCOMP_OBJS) $(CCOMP_OBJS_CMD)
13 make -C /lib/modules/$(shell uname -r)/build M="$(PWD)"\
14 CONFIG_FUNCTION_TRACER= modules

Listing 9.3: Relevant Makefile contents for CompCert compilation.

Here, the with_compcert target expects the existence of the shipped objects
and the accompanying cmd files. The make system finds a rule for creating shipped
object files from C files, which invokes CompCert to produce exactly those files.
The make system also finds a rule that creates a cmd file for each shipped object by
touching2 the .f.o.cmd file. The rule also touches f.o_shipped.cmd to indicate
that the cmd file has already been created. And indeed, with these modifications,
the toolchain can use CompCert to compile the synthesised and glue code, while
the rest is compiled with GCC. The result is a fully functional Linux Kernel mod-
ule - with the advantage that the assembly code generated by CompCert can be
expected to be correct.

While it is now evident that synthesised and glue code can be compiled with
CompCert for kernel space, it has not yet been discussed whether this also holds
for the primitives reused from CertiCoq or VeriFFI. But this can be answered

2The tool touch creates a file, if it does not exist and updates the last access time otherwise.

58

CHAPTER 9. CONSTRUCTING A LINUX DEVICE DRIVER

quite easily. As CompCert is a certified compiler for C (and Clight) code, the
compilation of primitives will be possible if they are implemented in this fragment
of C and do not use unsupported preprocessor functionality. Indeed, compilation
of the file c/int6x_z.c from the VeriFFI fork [129] presented in Subsection 6.2.3
is possible without any problems. However, the attempt of compiling the main
C file, i.e. certpcspkr_mod.c with CompCert was not successful and failed with
multiple preprocessor errors.

Another important aspect when using synthesised components in kernel space
is the limited stack size, as described in Section 2.1. Synthesising non-tail recursive
functions can easily exceed the stack size and freeze the whole system. An example
of such a function is the transformation of values of type Z to nat, which can be
achieved with the function Z.to_nat3. This function expands to Pos.to_nat p in
the positive case, which in turn expands to Pos.iter_op Nat.add x 1. And this
is where deep recursion is used, i.e. iter_op is defined by a recursive function iter,
which uses Nat.add. And Nat.add itself is also defined recursively. Concluding,
synthesising such functions should be avoided, e.g. by using primitive functions
instead. In the following, some considerations about performance are given.

3From the module Coq.ZArith.BinInt

59

Chapter 10

Performance Evaluation

As mentioned in Subsection 3.2.2, the runtime performance of code synthesised
by CertiCoq is not as good as natively compiled and synthesised OCaml code.
In fact, the performance of a synthesised driver depends on two aspects: The
formalisation and the optimisations performed by CertiCoq. So it is quite obvious
that the partially synthesised PC Speaker driver [131] will not be as performant
as the original one. Nevertheless, some preliminary performance evaluations have
been made. Here, it is important to note that the synthesised driver has to use
a primitive operation to compute PIT_TICK_RATE / value in order not to
provoke a stack overflow. This makes the results better than they would be if the
computation was done in synthesised code.

The benchmarks were run in a virtual machine in QEMU with Ubuntu 22.04
operating system and the Linux Kernel 6.5.0-35-generic. Both the original and
the synthesised drivers were compiled with optimisation level 2 (-O2) and GCC
12.3.0. To measure the runtimes, the source code was extended with measurement
functionality using ktime [68]. Specifically, the duration for enabling the sound
was measured in nanoseconds for both the Bell (SND_BELL) and Tone (SND_TONE)
cases using the beep1 [136] tool. For both modes, 1000 executions were measured
and the runtimes were stored in an array at runtime, as writing to files in kernel
space is discouraged, as mentioned. After 1000 executions for each mode, the
minimum, maximum and median runtimes were printed to the Kernel log, along
with the sum of all runtimes. The sum was used because floating-point operations
are discouraged in kernel space, and computing the average of all executions would
mean truncating the result to an integer, which significantly reduces precision.
After each execution, a delay of 100 milliseconds was introduced.

The following Table 10.1 shows the minimum, average, median and maximum
1For testing the Bell case, a patched version of the tool was used that emits SND_BELL instead

of SND_TONE.

60

CHAPTER 10. PERFORMANCE EVALUATION

runtimes for enabling the sound for the Bell and Tone modes of both the original
and the synthesised PC Speaker driver and, all times given in microseconds.

Driver Mode min (µs) avg (µs) med (µs) max (µs)
C Bell 30.79 307.39 72.82 28829.74
Synth Bell 74.99 197.60 182.81 13073.84
C Tone 30.18 100.81 75.13 16578.81
Synth Tone 87.54 224.25 225.09 1322.05

Table 10.1: Benchmark results for the original and synthesised driver.

As expected, the synthesised driver does not compete well with the original.
The table shows that the synthesised driver has a 144 to 150 % higher best and
median runtimes in the Bell mode. In the Tone mode, both the best and median
runtimes are about 190 % higher than those of the original driver. There is also a
fairly large difference between the average and median runtimes and between the
best and worst case runtimes, and there are several reasons for this. One reason
is the locking: While the Linux kernel guarantees that the lock will be acquired,
there is no guarantee when the lock will be acquired, i.e. acquiring a lock can take
some time. Also, in some cases the scheduler may stop the driver or reassign it
to another CPU, causing latency. And finally, the garbage collection probably has
some impact on runtime performance. All these effects are not easy to filter out
when using ktime. This would require detailed benchmarks using ftrace [64].
However, they would not provide much more insight than what is discussed below.

These results already show some aspects that can and must be improved. For
instance, the use of the Coq nat datatype is obviously inappropriate and Coq
has a much more efficient datatype for unsigned values, which is N. Also, it was
pointed out in Chapter 8 that in the Bell mode the value is always set to either
1000 or 0. And if the value is 1000, the sound is enabled, whereas if the value is
0, the sound is disabled. This means that there is no need to check whether the
value is in a valid frequency interval. And this also means that the computation
count = PIT_TICK_RATE / value is actually a division of constants in the
Bell mode. From this, it follows that getting the last and the previous byte of the
count is an operation on constants. Concluding, at least for the Bell case, the
functional model can be significantly optimised. Apart from that, the performance
can be improved by improving the code generation of CertiCoq. In the following,
the results of this thesis are discussed.

61

Chapter 11

Conclusion

In Subsection 3.2.1, it was shown that it is not possible to use OCaml code synthe-
sised by the Coq extraction plugin to produce working Linux kernel space drivers,
while it is obviously possible to produce working user space drivers as long as a libc
can be used. It was discussed that this limitation also applies to other languages
supported by the Coq extraction plugin.

It was also shown that for the user space approach, type-safety can be improved
by synthesising foreign function definitions from Coq formalisations. However,
since the Coq extraction plugin is not verified, the gain would be rather limited.
Here, the verified OCaml synthesis would be a more appropriate pipeline, and the
changes made to the Coq extraction plugin could be applied to this pipeline in the
future.

The modifications to the CertiCoq runtime and garbage collection presented in
Chapter 6 were introduced to create a kernel space compatible runtime by applying
program transformation to the garbage collection. Necessary modifications to
the glue code, synthesised code and primitives provided by VeriFFI were also
presented.

On this basis, a proof of concept for the construction of Linux kernel space
device drivers using code synthesised by CertiCoq was given in this part. First, the
original event handling functionality of the Linux PC Speaker driver was gradually
formalised. Then it was shown how to combine the synthesised code and the glue
code with plain C functionality and compile both with GCC into a kernel object
using GCC. This showed that it is indeed possible to construct at least partially
certified Linux kernel space device drivers from Coq formalisations.

It was then shown that it is also possible, in principle, to extend the partial cer-
tification to the assembly code being produced by using shipped objects compiled
by CompCert from the synthesised and the glue code. The implication is that
the correctness guarantee which holds for user space software can also be applied
to kernel space software. However, it was also shown that there are limitations,

62

CHAPTER 11. CONCLUSION

i.e. the stack size in kernel space and floating-point operations.
This proof of concept is clearly a starting point for future work. For example,

as many primitives as possible should be made kernel space compatible, and some
functionality has already been ported [128]. This would increase the ratio of code
that can be compiled using CompCert. Moreover, it should be possible to adapt
the changes on the runtime and garbage collection presented in Chapter 6 to
other operating systems like NetBSD1 or FreeBSD2, with limited effort. And
most importantly, the changes to CertiCoq’s garbage collection have opened a
weak point as the result of the garbage collection call is not evaluated by the
synthesised code. While it has been shown to be necessary to use a lazily failing
garbage collection in kernel space, this weak point has yet to be addressed, and a
possible solution was given in Chapter 7.

Also, as pointed out in Subsection 3.2.2, the runtime performance of code
synthesised by CertiCoq is not as good as that of natively compiled and synthesised
OCaml code. But especially for kernel space software, performance is important.
And it was discussed in Chapter 10 that the initial proof of concept has a weak
performance and that both improvements in the functional model and in the code
generation of CertiCoq will have an effect on the performance. Regarding code
generation, it is already possible to exclude the garbage collection for functions
that do not allocate by omitting with tinfo in the CertiCoq Register [99]. This
is similar to the @@noalloc annotation in OCaml discussed in Section 5.3. But all
values of type Z or nat, for example, are provided as boxed values when primitive
functions are called. That is, a value of type nat is represented by a pointer to the
heap memory, which contains a recursive data structure representing the value.
But transforming this value into uint63 has linear time complexity. So it is an
open question whether this overhead can be reduced.

1https://www.netbsd.org
2https://www.freebsd.org

63

https://www.netbsd.org
https://www.freebsd.org

Part IV

Used Sources

64

Chapter 12

Introduction

This part contains a description of the used sources, i.e. literature and artifacts.
To make the used sources more strictly separated, the usual bibliography is divided
into three chapters. Chapter 12 lists the scientific literature, i.e. books, articles,
proceeding contributions, theses and comparable sources. In Chapter 13, reference
manuals, documentations and comparable entries are listed which also includes
email communication (e.g. relevant emails by Linus Torvalds) and repository issues.
Finally, Chapter 14 lists software artifacts which may have a DOI, if they are
available via services as Zenodo1. This appendix also includes direct URLs to
repositories on GitHub, for example. All entries in Chapter 13 and 14 have a last
access timestamp, if no DOI exists. For documentations for some specific software
versions, the version release date is used as publication date, if the respective
website does not specify a copyright date explicitly. For repositories, it is defined
by the last change made on that specific entry. Thus, although the Linux Kernel
v6.7 was published in 2024, a source that belongs to this version may have an
earlier publication date, if the change was prior to the publication of the Linux
Kernel itself. The LATEX template used for writing this thesis was provided by Dr.
Sebastian Böhne. The Coq listings were typeset using the Coq listings definitions
of Assia Mahboubi2. This definition was extended to support new commands
introduced in this thesis and CertiCoq specific commands.

1https://zenodo.org/
2http://people.rennes.inria.fr/Assia.Mahboubi/

65

https://zenodo.org/
http://people.rennes.inria.fr/Assia.Mahboubi/

Chapter 13

Literature

[1] Hemant Agrawal & Ravi Malhotra (2012): Device Drivers in User Space: A Case for
Network Device Driver. International Journal of Information and Education Technology,
pp. 461–463, doi:10.7763/IJIET.2012.V2.179.

[2] Abhishek Anand, Andrew W. Appel, Greg Morrisett, Zoe Paraskevopoulou, Randy Pol-
lack, Olivier Savary Bélanger, Matthieu Sozeau & Matthew Weaver (2017): CertiCoq :
A verified compiler for Coq. In: CoqPL’17: The Third International Workshop on Coq
for Programming Languages. Available at https://www.cs.princeton.edu/~mzweaver/
pdfs/CoqPL17.pdf. (Last access: Mar. 18 2024).

[3] Danil Annenkov, Mikkel Milo, Jakob Botsch Nielsen & Bas Spitters (2022): Extracting
functional programs from Coq, in Coq. Journal of Functional Programming 32, p. 11,
doi:10.1017/S0956796822000077.

[4] Andrew W. Appel (1991): Compiling with Continuations. Cambridge University Press,
doi:10.1017/CBO9780511609619.

[5] Andrew W. Appel (2023): Verifiable C. Available at https://github.com/
PrincetonUniversity/VST/raw/master/doc/VC.pdf. (Last access: Mar. 18 2024).

[6] Andrew W. Appel, Lennart Beringer, Adam Chlipala, Benjamin C. Pierce, Zhong Shao,
Stephanie Weirich & Steve Zdancewic (2017): Position paper: the science of deep specifica-
tion. Phil. Trans. R. Soc. 375(2104), doi:10.1098/rsta.2016.0331.

[7] Andrew W. Appel & Trevor Jim (1997): Shrinking lambda expressions in linear time. J.
Funct. Program. 7(5), p. 515–540, doi:10.1017/S0956796897002839.

[8] Christel Baier & Joost-Pieter Katoen (2008): Principles of model checking. The MIT Press.

[9] Olivier Savary Bélanger (2019): Verified Extraction for Coq. Ph.D. thesis, Princeton Uni-
versity. Available at https://www.cs.princeton.edu/techreports/2019/011.pdf. (Last
access: Mar. 18 2024).

[10] Yves Bertot & Pierre Castéran (2004): Interactive Theorem Proving and Program Develop-
ment - Coq’Art: The Calculus of Inductive Constructions. doi:10.1007/978-3-662-07964-5.

[11] Sandrine Blazy & Xavier Leroy (2009): Mechanized Semantics for the Clight Subset of the
C Language. Journal of Automated Reasoning 43(3), pp. 263–288, doi:10.1007/s10817-009-
9148-3.

66

http://dx.doi.org/10.7763/IJIET.2012.V2.179
https://www.cs.princeton.edu/~mzweaver/pdfs/CoqPL17.pdf
https://www.cs.princeton.edu/~mzweaver/pdfs/CoqPL17.pdf
http://dx.doi.org/10.1017/S0956796822000077
http://dx.doi.org/10.1017/CBO9780511609619
https://github.com/PrincetonUniversity/VST/raw/master/doc/VC.pdf
https://github.com/PrincetonUniversity/VST/raw/master/doc/VC.pdf
http://dx.doi.org/10.1098/rsta.2016.0331
http://dx.doi.org/10.1017/S0956796897002839
https://www.cs.princeton.edu/techreports/2019/011.pdf
http://dx.doi.org/10.1007/978-3-662-07964-5
http://dx.doi.org/10.1007/s10817-009-9148-3
http://dx.doi.org/10.1007/s10817-009-9148-3

CHAPTER 13. LITERATURE

[12] B. Chess & J. West (2007): Secure Programming with Static Analysis. Addison-Wesley
software security series, Addison-Wesley.

[13] Adam Chlipala (2007): A certified type-preserving compiler from lambda calculus to assembly
language. SIGPLAN Not. 42(6), p. 54–65, doi:10.1145/1273442.1250742.

[14] Adam Chlipala (2010): A verified compiler for an impure functional language. In: Proceed-
ings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’10, Association for Computing Machinery, New York, NY, USA,
p. 93–106, doi:10.1145/1706299.1706312.

[15] T. Coquand & C. Paulin (1990): Inductively defined types. In: Proceedings of the Interna-
tional Conference on Computer Logic, COLOG-88, Springer-Verlag, Berlin, Heidelberg, p.
50–66, doi:10.1007/3-540-52335-9_47.

[16] Jonathan Corbet, Alessandro Rubini & Greg Kroah-Hartman (2005): Linux Device Drivers,
3rd Edition. O’Reilly Media, Inc.

[17] Stephen Dolan (2016): Malfunctional programming. In: ML Workshop. Available at
https://stedolan.net/talks/2016/malfunction/malfunction.pdf. (Last access: Mar.
18 2024).

[18] Paul Emmerich, Maximilian Pudelko, Simon Bauer, Stefan Huber, Thomas Zwickl &
Georg Carle (2019): User Space Network Drivers. In: 2019 ACM/IEEE Sympo-
sium on Architectures for Networking and Communications Systems (ANCS), pp. 1–12,
doi:10.1109/ANCS.2019.8901894.

[19] Andres Erbsen, Samuel Gruetter, Joonwon Choi, Clark Wood & Adam Chlipala (2021):
Integration verification across software and hardware for a simple embedded system. In:
Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Lan-
guage Design and Implementation, PLDI 2021, Association for Computing Machinery, New
York, NY, USA, p. 604–619, doi:10.1145/3453483.3454065.

[20] Yannick Forster, Matthieu Sozeau & Nicolas Tabareau (2023): Verified Extraction from Coq
to OCaml. Available at https://inria.hal.science/hal-04329663. Working paper or
preprint.

[21] Nicolas Frinker, Steffen Liebergeld, Dr. Andreas Otto, Mario Frank & Mario Egger (2023):
Eine vertrauenswürdige, sichere Public Cloud - Utopie oder Realität? In: Digital sicher in
eine nachhaltige Zukunft, 19. Deutscher IT-Sicherheitskongress, Bundesamt für Sicherheit
in der Informationstechnik - BSI, pp. 227–240.

[22] Kai Germaschewski & Sam Ravnborg (2003): Kernel configuration and building in Linux
2.5. In: Proceedings of the Ottawa Linux Symposium. Available at https://www.kernel.
org/doc/ols/2003/ols2003-pages-185-200.pdf. (Last access: Mar. 18 2024).

[23] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Wu, Jieung Kim, Vilhelm Sjöberg & David
Costanzo (2016): CertiKOS: an extensible architecture for building certified concurrent OS
kernels. In: Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation, OSDI’16, USENIX Association, USA, p. 653–669. Available at https:
//dl.acm.org/doi/10.5555/3026877.3026928. (Last access: Mar. 18 2024).

[24] Joshua D. Guttman, John D. Ramsdell & Vipin Swarup (1995): The VLISP verified Scheme
system 8, pp. 33–110. doi:10.1007/BF01128407.

67

http://dx.doi.org/10.1145/1273442.1250742
http://dx.doi.org/10.1145/1706299.1706312
http://dx.doi.org/10.1007/3-540-52335-9_47
https://stedolan.net/talks/2016/malfunction/malfunction.pdf
http://dx.doi.org/10.1109/ANCS.2019.8901894
http://dx.doi.org/10.1145/3453483.3454065
https://inria.hal.science/hal-04329663
https://www.kernel.org/doc/ols/2003/ols2003-pages-185-200.pdf
https://www.kernel.org/doc/ols/2003/ols2003-pages-185-200.pdf
https://dl.acm.org/doi/10.5555/3026877.3026928
https://dl.acm.org/doi/10.5555/3026877.3026928
http://dx.doi.org/10.1007/BF01128407

CHAPTER 13. LITERATURE

[25] Paul Hamill (2004): Unit Test Frameworks: Tools for High-Quality Software Development.
O’Reilly Media.

[26] C. A. R. Hoare (1969): An axiomatic basis for computer programming. Commun. ACM
12(10), p. 576–580, doi:10.1145/363235.363259.

[27] Lars Hupel & Tobias Nipkow (2018): A Verified Compiler from Isabelle/HOL to CakeML.
In Amal Ahmed, editor: European Symposium on Programming (ESOP), Lecture Notes in
Computer Science 10801, Springer, pp. 999–1026, doi:10.1007/978-3-319-89884-1_35.

[28] Hrutvik Kanabar, Samuel Vivien, Oskar Abrahamsson, Magnus O. Myreen, Michael Nor-
rish, Johannes Åman Pohjola & Riccardo Zanetti (2023): PureCake: A Verified Compiler
for a Lazy Functional Language. Proc. ACM Program. Lang. 7(PLDI), doi:10.1145/3591259.

[29] Daniel Kästner, Xavier Leroy, Sandrine Blazy, Bernhard Schommer, Michael Schmidt &
Christian Ferdinand (2017): Closing the Gap – The Formally Verified Optimizing Compiler
CompCert. In: SSS’17: Safety-critical Systems Symposium 2017, Developments in System
Safety Engineering: Proceedings of the Twenty-fifth Safety-critical Systems Symposium,
CreateSpace, Bristol, United Kingdom, pp. 163–180. Available at https://inria.hal.
science/hal-01399482.

[30] Steve Klabnik & Carol Nichols (2022): The Rust Programming Language,
2nd Edition. No Starch Press. Available at https://nostarch.com/
rust-programming-language-2nd-edition.

[31] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas Sewell, Rafal
Kolanski & Gernot Heiser (2014): Comprehensive formal verification of an OS microkernel.
ACM Trans. Comput. Syst. 32(1), doi:10.1145/2560537.

[32] Joomy Korkut (2024): Foreign Function Verification Through Metaprogramming. Ph.D.
thesis, Princeton University. Currently unpublished thesis draft.

[33] Greg Kroah-Hartman (2005): Driving Me Nuts - Things You Never Should Do in the Kernel.
Available at https://www.linuxjournal.com/article/8110. (Last access: Mar. 18 2024).

[34] Ramana Kumar, Magnus O. Myreen, Michael Norrish & Scott Owens (2014):
CakeML: a verified implementation of ML. SIGPLAN Not. 49(1), p. 179–191,
doi:10.1145/2578855.2535841.

[35] Xavier Leroy (2009): Formal verification of a realistic compiler. Communications of the
ACM 52(7), pp. 107–115, doi:10.1145/1538788.1538814.

[36] Xavier Leroy (2012): Mechanized Semantics for Compiler Verification. In: APLAS
2012 - 10th Asian Symposium on Programming Languages and Systems, pp. 386–388,
doi:10.1007/978-3-642-35182-2_27.

[37] Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus Pister &
Christian Ferdinand (2016): CompCert – A Formally Verified Optimizing Compiler. In:
ERTS 2016: Embedded Real Time Software and Systems, SEE. Available at http:
//xavierleroy.org/publi/erts2016_compcert.pdf.

[38] Pierre Letouzey (2003): A New Extraction for Coq. In Herma Geuvers & Freek Wiedijk,
editors: Types for Proofs and Programs, Springer Berlin Heidelberg, Berlin, Heidelberg, pp.
200–219, doi:10.1007/3-540-39185-1_12.

68

http://dx.doi.org/10.1145/363235.363259
http://dx.doi.org/10.1007/978-3-319-89884-1_35
http://dx.doi.org/10.1145/3591259
https://inria.hal.science/hal-01399482
https://inria.hal.science/hal-01399482
https://nostarch.com/rust-programming-language-2nd-edition
https://nostarch.com/rust-programming-language-2nd-edition
http://dx.doi.org/10.1145/2560537
https://www.linuxjournal.com/article/8110
http://dx.doi.org/10.1145/2578855.2535841
http://dx.doi.org/10.1145/1538788.1538814
http://dx.doi.org/10.1007/978-3-642-35182-2_27
http://xavierleroy.org/publi/erts2016_compcert.pdf
http://xavierleroy.org/publi/erts2016_compcert.pdf
http://dx.doi.org/10.1007/3-540-39185-1_12

CHAPTER 13. LITERATURE

[39] Gregory Michael Malecha (2014): Extensible Proof Engineering in Intensional Type Theory.
Ph.D. thesis, Harvard University. Available at https://dash.harvard.edu/bitstream/
handle/1/17467172/MALECHA-DISSERTATION-2015.pdf. (Last access: Mar. 18 2024).

[40] William Mansky, Wolf Honoré & Andrew W. Appel (2020): Connecting Higher-Order
Separation Logic to a First-Order Outside World. In Peter Müller, editor: Program-
ming Languages and Systems, Springer International Publishing, Cham, pp. 428–455,
doi:10.1007/978-3-030-44914-8_16.

[41] Yaron Minsky, Anil Madhavapeddy & Jason Hickey (2013): Real World OCaml: Functional
Programming for the Masses. Real World OCaml, O’Reilly Media.

[42] Eric Mullen, Stuart Pernsteiner, James R. Wilcox, Zachary Tatlock & Dan Grossman (2018):
Œuf: minimizing the Coq extraction TCB. In: Proceedings of the 7th ACM SIGPLAN
International Conference on Certified Programs and Proofs, CPP 2018, Association for
Computing Machinery, New York, NY, USA, p. 172–185, doi:10.1145/3167089.

[43] Georg Neis, Chung-Kil Hur, Jan-Oliver Kaiser, Craig McLaughlin, Derek Dreyer & Viktor
Vafeiadis (2015): Pilsner: a compositionally verified compiler for a higher-order imperative
language. In: Proceedings of the 20th ACM SIGPLAN International Conference on Func-
tional Programming, ICFP 2015, Association for Computing Machinery, New York, NY,
USA, p. 166–178, doi:10.1145/2784731.2784764.

[44] Adriana Nicolae, Paul Irofti & Ioana Leuştean (2024): OpenBSD Formal Driver Verifica-
tion with SeL4. In: Innovative Security Solutions for Information Technology and Com-
munications: 16th International Conference, SecITC 2023, Bucharest, Romania, Novem-
ber 23–24, 2023, Revised Selected Papers, Springer-Verlag, Berlin, Heidelberg, p. 144–156,
doi:10.1007/978-3-031-52947-4_11.

[45] Tobias Nipkow, Lawrence Charles Paulson & Markus Wenzel (2002): Isabelle/HOL - A
Proof Assistant for Higher-Order Logic. Lecture Notes in Computer Science, Springer Berlin,
Heidelberg, doi:10.1007/3-540-45949-9.

[46] Zoe Paraskevopoulou (2020): Verified optimizations for functional languages.
doi:10.12681/eadd/55614.

[47] Zoe Paraskevopoulou & Andrew W. Appel (2019): Closure conversion is safe for space.
Proc. ACM Program. Lang. 3(ICFP), doi:10.1145/3341687.

[48] Zoe Paraskevopoulou, John M. Li & Andrew W. Appel (2021): Compositional optimizations
for CertiCoq. Proc. ACM Program. Lang. 5(ICFP), doi:10.1145/3473591.

[49] Mathieu Paturel, Isitha Subasinghe & Gernot Heiser (2023): First steps in verifying the
seL4 Core Platform. In: Proceedings of the 14th ACM SIGOPS Asia-Pacific Workshop on
Systems, APSys ’23, Association for Computing Machinery, New York, NY, USA, p. 9–15,
doi:10.1145/3609510.3609821.

[50] Christine Paulin-Mohring & Benjamin Werner (1993): Synthesis of ML programs in the
system Coq. J. Symb. Comput. 15(5–6), p. 607–640, doi:10.1016/S0747-7171(06)80007-6.

[51] John C. Reynolds (2002): Separation Logic: A Logic for Shared Mutable Data Structures.
In: Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science, LICS
’02, IEEE Computer Society, USA, p. 55–74, doi:10.1109/LICS.2002.1029817.

[52] Wang Shengyi (2019): Mechanized Verification of Graph-Manipulating Programs. Ph.D.
thesis. Available at https://dl.acm.org/doi/book/10.5555/AAI28828374. (Last access:
Mar. 18 2024).

69

https://dash.harvard.edu/bitstream/handle/1/17467172/MALECHA-DISSERTATION-2015.pdf
https://dash.harvard.edu/bitstream/handle/1/17467172/MALECHA-DISSERTATION-2015.pdf
http://dx.doi.org/10.1007/978-3-030-44914-8_16
http://dx.doi.org/10.1145/3167089
http://dx.doi.org/10.1145/2784731.2784764
http://dx.doi.org/10.1007/978-3-031-52947-4_11
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.12681/eadd/55614
http://dx.doi.org/10.1145/3341687
http://dx.doi.org/10.1145/3473591
http://dx.doi.org/10.1145/3609510.3609821
http://dx.doi.org/10.1016/S0747-7171(06)80007-6
http://dx.doi.org/10.1109/LICS.2002.1029817
https://dl.acm.org/doi/book/10.5555/AAI28828374

CHAPTER 13. LITERATURE

[53] Matthieu Sozeau, Abhishek Anand, Simon Boulier, Cyril Cohen, Yannick Forster, Fabian
Kunze, Gregory Malecha, Nicolas Tabareau & Théo Winterhalter (2020): The MetaCoq
Project. Journal of Automated Reasoning 64, pp. 947–999, doi:10.1007/s10817-019-09540-0.

[54] Matthieu Sozeau, Simon Boulier, Yannick Forster, Nicolas Tabareau & Théo Winterhalter
(2019): Coq Coq correct! verification of type checking and erasure for Coq, in Coq. Proc.
ACM Program. Lang. 4(POPL), doi:10.1145/3371076.

[55] Jr. Guy L. Steele (1978): Rabbit: A Compiler for Scheme. Technical Report, MIT, Cam-
bridge, MA, USA. Available at https://dspace.mit.edu/handle/1721.1/6913. (Last
access: Mar. 18 2024).

[56] Yong Kiam Tan, Magnus O. Myreen, Ramana Kumar, Anthony Fox, Scott Owens
& Michael Norrish (2016): A New Verified Compiler Backend for CakeML. In: In-
ternational Conference on Functional Programming (ICFP), ACM Press, pp. 60–73,
doi:10.1145/2951913.2951924.

[57] Peng Wang, Santiago Cuellar & Adam Chlipala (2014): Compiler verification meets cross-
language linking via data abstraction. In: Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Languages & Applications,
OOPSLA ’14, Association for Computing Machinery, New York, NY, USA, p. 675–690,
doi:10.1145/2660193.2660201.

[58] Shengyi Wang, Qinxiang Cao, Anshuman Mohan & Aquinas Hobor (2019): Certifying
graph-manipulating C programs via localizations within data structures. Proc. ACM Pro-
gram. Lang. 3(OOPSLA), doi:10.1145/3360597.

70

http://dx.doi.org/10.1007/s10817-019-09540-0
http://dx.doi.org/10.1145/3371076
https://dspace.mit.edu/handle/1721.1/6913
http://dx.doi.org/10.1145/2951913.2951924
http://dx.doi.org/10.1145/2660193.2660201
http://dx.doi.org/10.1145/3360597

Chapter 14

Reference Manuals and
Documentations

[59] Vladimir Brankov (2015): Inline Assembly for OCaml. Available at https://github.com/
vbrankov/OCaml-Workshop-2015. (Last access: Mar. 18 2024).

[60] The kernel development community (2024): Building External Modules. Available at https:
//www.kernel.org/doc/html/v6.7/kbuild/modules.html. (Last access: Mar. 18 2024).

[61] The kernel development community (2024): Command Change Detection. Available at
https://www.kernel.org/doc/html/v6.7/kbuild/makefiles.html. (Last access: Mar.
18 2024).

[62] The kernel development community (2024): Device Drivers. Available at https://
www.kernel.org/doc/html/v6.7/driver-api/driver-model/driver.html. (Last access:
Mar. 18 2024).

[63] The kernel development community (2024): Device Power Management Basics. Available at
https://www.kernel.org/doc/html/v6.7/driver-api/pm/devices.html. (Last access:
Mar. 18 2024).

[64] The kernel development community (2024): ftrace - Function Tracer. Available at https:
//www.kernel.org/doc/html/v6.7/trace/ftrace.html. (Last access: June. 06 2024).

[65] The kernel development community (2024): Input Subsystem. Available at https://www.
kernel.org/doc/html/v6.7/driver-api/input.html?highlight=input_device. (Last
access: Mar. 18 2024).

[66] The kernel development community (2024): Kernel Hacking, basic rules. Avail-
able at https://www.kernel.org/doc/html/v6.7/kernel-hacking/hacking.html#
some-basic-rules. (Last access: Mar. 18 2024).

[67] The kernel development community (2024): Kernel Stacks. Available at https://www.
kernel.org/doc/html/v6.7/arch/x86/kernel-stacks.html. (Last access: Mar. 18
2024).

[68] The kernel development community (2024): ktime accessors. Available at https://www.
kernel.org/doc/html/v6.7/core-api/timekeeping.html. (Last access: June. 06 2024).

71

https://github.com/vbrankov/OCaml-Workshop-2015
https://github.com/vbrankov/OCaml-Workshop-2015
https://www.kernel.org/doc/html/v6.7/kbuild/modules.html
https://www.kernel.org/doc/html/v6.7/kbuild/modules.html
https://www.kernel.org/doc/html/v6.7/kbuild/makefiles.html
https://www.kernel.org/doc/html/v6.7/driver-api/driver-model/driver.html
https://www.kernel.org/doc/html/v6.7/driver-api/driver-model/driver.html
https://www.kernel.org/doc/html/v6.7/driver-api/pm/devices.html
https://www.kernel.org/doc/html/v6.7/trace/ftrace.html
https://www.kernel.org/doc/html/v6.7/trace/ftrace.html
https://www.kernel.org/doc/html/v6.7/driver-api/input.html?highlight=input_device
https://www.kernel.org/doc/html/v6.7/driver-api/input.html?highlight=input_device
https://www.kernel.org/doc/html/v6.7/kernel-hacking/hacking.html#some-basic-rules
https://www.kernel.org/doc/html/v6.7/kernel-hacking/hacking.html#some-basic-rules
https://www.kernel.org/doc/html/v6.7/arch/x86/kernel-stacks.html
https://www.kernel.org/doc/html/v6.7/arch/x86/kernel-stacks.html
https://www.kernel.org/doc/html/v6.7/core-api/timekeeping.html
https://www.kernel.org/doc/html/v6.7/core-api/timekeeping.html

CHAPTER 14. REFERENCE MANUALS AND DOCUMENTATIONS

[69] The kernel development community (2024): The Linux Kernel API. Available at https:
//www.kernel.org/doc/html/v6.7/core-api/kernel-api.html. (Last access: Mar. 18
2024).

[70] The kernel development community (2024): Memory Allocation Guide. Available at https:
//www.kernel.org/doc/html/v6.7/core-api/memory-allocation.html. (Last access:
Mar. 18 2024).

[71] The kernel development community (2024): Message logging with printk. Available at
https://www.kernel.org/doc/html/v6.7/core-api/printk-basics.html. (Last access:
Mar. 18 2024).

[72] The kernel development community (2024): Platform Device and Drivers. Available at
https://www.kernel.org/doc/html/v6.7/driver-api/driver-model/platform.html.
(Last access: Mar. 18 2024).

[73] The kernel development community (2024): The Userspace I/O HOWTO. Available at
https://www.kernel.org/doc/html/v6.7/driver-api/uio-howto.html. (Last access:
Mar. 18 2024).

[74] The Chicken Scheme Community (2021): Chicken Scheme Compiler Documentation. Avail-
able at http://wiki.call-cc.org/man/5/Using%20the%20compiler. (Last access: Mar.
18 2024).

[75] The Kawa Community (2020): The Kawa Scheme language. Available at https://www.
gnu.org/software/kawa/. (Last access: Mar. 18 2024).

[76] The Scheme Community (2023): Scheme Implementations. Available at https://get.
scheme.org/. (Last access: Mar. 18 2024).

[77] IBM Corporation (2024): ulimit - Set process limits. Available at https://www.ibm.com/
docs/en/zos/3.1.0?topic=descriptions-ulimit-set-process-limits. (Last access:
Mar. 18 2024).

[78] Justin Ethier (2024): Cyclone Scheme. Available at https://justinethier.github.io/
cyclone/index. (Last access: Mar. 18 2024).

[79] Justin Ethier (2024): File Reference for runtime.c. Available at http://justinethier.
github.io/cyclone/c-api/runtime_8c.html. (Last access: Mar. 18 2024).

[80] Justin Ethier (2024): File Reference for types.h. Available at http://justinethier.
github.io/cyclone/c-api/types_8h_source.html. (Last access: Mar. 18 2024).

[81] Marc Feeley & contributors (2023): Gambit Scheme. Available at https://gambitscheme.
org/latest/. (Last access: Mar. 18 2024).

[82] Free Software Foundation, Inc (2023): The GNU make Documentation, v4.4.1, An Intro-
duction to Makefiles. Available at https://www.gnu.org/software/make/manual/make.
html#Introduction. (Last access: Mar. 18 2024).

[83] Free Software Foundation, Inc (2023): Using the GNU Compiler Collection
(GCC) v13.2, §4.4. Available at https://gcc.gnu.org/onlinedocs/gcc-13.2.0/gcc/
Characters-implementation.html. (Last access: Mar. 18 2024).

[84] Free Software Foundation, Inc (2024): The GNU C Compiler Collection webpage. Available
at https://gcc.gnu.org/. (Last access: Mar. 18 2024).

72

https://www.kernel.org/doc/html/v6.7/core-api/kernel-api.html
https://www.kernel.org/doc/html/v6.7/core-api/kernel-api.html
https://www.kernel.org/doc/html/v6.7/core-api/memory-allocation.html
https://www.kernel.org/doc/html/v6.7/core-api/memory-allocation.html
https://www.kernel.org/doc/html/v6.7/core-api/printk-basics.html
https://www.kernel.org/doc/html/v6.7/driver-api/driver-model/platform.html
https://www.kernel.org/doc/html/v6.7/driver-api/uio-howto.html
http://wiki.call-cc.org/man/5/Using%20the%20compiler
https://www.gnu.org/software/kawa/
https://www.gnu.org/software/kawa/
https://get.scheme.org/
https://get.scheme.org/
https://www.ibm.com/docs/en/zos/3.1.0?topic=descriptions-ulimit-set-process-limits
https://www.ibm.com/docs/en/zos/3.1.0?topic=descriptions-ulimit-set-process-limits
https://justinethier.github.io/cyclone/index
https://justinethier.github.io/cyclone/index
http://justinethier.github.io/cyclone/c-api/runtime_8c.html
http://justinethier.github.io/cyclone/c-api/runtime_8c.html
http://justinethier.github.io/cyclone/c-api/types_8h_source.html
http://justinethier.github.io/cyclone/c-api/types_8h_source.html
https://gambitscheme.org/latest/
https://gambitscheme.org/latest/
https://www.gnu.org/software/make/manual/make.html#Introduction
https://www.gnu.org/software/make/manual/make.html#Introduction
https://gcc.gnu.org/onlinedocs/gcc-13.2.0/gcc/Characters-implementation.html
https://gcc.gnu.org/onlinedocs/gcc-13.2.0/gcc/Characters-implementation.html
https://gcc.gnu.org/

CHAPTER 14. REFERENCE MANUALS AND DOCUMENTATIONS

[85] Free Software Foundation, Inc (2024): The GNU C Library Reference Manual, v2.39,
Consistency Checking. Available at https://sourceware.org/glibc/manual/2.39/html_
node/Consistency-Checking.html#index-assertions. (Last access: Mar. 18 2024).

[86] Free Software Foundation, Inc (2024): The GNU C Library Reference Manual, v2.39, In-
troduction to Non-Local Exits. Available at https://sourceware.org/glibc/manual/2.
39/html_node/Non_002dLocal-Intro.html. (Last access: Mar. 18 2024).

[87] Free Software Foundation, Inc (2024): The GNU C Library webpage. Available at https:
//sourceware.org/glibc/. (Last access: Mar. 18 2024).

[88] Free Software Foundation, Inc (2024): MIT/GNU Scheme. Available at https://www.gnu.
org/software/mit-scheme/. (Last access: Mar. 18 2024).

[89] INRIA (2022): The OCaml Manual, Interfacing C with OCaml. Available at https://v2.
ocaml.org/releases/4.14/htmlman/intfc.html. (Last access: Mar. 18 2024).

[90] INRIA (2022): The OCaml Manual, Native-code compilation (ocamlopt). Available at
https://v2.ocaml.org/releases/4.14/htmlman/native.html. (Last access: Mar. 18
2024).

[91] Inria, CNRS and contributors (2021): The Coq Core Language. Available at https://coq.
inria.fr/doc/v8.17/refman/language/core/index.html. (Last access: Mar. 18 2024).

[92] Inria, CNRS and contributors (2021): The Coq Documentation, Program extraction. Avail-
able at https://coq.inria.fr/doc/V8.17.0/refman/addendum/extraction.html. (Last
access: Mar. 18 2024).

[93] ISO/IEC (2011): Committee Draft N1570: Programming languages — C. Available at
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf. (Last access: Mar.
18 2024).

[94] Michael K. Johnson (1996): User-space device drivers. Available at https://tldp.org/
LDP/khg/HyperNews/get/devices/fake.html. (Last access: Mar. 18 2024).

[95] Jakub Klinkovský (2023): Broadcom wireless. Available at https://wiki.archlinux.org/
title/Broadcom_wireless. (Wiki Entry timestamp: 9 September 2023, at 07:35, Last
access: June. 04 2024).

[96] Xavier Leroy, Collège de France & Inria (2023): CompCert 3.13 Manual. Available at
https://compcert.org/man/manual003.html#sec23. (Last access: Mar. 18 2024).

[97] H.J. Lu, Michael Matz, Milind Girkar, Jan Hubička, Andreas Jaeger & Mark Mitchell
(2024): System V Application Binary Interface AMD64 Architecture Processor Supplement.
Available at https://gitlab.com/x86-psABIs/x86-64-ABI/-/jobs/artifacts/master/
raw/x86-64-ABI/abi.pdf?job=build. (Last access: Mar. 18 2024).

[98] Jonas R. (2021): Comment on issue about missing .cmd file. Available at https://github.
com/jbaublitz/knock-out/issues/9#issuecomment-823894583. (Last access: Mar. 18
2024).

[99] The CertiCoq Team (2024): The CertiCoq github project page, The CertiCoq plugin. Avail-
able at https://github.com/CertiCoq/certicoq/wiki/The-CertiCoq-plugin. (Last ac-
cess: Mar. 18 2024).

[100] The GHC Team (2023): Runtime system (RTS) options. Available at https://downloads.
haskell.org/ghc/9.8.1/docs/users_guide/runtime_control.html. (Last access: Mar.
18 2024).

73

https://sourceware.org/glibc/manual/2.39/html_node/Consistency-Checking.html#index-assertions
https://sourceware.org/glibc/manual/2.39/html_node/Consistency-Checking.html#index-assertions
https://sourceware.org/glibc/manual/2.39/html_node/Non_002dLocal-Intro.html
https://sourceware.org/glibc/manual/2.39/html_node/Non_002dLocal-Intro.html
https://sourceware.org/glibc/
https://sourceware.org/glibc/
https://www.gnu.org/software/mit-scheme/
https://www.gnu.org/software/mit-scheme/
https://v2.ocaml.org/releases/4.14/htmlman/intfc.html
https://v2.ocaml.org/releases/4.14/htmlman/intfc.html
https://v2.ocaml.org/releases/4.14/htmlman/native.html
https://coq.inria.fr/doc/v8.17/refman/language/core/index.html
https://coq.inria.fr/doc/v8.17/refman/language/core/index.html
https://coq.inria.fr/doc/V8.17.0/refman/addendum/extraction.html
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
https://tldp.org/LDP/khg/HyperNews/get/devices/fake.html
https://tldp.org/LDP/khg/HyperNews/get/devices/fake.html
https://wiki.archlinux.org/title/Broadcom_wireless
https://wiki.archlinux.org/title/Broadcom_wireless
https://compcert.org/man/manual003.html#sec23
https://gitlab.com/x86-psABIs/x86-64-ABI/-/jobs/artifacts/master/raw/x86-64-ABI/abi.pdf?job=build
https://gitlab.com/x86-psABIs/x86-64-ABI/-/jobs/artifacts/master/raw/x86-64-ABI/abi.pdf?job=build
https://github.com/jbaublitz/knock-out/issues/9#issuecomment-823894583
https://github.com/jbaublitz/knock-out/issues/9#issuecomment-823894583
https://github.com/CertiCoq/certicoq/wiki/The-CertiCoq-plugin
https://downloads.haskell.org/ghc/9.8.1/docs/users_guide/runtime_control.html
https://downloads.haskell.org/ghc/9.8.1/docs/users_guide/runtime_control.html

CHAPTER 14. REFERENCE MANUALS AND DOCUMENTATIONS

[101] The GHC Team (2023): Runtime system (RTS) sources. Available at https://gitlab.
haskell.org/ghc/ghc/-/blob/ghc-9.8.1-release/rts/Weak.c?ref_type=tags. (Last
access: Mar. 18 2024).

[102] The uClibc-ng Team (2024): The uClibc-ng webpage. Available at https://uclibc-ng.
org/. (Last access: Mar. 18 2024).

[103] The Clang Team (2024): Clang: a C language family frontend for LLVM. Available at
https://clang.llvm.org/. (Last access: Mar. 18 2024).

[104] Linux Torwalds (2004): Re: How to use floating point in a module? Available at https:
//yarchive.net/comp/linux/kernel_fp.html. (Last access: Mar. 18 2024).

[105] Linux Torwalds (2016): BUG_ON() in workingset_node_shadows_dec() triggers. Avail-
able at https://lkml.org/lkml/2016/10/4/1. (Last access: Mar. 18 2024).

[106] Andrew Waterman & Krste Asanović (2019): The RISC-V Instruction Set Manual. Avail-
able at https://riscv.org/specifications/. (Last access: Mar. 18 2024).

74

https://gitlab.haskell.org/ghc/ghc/-/blob/ghc-9.8.1-release/rts/Weak.c?ref_type=tags
https://gitlab.haskell.org/ghc/ghc/-/blob/ghc-9.8.1-release/rts/Weak.c?ref_type=tags
https://uclibc-ng.org/
https://uclibc-ng.org/
https://clang.llvm.org/
https://yarchive.net/comp/linux/kernel_fp.html
https://yarchive.net/comp/linux/kernel_fp.html
https://lkml.org/lkml/2016/10/4/1
https://riscv.org/specifications/

Chapter 15

Software Artifacts

[107] Xia Li yao et al (2024): Examples folder of the VeriFFI github project page. Available at
https://github.com/Lysxia/coq-simple-io. (Last access: June 04 2024).

[108] bootlin (2024): Elixir Cross Referencer, longjmp identifier. Available at https://elixir.
bootlin.com/linux/v6.7/A/ident/longjmp. (Last access: Mar. 18 2024).

[109] The kernel development community (2017): The Linux Kernel Sources, definition of
EINVAL. Available at https://github.com/torvalds/linux/blob/v6.7/include/uapi/
asm-generic/errno-base.h#L26. (Last access: Mar. 18 2024).

[110] The kernel development community (2017): The Linux Kernel Sources, Log Levels Header
File. Available at https://github.com/torvalds/linux/blob/v6.7/tools/include/
linux/kern_levels.h. (Last access: Mar. 18 2024).

[111] The kernel development community (2021): The Linux Kernel Sources, setjmp_64.S. Avail-
able at https://github.com/torvalds/linux/blob/v6.7/arch/x86/um/setjmp_64.S.
(Last access: Mar. 18 2024).

[112] The kernel development community (2022): The Linux Kernel Sources, definition
of EV_SND. Available at https://github.com/torvalds/linux/blob/v6.7/include/
uapi/linux/input-event-codes.h#L45. (Last access: Mar. 18 2024).

[113] The kernel development community (2023): The Linux Kernel Sources, Bug Header File.
Available at https://github.com/torvalds/linux/blob/v6.7/include/asm-generic/
bug.h. (Last access: Mar. 18 2024).

[114] The kernel development community (2023): The Linux Kernel Sources, exit.c. Available
at https://github.com/torvalds/linux/blob/v6.7/kernel/exit.c#L809. (Last access:
Mar. 18 2024).

[115] The kernel development community (2023): The Linux Kernel Sources, IO. Avail-
able at https://github.com/torvalds/linux/blob/v6.7/include/asm-generic/io.h.
(Last access: Mar. 18 2024).

[116] The kernel development community (2023): The Linux Kernel Sources, PC Speaker
Driver. Available at https://github.com/torvalds/linux/blob/v6.7/drivers/input/
misc/pcspkr.c. (Last access: Mar. 18 2024).

75

https://github.com/Lysxia/coq-simple-io
https://elixir.bootlin.com/linux/v6.7/A/ident/longjmp
https://elixir.bootlin.com/linux/v6.7/A/ident/longjmp
https://github.com/torvalds/linux/blob/v6.7/include/uapi/asm-generic/errno-base.h#L26
https://github.com/torvalds/linux/blob/v6.7/include/uapi/asm-generic/errno-base.h#L26
https://github.com/torvalds/linux/blob/v6.7/tools/include/linux/kern_levels.h
https://github.com/torvalds/linux/blob/v6.7/tools/include/linux/kern_levels.h
https://github.com/torvalds/linux/blob/v6.7/arch/x86/um/setjmp_64.S
https://github.com/torvalds/linux/blob/v6.7/include/uapi/linux/input-event-codes.h#L45
https://github.com/torvalds/linux/blob/v6.7/include/uapi/linux/input-event-codes.h#L45
https://github.com/torvalds/linux/blob/v6.7/include/asm-generic/bug.h
https://github.com/torvalds/linux/blob/v6.7/include/asm-generic/bug.h
https://github.com/torvalds/linux/blob/v6.7/kernel/exit.c#L809
https://github.com/torvalds/linux/blob/v6.7/include/asm-generic/io.h
https://github.com/torvalds/linux/blob/v6.7/drivers/input/misc/pcspkr.c
https://github.com/torvalds/linux/blob/v6.7/drivers/input/misc/pcspkr.c

CHAPTER 15. SOFTWARE ARTIFACTS

[117] The kernel development community (2023): The Linux Kernel Sources, spinlocking. Avail-
able at https://github.com/torvalds/linux/blob/v6.7/include/linux/spinlock.h.
(Last access: Mar. 18 2024).

[118] The kernel development community (2024): The Linux Kernel Sources, Kernel Makefile.
Available at https://github.com/torvalds/linux/blob/v6.7/Makefile. (Last access:
Mar. 18 2024).

[119] The OCaml community (2020): OCaml misc.c Sources. Available at https://github.
com/ocaml/ocaml/blob/4.14.1/runtime/misc.c. (Last access: Mar. 18 2024).

[120] The OCaml community (2021): OCaml floats.c Sources. Available at https://github.
com/ocaml/ocaml/blob/4.14.1/runtime/floats.c. (Last access: Mar. 18 2024).

[121] The OCaml community (2021): OCaml memory.c Sources. Available at https://github.
com/ocaml/ocaml/blob/4.14.1/runtime/memory.c. (Last access: Mar. 18 2024).

[122] The OCaml community (2021): OCaml memory.c Sources. Available at https://github.
com/ocaml/ocaml/blob/4.14.1/runtime/major_gc.c. (Last access: Mar. 18 2024).

[123] The OCaml community (2021): OCaml mlvalues Sources. Available at https://github.
com/ocaml/ocaml/blob/4.14.1/runtime/caml/mlvalues.h. (Last access: Mar. 18 2024).

[124] The OCaml community (2021): OCaml sys.c Sources. Available at https://github.com/
ocaml/ocaml/blob/4.14.1/runtime/sys.c. (Last access: Mar. 18 2024).

[125] The CertiGraph Project Contributors (2024): The CertiGraph Github Repository. Avail-
able at https://github.com/CertiGraph/CertiGraph. (Last access: Mar. 18 2024).

[126] The Œuf Project Contributors (2019): The Œuf Github Repository. Available at https:
//github.com/uwplse/oeuf. (Last access: Mar. 18 2024).

[127] Mario Frank (2024): A Partial Formalisation of the Linux PC Speaker Driver,
doi:10.5281/zenodo.10715853.

[128] Mario Frank (2024): Adoption of CertiCoq runtime for compatibility with Linux Kernel
Modules. Available at https://github.com/eladrion/certicoq/tree/fphd. (Last access:
Mar. 18 2024).

[129] Mario Frank (2024): Adoption of VeriFFFI functionality for compatibility with
Linux Kernel Modules. Available at https://github.com/eladrion/VeriFFI/tree/
f60c69f3ab8afe2a6755d345f42b46b45c043f01. (Last access: Mar. 18 2024).

[130] Mario Frank (2024): Extend the Extraction Plugin to synthesise OCaml external and call-
back definitions for interfacing C/C++. Available at https://github.com/coq/coq/pull/
18270/. (Last access: Mar. 18 2024).

[131] Mario Frank (2024): The (experimental and partially) Certified Linux PC Speaker Driver,
doi:10.5281/zenodo.10707318.

[132] Mario Frank, Mario Egger & Andreas Otto (2023): The OCaml Subsystem for L4Re and
the Cross ocamlopt OPAM packages repo, doi:10.5281/zenodo.10192040.

[133] Kernkonzept GmbH (2023): The L4Re Operating System Wiki. Available at https://
github.com/kernkonzept/manifest/wiki. (Last access: Mar. 18 2024).

[134] Kernkonzept GmbH (2024): The L4Re Microkernel Repository. Available at https://
github.com/kernkonzept/fiasco. (Last access: Mar. 18 2024).

76

https://github.com/torvalds/linux/blob/v6.7/include/linux/spinlock.h
https://github.com/torvalds/linux/blob/v6.7/Makefile
https://github.com/ocaml/ocaml/blob/4.14.1/runtime/misc.c
https://github.com/ocaml/ocaml/blob/4.14.1/runtime/misc.c
https://github.com/ocaml/ocaml/blob/4.14.1/runtime/floats.c
https://github.com/ocaml/ocaml/blob/4.14.1/runtime/floats.c
https://github.com/ocaml/ocaml/blob/4.14.1/runtime/memory.c
https://github.com/ocaml/ocaml/blob/4.14.1/runtime/memory.c
https://github.com/ocaml/ocaml/blob/4.14.1/runtime/major_gc.c
https://github.com/ocaml/ocaml/blob/4.14.1/runtime/major_gc.c
https://github.com/ocaml/ocaml/blob/4.14.1/runtime/caml/mlvalues.h
https://github.com/ocaml/ocaml/blob/4.14.1/runtime/caml/mlvalues.h
https://github.com/ocaml/ocaml/blob/4.14.1/runtime/sys.c
https://github.com/ocaml/ocaml/blob/4.14.1/runtime/sys.c
https://github.com/CertiGraph/CertiGraph
https://github.com/uwplse/oeuf
https://github.com/uwplse/oeuf
http://dx.doi.org/10.5281/zenodo.10715853
https://github.com/eladrion/certicoq/tree/fphd
https://github.com/eladrion/VeriFFI/tree/f60c69f3ab8afe2a6755d345f42b46b45c043f01
https://github.com/eladrion/VeriFFI/tree/f60c69f3ab8afe2a6755d345f42b46b45c043f01
https://github.com/coq/coq/pull/18270/
https://github.com/coq/coq/pull/18270/
http://dx.doi.org/10.5281/zenodo.10707318
http://dx.doi.org/10.5281/zenodo.10192040
https://github.com/kernkonzept/manifest/wiki
https://github.com/kernkonzept/manifest/wiki
https://github.com/kernkonzept/fiasco
https://github.com/kernkonzept/fiasco

CHAPTER 15. SOFTWARE ARTIFACTS

[135] Kernkonzept GmbH (2024): L4Re NVMe server. Available at https://github.com/
kernkonzept/nvme-driver. (Last access: Mar. 18 2024).

[136] Johnathan Nightingale, Chris Wong, Rhonda D’Vine & Jérôme Lafréchoux (2013): beep.
Available at https://github.com/johnath/beep. (Last access: June 06 2024).

[137] Raster Software, Vigo (2018): An user-space driver for Silead’s GSL1680 capacitive touch
screen driver chip. Available at https://github.com/rastersoft/gsl1680. (Last access:
Mar. 18 2024).

[138] Manuel Serrano (2022): The Bigloo Scheme Sources, cerror.c. Available at https://
github.com/manuel-serrano/bigloo/blob/4.5b/runtime/Clib/cerror.c. (Last access:
Mar. 18 2024).

[139] Manuel Serrano (2024): The Bigloo Scheme Sources. Available at https://github.com/
manuel-serrano/bigloo. (Last access: Mar. 18 2024).

[140] Cisco Systems (2024): The Chez Scheme Sources. Available at https://github.com/
cisco/ChezScheme. (Last access: Mar. 18 2024).

[141] The CakeML Team (2024): CakeML: A Verified Implementation of ML. Available at
https://github.com/CakeML/cakeml. (Last access: Mar. 18 2024).

[142] The CertiCoq Team (2024): The CertiCoq github project page, Plugin runtime. Available at
https://github.com/CertiCoq/certicoq/tree/master/plugin/runtime. (Last access:
Mar. 18 2024).

[143] The VeriFFI Team (2024): Examples folder of the VeriFFI github project page. Available
at https://github.com/CertiCoq/VeriFFI/blob/main/examples/. (Last access: Mar.
18 2024).

[144] The VeriFFI Team (2024): The VeriFFI github project page. Available at https://github.
com/CertiCoq/VeriFFI. (Last access: Mar. 18 2024).

[145] Gwen Weinholt (2024): Loko Scheme. Available at https://gitlab.com/weinholt/loko.
(Last access: Mar. 18 2024).

77

https://github.com/kernkonzept/nvme-driver
https://github.com/kernkonzept/nvme-driver
https://github.com/johnath/beep
https://github.com/rastersoft/gsl1680
https://github.com/manuel-serrano/bigloo/blob/4.5b/runtime/Clib/cerror.c
https://github.com/manuel-serrano/bigloo/blob/4.5b/runtime/Clib/cerror.c
https://github.com/manuel-serrano/bigloo
https://github.com/manuel-serrano/bigloo
https://github.com/cisco/ChezScheme
https://github.com/cisco/ChezScheme
https://github.com/CakeML/cakeml
https://github.com/CertiCoq/certicoq/tree/master/plugin/runtime
https://github.com/CertiCoq/VeriFFI/blob/main/examples/
https://github.com/CertiCoq/VeriFFI
https://github.com/CertiCoq/VeriFFI
https://gitlab.com/weinholt/loko

Acknowledgements

I would like to express my gratitude to all those who have provided me with
invaluable support. Firstly, I would like to thank my family for their unwavering
support throughout the years. The journey towards completing my PhD thesis was
not always straightforward, and I am grateful that I was able to finish it thanks
to your encouragement. I love you all.

Secondly, I would like to express my appreciation to Prof. Dr. Christoph Kreitz,
who saw potential in me even though I was a relatively average student. Further-
more, I would like to express my gratitude to the current and former members of
the theoretical computer science chair, in particular Dr. Eva Richter, Tim Richter,
Dr. Sebastian Böhne, Nuria Brede and Dr. Jens Otten. Our numerous formal
discussions undoubtedly contributed to the development of my reasoning abili-
ties. Additionally, we enjoyed fruitful collaboration in both scientific and teaching
endeavours.

Furthermore, I would like to express my gratitude to the numerous reviewers,
both of scientific contributions and software projects, whose input has contributed
to the quality of these works. In particular, I would like to thank the reviewers
of this thesis for identifying areas for improvement, which have enabled me to
enhance the thesis.

78

	Title
	Imprint

	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Listings
	Introduction
	I Technical Background and Related Work
	Device Drivers
	User Space vs. Kernel Space Software
	Kernel Space Drivers
	User Space Drivers

	Verification and Synthesis of Software
	Verification of Software
	Synthesis of Certified Software

	Discussion

	II Synthesis and Runtimes for Device Drivers
	Extending the Coq Extraction Plugin
	Synthesis of Foreign Function Calls to C
	Synthesis of OCaml Entry Points
	Open Work

	Extracting Certified Device Driver Code to Clight
	Adapting the CertiCoq Garbage Collection
	Adapting the Synthesised Code and Other Runtime Components

	Discussion

	III A Partially Synthesised Device Driver
	From Code to Formalisation
	Constructing a Linux Device Driver
	Performance Evaluation
	Conclusion

	IV Used Sources
	Introduction
	Literature
	Reference Manuals and Documentations
	Software Artifacts

	Acknowledgements

