
Technische Berichte Nr. 55

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

Proceedings of the

4th Many-core

Applications Research

Community (MARC)

Symposium

Peter Tröger, Andreas Polze (Eds.)

Technische Berichte des Hasso-Plattner-Instituts für
 Softwaresystemtechnik an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam | 55

Peter Tröger | Andreas Polze (Eds.)

Proceedings of the 4th Many-core Applications
Research Community (MARC) Symposium

Universitätsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.de/ abrufbar.

Universitätsverlag Potsdam 2012
http://info.ub.uni-potsdam.de/verlag.htm

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschützt.

Online veröffentlicht auf dem Publikationsserver der Universität Potsdam
URL http://pub.ub.uni-potsdam.de/volltexte/2012/5789/
URN urn:nbn:de:kobv:517-opus-57898
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-57898

Zugleich gedruckt erschienen im Universitätsverlag Potsdam:
ISBN 978-3-86956-169-1

MESSAGE FROM THE PROGRAM CO-CHAIRS

In continuation of a successful series of events, the 4th symposium of the Many-core Applications Research Community

(MARC) took place at the Hasso Plattner Institute for Software Systems Engineering (HPI) in Potsdam. On December 8th and
9th 2011, researchers from different fields presented their current and future work on many-core hardware architectures, their
programming models, and the resulting research questions for the upcoming generation of heterogeneous parallel systems.

While the Intel Single Chip Cloud Computer (SCC) serves as common research platform for most MARC members, other
interesting research on next generation many-core platforms was also discussed on this event. The symposium focused on
topics such as

• Operating system support for novel many-core architectures
• Virtualization solutions to deal with hardware limitations
• Dealing with legacy software on novel many-core architectures
• New approaches for leveraging on-die messaging facilities
• Traditional and new programming models for novel many-core hardware
• Concepts for runtime systems on novel many-core hardware
• Performance issues with modern on-die messaging facilities and caching infrastructures

This proceedings include 14 papers from 5 symposium sessions. Every paper was reviewed by at least three reviewers from
the program committee, consisting of:

• Dr. Ulrich Bretthauer (Intel)
• Jaewoong Chung (Intel)
• Saurabh Dighe (Intel)
• Prof. Dr. Michael Gerndt (TU München)
• Diana Göhringer (Fraunhofer IOSB)
• Matthias Gries (Intel)
• Werner Haas (Intel)
• Prof. Dr. Hans-Ulrich Heiß (TU Berlin)
• Jim P. Held (Intel)
• Prof. Dr. Robert Hirschfeld HPI)
• Ulrich Hoffmann (Intel)
• Jason M. Howard (Intel)

• Dr. Michael Hübner (Karlsruhe Institute of Technology)
• Timothy M. Mattson (Intel)
• Georg Müller (Fujitsu)
• Prof. Dr. Jörg Nolte (BTU Cottbus)
• Prof. Dr. Andreas Polze (HPI)
• Dr. Felix Salfner (SAP Innovation Center)
• Prof. Dr. Bettina Schnor (Uni Potsdam)
• Prof. Dr. Theo Ungerer (Universität Augsburg)
• Dr. Peter Tröger (HPI)
• Dr. Daniel Versick (University of Rostock)
• Rob F. Van Der Wijngaart (Intel)

We would like to thank our program committee members for their hard work and for their suggestions in the selection of
papers. We would like to thank all those who submitted papers for their efforts and for the quality of their submissions. We
also would like to thank Jan-Arne Sobania and Sabine Wagner for their assistance and support.

Thank you for your active participation in the 4th MARC Symposium. We hope you found this event to be productive and
enjoyable, and we look forward to seeing you next year at 5th MARC symposium and related events.

Peter Tröger & Andreas Polze, Hasso Plattner Institute, University of Potsdam, Germany

Potsdam, January 2012

CONTENTS

I Isaias A. Compres and Michael Gerndt.
Improved RCKMPI’s SCCMPB Channel: Scaling and Dynamic Processes Support 1

II Stefan Lankes, Pablo Reble, Carsten Clauss and Oliver Sinnen
The Path to MetalSVM: Shared Virtual Memory for the SCC 7

III Vincent Vidal, Simon Vernhes, and Guillaume Infantes
Parallel AI Planning on the SCC 15

IV Bertrand Putigny, Brice Goglin, and Denis Barthou
Performance modeling for power consumption reduction on SCC 21

V John-Nicholas Furst and Ayse K. Coskun
Performance and Power Analysis of RCCE Message Passing on the Intel Single-Chip Cloud Computer 27

VI Kouhei Ueno and Koichi Sasada
Ruby on SCC: Casually Programming SCC with Ruby 33

VII Tommaso Cucinotta and Vivek Subramanian
Characterization and analysis of pipelined applications on the Intel SCC 37

VIII Bruno d’Ausbourg, Marc Boyer, Eric Noulard, and Claire Pagetti
Deterministic Execution on Many-Core Platforms: application to the SCC 43

IX Paul Cockshott and Alexandros Koliousis
The SCC and the SICSA Multi-core Challenge 49

X Roy Bakker and Michiel W. van Tol
Experiences in porting the SVP concurrency model to the 48-core Intel SCC using dedicated copy cores 55

XI Björn Saballus, Stephan-Alexander Posselt, and Thomas Fuhrmann
Caching Strategies and Access Path Optimizations for a Distributed Runtime System in SCC Clusters 61

XII Thomas Prescher, Randolf Rotta, and Jörg Nolte
Flexible Sharing and Replication Mechanisms for Hybrid Memory Architectures 67

XIII Jan-Arne Sobania, Peter Tröger, and Andreas Polze
Towards Symmetric Multi-Processing Support for Operating Systems on the SCC 73

XIV Markus Partheymüller, Julian Stecklina, and Björn Döbel
Fiasco.OC on the SCC 79

Improved RCKMPI’s SCCMPB Channel:
Scaling and Dynamic Processes Support

Isaı́as A. Comprés Ureña and Michael Gerndt
Technical University of Munich (TUM), Institute of Informatics,

Boltzmannstr. 3, 85748 Garching, Germany
{compresu,gerndt}@in.tum.de

Abstract—The Single-chip Cloud Computer (SCC), a 48 core
experimental processor from Intel labs, is a platform for parallel
programming research. Its hardware features and memory orga-
nization map naturally to message passing models. Standard and
non-standard message passing libraries are already available for
the SCC; one of the standard solutions is the RCKMPI library.
RCKMPI’s main features are three SCC specific MPICH2
channels. In this work, improvements to the SCCMPB channel
are introduced; performance results for the new channel show
better scaling with process count. The added flexibility of the
new design also allows for the support of dynamic processes, a
feature previously not supported in RCKMPI.

Index Terms—MPI, dynamic processes, communication proto-
col

I. INTRODUCTION AND RELATED WORK

The Single-chip Cloud Computer (SCC)[2] from Intel Labs
is an attractive platform for parallel programming research.
Having a distributed memory organization, the message pass-
ing model maps naturally to it. The Message Passing Interface
(MPI) is a dominant standard for message passing; it is widely
used in super computers and has been shown to scale to
hundreds of thousands of cores. A large number of parallel
applications that use MPI are available; these applications can
be compiled and run in systems that have a compatible MPI
library. Support for MPI on the SCC was possible since early
in the chip’s life, through the use of a network driver[11] and
MPI libraries configured to use sockets. The downside of using
the driver was that communication performance was much
lower than the lightweight but non-standard solutions. In order
to reach acceptable performance with message passing on the
SCC, applications needed to be ported to its libraries, like
RCCE[3] or its non-blocking improvement (iRCCE[4] from
RTWH Aachen). In addition to RCCE, other projects have
implemented their own message passing based communication
protocols, like the TACO[9] and X10[10] ports to the SCC.

Compatibility with MPI with no significant compromise in
performance is desirable in new parallel architectures, given
the large amount of software and tools available for it. There
are currently two MPI projects for the SCC: the RCKMPI[5]
and the SCC-MPICH[8] libraries. With the introduction of
RCKMPI, MPI applications reached performance that was
comparable to that of the non-standard lightweight solutions
on the SCC. RCKMPI’s main contribution was the introduc-
tion of three SCC specific MPICH2[7] channels. Being a first

attempt at efficient MPI on the SCC, it is natural to expect
that there is potential for performance improvements in the
channels; one such improvement was presented by Christgau
et al. in [1], by the addition of topology-awareness to the
library. In this paper, an improved communication protocol
is presented for the SCCMPB channel of RCKMPI; the new
design shows improvements in scaling with process count and
supports dynamic processes from MPI-2.

II. IMPROVED SCCMPB CHANNEL

RCKMPI introduced three SCC channels: SCCMPB, SCC-
SHM and SCCMULTI. The SCCMPB channel uses only the
Message Passing Buffer (MPB) for communication; in this
work, this channel is improved.

At initialization for the SCCMPB protocol, each MPB of a
participating process was partitioned in sections of equal size.
The main disadvantage of this design is that the size of each
EWS becomes smaller as the size of an MPI job increases;
in the 48 process case, the EWS size is 160 bytes (with
12 bytes used for protocol metadata). The size of the EWS
influences channel performance, since with smaller buffers the
communication protocol requires more round trips to complete
the transmission of a packet. The second disadvantage is that,
because these are initialized at job startup and remain static
until job termination, MPI-2 dynamic processes can not be
supported. Finally, it was not possible to share the MPB with
other subsystems or use it directly for optimized collectives.
The new channel design addresses all of these shortcomings.

The new SCCMPB channel is partitioned differently and
works with two different protocols. The first protocol is the
original one found in RCKMPI and is labeled as the base
protocol. The second protocol is labeled as the extended
protocol, and it depends on the base protocol for coordination.

Extended Protocol (32x128B) Base Protocol (48x64B) Other
(1KB)

Fig. 1. MPB areas used by the base and extended protocols.

A. Base Protocol

Similarly to the channels in RCKMPI, the base proto-
col consists of statically allocated Exclusive Write Sections
(EWSs) placed at the receiver and a polling based strategy for

1

new message detection. In contrast to the original, the size
of these EWSs is not modified depending of the number of
participating processes. They are always 48 and fixed at 64
bytes in size, for a total of 3KBs at each core’s MPB. The 64
bytes in the static EWS setup allows for 48 bytes of payload.
The remaining 16 bytes are used by the channel for metadata.
The size of 64 bytes was selected based on the following
observations:

• MPICH2 packet headers are 32 bytes.
• Latency sensitive operations (like barriers) benefit from

dedicated buffers.
• Packets smaller than 48 bytes occur with high frequency

at the channel.
The last was first observed empirically by using RCKMPI’s

channel statistics feature. Inspecting the MPICH2 device layer
reveals that preamble steps involving barriers and other col-
lective operations are common, when operating with larger
buffers; these preamble operations result in small point to point
traffic that is typically smaller than 16 bytes in payload. A
packet with 16 bytes of payload result in 48 bytes total at the
channel (32 header bytes plus 16 payload bytes).

The 16 bytes of metadata contain the following:
• Checksum: A checksum to improve consistency in case

of a hardware error.
• General purpose EWS control: Used to control access

to the general purpose EWS (gEWS) used by the ex-
tended protocol (described in detail in II-B).

• Message size: Bytes of payload currently available in the
EWS. This size can exceed 48 bytes if part of the payload
is located at the gEWS.

• Packet size: This is the total size of the MPICH2 packet
in transit. This value is independent of the actual payload
available in the EWS.

• Receive sequence: This value is used to indicate that a
message was received at the remote core that owns the
EWS.

• Send sequence: Sequence number of the message that is
currently in the payload area of the EWS.

The progress engine polls this metadata when receiving
messages. It determines if to use the base protocol together
with the extended protocol, based on the gEWS control data.

B. Extended Protocol

The extended protocol uses a 4KB EWS that is labeled
as the general purpose EWS (gEWS) internally. This buffer
differs from the original EWSs in that it is placed at the sender
and can be used to send messages to several receivers simul-
taneously. The gEWS can also be locked for its use in other
operations, like spawn operations or optimized collectives. The
size of 4KB was selected because it is the page size for the
P54C architecture and it can be controlled with a single 32 bit
field.

Together with the previously available metadata, a gEWS
control field (32 bits) is specified by the sender. Each bit
represents 128 bytes of the gEWS. All zeros indicate that the

General Purpose EWS

Fig. 2. Example gEWS state for 1536 bytes (bit field set to 0xFFF00000).

gEWS was not used for a particular message, while all ones
indicates that the full 4KBs were used. When a new message
is detected at the receiver, it reads the specified number of
bytes starting from the payload area of the base protocol and
then (if available) from the specified gEWS 128 byte slots.

Ring Buffer 0

Ring Buffer 1

General Purpose EWS

Fig. 3. Ring buffers on a fragmented general purpose EWS.

The extended protocol design can be used to serialize
messages by writing payload to the gEWS in 128 byte chunks
and then updating the relevant bits in the gEWS control entry.
The gEWS can also be treated as one or multiple ring buffers;
one ring buffer can be constructed per each remote core with
the use of the bit field. In case of fragmentation, the bit field
is used to specify which chunks are used to build a ring buffer
(as shown in figure 3).

C. Protocol Characterization

To see why the addition of the extended protocol results
in improved channel performance, an understanding of the
original channel’s behavior is necessary. When transmitting an
MPICH2 packet, the total round trip time is the aggregation of
the time required by several simpler operations. These times
can be approximated with the following equation:

Tx(B, b, n) = [tsp(n) + tw + trp(n) + tr + phth]

⌈
B

b

⌉
(1)

where B is the size of the MPICH2 packet to send, b is the
size of the EWS (in bytes) and n is the number of processes
of the MPI job. The terms in the left factor represent the time
required for writing, reading, polling and handling. The sender
needs to poll the receive flag for the target process; this time
is represented by tsp. After the target EWS is available for
writing, the bytes are written in tw seconds. At the receiver,
the progress engine polls the metadata to detect new messages;
trp seconds are spent in doing this and then tr seconds of
CPU time are used reading the available payload. Polling times
depend on the number of processes n. If the MPICH2 packet is
complete with the last read payload, then th seconds are spent
handling it; handling of a packet occurs with an application
dependent probability of ph.

These operations are done for each round trip of the
communication protocol. The number of round trips required
is the ceiling of the size of the packet divided by the size of

2

the EWS (the
⌈
B
b

⌉
factor in formula 1). The time required

to write at the sender and to read at the receiver are the
same: tr = tw = trw. These are memcpy operations and their
aggregated time tarw depends on the total number of bytes
to transfer, independently of the number of round trips. The
time required for polling at the sender and receiver can be
represented by a single variable for their combined worst case
as twcp. Furthermore, packet handling is done with a much
lower frequency; packets are only handled when they are done
after several protocol round trips and can be ignored. With
these observations, 1 can be simplified as:

Tx(B, b, n) = 2tarw(B) + twcp(n)

⌈
B

b

⌉
(2)

Conclusions can more easily be drawn from 2. The 2tarw
term is a function of the total bytes B of the packet. The
polling overhead twcp depends on the process count and
increases linearly with it, since metadata is polled in a round
robin fashion. The number of round trips

⌈
B
b

⌉
depends on

the process count as well, since the size of b is determined at
initialization based on the MPI job size.

The new design can be modeled similarly to the original
one. The effect of the gEWS in the protocol, is that depending
of the probability of it being free, the round trips required to
transfer a packet are greatly reduced:

Tx(B, n) = 2tarw(B)+

twcp(n)

[
p

⌈
B

b4KB

⌉
+ [1− p]

⌈
B

b48B

⌉]
(3)

where p is the probability of the gEWS being free and is
application dependent. The number of round trips now depends
on the application alone (given that the EWS and gEWS are
now fixed with size b4KB and b48B), and not on the number
of processes. The worst case polling time still depends on
process count, and is therefore not improved with respect to
the original protocol.

From 3 it is easy to see that p ≈ 1 is desirable. Because of
the way MPICH2 collectives (with a logical ring topology and
other schemes) and most MPI applications (that send messages
to only a few processes at the same time) are implemented,
this is very often the case. Communication between a pair
or processes is never stopped if the gEWS is not available,
performance is just degraded by the limitation of 48 bytes of
payload per round trip of the static EWS.

III. SUPPORT FOR MPI-2 DYNAMIC PROCESSES

The dynamic processes functionality of MPI-2 is not used
with the same frequency as point to point, collectives or one
sided communication on current MPI applications. For this
reason, their exclusion was found to be acceptable in the
first release of RCKMPI. The spawn, connect and disconnect
operations are necessary to support dynamic processes. Con-
nect and accept are implemented at the channel, while spawn
involves the interaction of the process manager and several
parts of the library.

Start Accept

Get Context ID

Is root in
PG?

Write
local PG data

PG data read at
child PG?

Local PG size >
1?

Write child
root ID and

child PG size

Read child
PG data

Barrier

Barrier

Read child
PG data

Obtain local root
core ID

Barrier

Add remote PG to
local list of PGs

Build
intercommunicator

End

YesNo

Yes

Yes

No

No

Signal child root:
done reading PG data

Signal child:
PG data written

Read child
root ID and

child PG size

Is root in
PG?

Yes

No

Fig. 4. Flow diagram of the accept algorithm.

For the addition of connect and accept to the channel, the
gEWS was used. Since it is a shared resource, in this case
used by the point-to-point communication subsystem, there
are necessary steps before it can be used. The owner of the
gEWS is the local core; therefore, its global state is stored in
a local 32 bit field. If the gEWS is in use, the channel calls
the progress routines until the send queues are cleared; after
that, the gEWS is free to be used for any other purpose.

The spawn operation involves two process groups: the
parent group and the child group. At each of these groups,
one of the processes is the root process. The algorithm used
is similar to the default one found in MPICH2, but latency
optimized by the use of the gEWS directly, instead of relying
on the non blocking point to point functionality provided by
the channel implementation.

The parent group does an accept operation while the child
group does a connect operation (flow charts shown in figures 4
and 5). The root process of each group writes the core IDs and
other data required to build a process group structure, on its
own gEWS. Then, they contact each other, exchange minimal
but essential data: core ID where each is running, process
group ID and size of each remote process group. After this,
each root process shares this information with its peers, which
read the rest of the process group data directly from the gEWS

3

Start Connect

Get Context ID

Is root in
PG?

Write
local PG data

PG data written
by parent?

Local PG size >
1?

Write parent
root ID and

parent PG size

Barrier

Read parent
PG data

Barrier

Read parent
PG data

Obtain local root
core ID

Barrier

YesNo

Yes

Yes

No

No

Signal parent root:
done reading PG data

PG data read by
parent?

No

Read parent
root ID and

parent PG size

Is root in
PG?

No

Yes

Yes

Add remote PG to
local list of PGs

Build
intercommunicator

End

Fig. 5. Flow diagram of the connect algorithm.

of the remote root process.
Before this operation is possible, the process manager passes

the business card of the root parent to the root process at
the newly spawned child process group. The root process of
the parent group then waits for the child root to initialize
the communication, and this is where the connect and accept
operations start. The new process group generated by these
pair of operations, is added to the process group list of each
process. These groups are disjoint and can be reached through
an inter-communicator, as specified in the standard.

IV. PERFORMANCE EVALUATION

In this section, the original and new SCCMPB channels’
performance is evaluated with the use of the SKaMPI 5.0
benchmark suite and the NAS 3.3 LU and BT benchmarks.
The software, hardware and configuration are the same for
all tests in this section. The Rocky Lake SCC systems used
for testing were configured with maximum frequency settings:
800MHz for the cores, 1600Mhz for the tiles and routers and
1066Mhz for the DDR3 memory. A Linux 2.6.38 image was
loaded in all cores. The GCC compilers version 4.5 we used
to compile the kernel, libraries and applications. Both C and
Fortran MPI applications were compiled with the -O3 flag.

1

10

100

1000

10000

100000

1000000

4 32 180 1024 5792 32768

L
a
t
e
n
c
y

(
μ
S
)

Buffer Size (bytes)

ORIGINAL - 3 Processes
NEW - 3 Processes
ORIGINAL - 48 Processes
NEW - 48 Processes

Fig. 7. MPI Gather scaling with buffer size.

1

10

100

1000

10000

100000

1000000

4 32 180 1024 5792 32768

L
a
t
e
n
c
y

(
μ
S
)

Buffer Size (bytes)

ORIGINAL - 3 Processes
NEW - 3 Processes
ORIGINAL - 48 Processes
NEW - 48 Processes

Fig. 8. MPI Scatter scaling with buffer size.

A. SKaMPI 5

SKaMPI[12] is a benchmark suite that covers most of
the MPI-2 API. Results for point to point and collective
communication are presented here. Figure 6 shows point to
point latency scaling with MPI Sendrecv (round trip times)
for different message sizes. When running with 48 processes,
the new channel scales better than the original for buffers
greater than 128 bytes; at 16KB messages, their point to point
performance differs by a factor of 6.25.

MPI Gather scaling for different buffer sizes is presented
in figure 7. In the 48 process case and for 16KB buffers,
their latency differs by a factor of 2.6. Scaling results for
MPI Scatter are shown in figure 8. For the 48 process case,
the new channel outperforms the original by a factor of up to
4.6.

MPI Bcast scaling results, for 1KB and 256KB buffers,
are presented in figure 9. In the 1KB buffer case, scaling is
similar in both channels (as shown in 9(a)); however, absolute
performance is much better in the new channel. For 1KB
buffers, the latency differs by a factor of 3.5 in the 48 process
case. For 256KB buffers, the difference in latency does not
change much with process count (as presented in 9(b)). The
latency of the old and new channels differ by a factor of 3.2,
in this case.

4

1

10

100

1000

10000

T
i
m
e

(
μ
S
)

Message Size (bytes)

ORIGINAL - 3 Processes
NEW - 3 Processes
ORIGINAL - 48 Processes
NEW - 48 Processes

Fig. 6. MPI Sendrecv scaling with message size.

10

100

1000

3 6 12 24 48

L
a
t
e
n
c
y

(
μ
S
)

Processes

ORIGINAL - 48 Processes
NEW - 48 Processes

(a) 1KB buffers

1000

10000

100000

3 6 12 24 48

L
a
t
e
n
c
y

(
μ
S
)

Processes

ORIGINAL - 48 Processes
NEW - 48 Processes

(b) 256KB buffers

Fig. 9. MPI Bcast scaling with process count for 1K and 256K buffers.

Scaling results for MPI Barrier are presented in figure 10.
The latencies for this operation are very similar for both
channels. This is expected since for small payloads (16 bytes
and below) the same communication protocol is used by both
channels.

B. NAS Benchmarks

The NAS parallel benchmarks[13] are useful for evaluating
parallel computers. The algorithms used by it are found very

10

100

3 6 12 24 48

L
a
t
e
n
c
y

(
μ
S
)

Processes

ORIGINAL - 48 Processes
NEW - 48 Processes

Fig. 10. MPI Barrier scaling.

often in scientific applications. Results for the BT and LU
benchmarks, at sizes W and A, are presented in this section.

Both channels perform nearly the same when running the
BT benchmarks (shown in figure 11) with 4 to 16 processes.
For the BT benchmark, the new channel shows a performance
improvement over the original one when running with 25 and
36 processes (as shown in 11(a) and 11(b)). The improvement
is higher for the W size of the benchmark.

Results from the LU benchmark (figure 12) are very similar
to those in the BT one. Performance when running with 4 to 16
processes is nearly the same with both channels. When running
with 32 processes, the new channel shows better results (as
presented in 12(a) and 12(b)).

V. CONCLUSION AND FUTURE WORK

An improved design for the SCCMPB channel of RCKMPI
was presented. The design consists of a base and an extended
protocol that compliment each other. In contrast to the original
design, the use of these new protocols resulted in channel
bandwidth that is less dependent of process count; this was
a consequence of the use of large EWS placed at the sender,
that is shared for communication with several processes si-

5

0
200
400
600
800

1000
1200
1400

4 9 16 25 36

M
F
L
O
P
S

Processes

ORIGINAL
NEW

(a) Size W

0
200
400
600
800

1000
1200
1400
1600
1800

4 9 16 25 36

M
F
L
O
P
S

Processes

ORIGINAL
NEW

(b) Size A

Fig. 11. NAS BT scaling with process count.

0
200
400
600
800

1000
1200
1400
1600

4 8 16 32

M
F
L
O
P
S

Processes

ORIGINAL
NEW

(a) Size W

0
200
400
600
800

1000
1200
1400
1600
1800

4 8 16 32

M
F
L
O
P
S

Processes

ORIGINAL
NEW

(b) Size A

Fig. 12. NAS LU scaling with process count.

multaneously and reduces the number of round trips required
to complete a transfer.

Performance results from the SKaMPI and NAS parallel
benchmarks were presented. The new design of the SCCMPB
channel clearly outperformed the original one when running
MPI jobs that use the 48 cores of the SCC; the advantage
could be better observed in the SKaMPI point-to-point and
collective tests. Good results were also observed for the NPB
benchmarks for process counts larger than 25; the improve-
ments in these benchmarks are not as large, since they have
high computation areas and the improved channel performance
only affects MPI communication times.

The way the MPB is partitioned was also modified. The new
scheme allowed the MPB to be used by other subsystems of
the MPI library and for optimized operations. This flexibility
was used to add support for MPI-2 dynamic processes, by
the addition of accept and connect operations that use the
MPB directly. Future implementations of optimized collectives
and one sided operations were also made possible by this
new approach; these are good targets for future performance
improvements to the RCKMPI library.

REFERENCES

[1] Steffen Christgau, Simon Kiertscher, and Bettina Schnor. The benefit of
topology awareness of MPI applications on the SCC. In Diana Göhringer,
Michael Hübner, and Jürgen Becker, editors, MARC Symposium, pages
47–51. KIT Scientific Publishing, Karlsruhe, 2011.

[2] Jim Held. “Single-chip Cloud Computer” an IA tera-scale research
processor. Euro-Par Workshops, volume 6586 of Lecture Notes in
Computer Science, page 85. Springer, 2010.

[3] Timothy G. Mattson, Rob F. Van der Wijngaart, Michael Riepen, et al.
The 48-core SCC processor: The programmer’s view. Supercomputing
Conference. ACM/IEEE, New Orleans, LA, USA, November 2010.

[4] Carsten Clauss, Stefan Lankes, Jacek Galowicz, Thomas Bemmerl, iR-
CCE: A Non-blocking Communication Extension to the RCCE Commu-
nication Library for the Intel Single-Chip Cloud Computer December 17,
2010, Chair for Operating Systems, RWTH Aachen University

[5] Isaı́as A. Comprés Ureña, Michael Riepen, and Michael Konow. RCKMPI
- lightweight MPI implementation for intel’s single-chip cloud computer
(SCC). EuroMPI, volume 6960 of Lecture Notes in Computer Science,
pages 208–217. Springer, 2011.

[6] Rob F. van der Wijngaart, Timothy G. Mattson, and Werner Haas. Light-
weight communications on intel’s single-chip cloud computer processor.
SIGOPS Oper. Syst. Rev., 45:73–83, February 2011.

[7] William Gropp. MPICH2: A new start for MPI implementations. Lecture
Notes in Computer Science, 2474:7, 2002.

[8] Carsten Clauss, Stefan Lankes, and Thomas Bemmerl. Performance
tuning of SCC-MPICH by means of the proposed MPI-3.0 tool interface.
EuroMPI, volume 6960 of Lecture Notes in Computer Science, pages
318–320. Springer, 2011.

[9] Randolf Rotta. On efficient message passing on the intel SCC. In
Diana Göhringer, Michael Hübner, and Jürgen Becker, editors, MARC
Symposium, pages 53–58. KIT Scientific Publishing, Karlsruhe, 2011.

[10] Keith Chapman, Ahmed Hussein, and Antony Hosking. X10 on the scc.
Santa Clara, United States, March 2011. Presented at the Second MARC
Symposium.

[11] Rob F. van der Wijngaart, Timothy G. Mattson, and Werner Haas. Light-
weight communications on intel’s single-chip cloud computer processor.
SIGOPS Oper. Syst. Rev., 45:73–83, February 2011.

[12] R. Reussner, P. Sanders, L. Prechelt, and M. Mueller. SKaMPI: A
detailed, accurate MPI benchmark. Lecture Notes in Computer Science,
1497:52, 1998.

[13] D. Bailey et al. The NAS parallel benchmarks. Technical Report RNR-
91-002, NAS Systems Division, January 1991.

6

The Path to MetalSVM:
Shared Virtual Memory for the SCC

Stefan Lankes∗, Pablo Reble∗, Carsten Clauss∗ and Oliver Sinnen†
∗Chair for Operating Systems, RWTH Aachen University

Kopernikusstr. 16, 52056 Aachen, Germany
Email: {lankes,reble,clauss}@lfbs.rwth-aachen.de

†Department of Electrical and Computer Engineering, University of Auckland
Private Bag 92019, Auckland 1142, New Zealand

Email: o.sinnen@auckland.ac.nz

Abstract—In this paper, we present first successes with building
an SCC-related shared virtual memory management system,
called MetalSVM, that is implemented using a bare-metal hy-
pervisor, located within a virtualization layer between the SCC’s
hardware and the operating system. The basic concept is based
on a small kernel developed from scratch by the authors: A
separate kernel instance runs on each core and together they
build the virtualization layer. High performance is reached
by the realization of a scalable inter-kernel communication
layer for MetalSVM. In this paper we present the employed
concepts and technologies. We briefly describe the current state
of the developed components and their interactions leading to
the realization of a Shared Virtual Memory system on top of
our kernels. First performance results of the SVM system are
presented in this work.

Index Terms—Many-Core, SCC, SVM, Non-Cache-Coherent
Shared-Memory

I. INTRODUCTION

Since the beginning of the multicore era, parallel processing
has become prevalent across-the-board. A further growth of
the number of cores per system implies an increasing chip
complexity on a traditional multicore system, especially with
respect to hardware-implemented cache coherence protocols.
Therefore, a very attractive alternative for future many-core
systems is to waive the hardware-based cache coherency and
to introduce a software-oriented approach instead: a so-called
Cluster-on-Chip architecture.

The Single-chip Cloud Computer (SCC) experimental pro-
cessor [1] is a concept vehicle created by Intel Labs as a
platform for many-core software research, which consists of 48
P54C cores. This architecture is a very recent example for such
a Cluster-on-Chip architecture. The SCC can be configured to
run one operating system instance per core by partitioning the
shared main memory in a strict manner. However, it is possible
to access the shared main memory in an unsplit and concurrent
manner, provided that the cache coherency is then ensured by
software.

A common way to use such an architecture is the utilization
of the message-passing programming model. However, many
applications show a strong benefit when using the shared
memory programming model. The project MetalSVM aims the
realization of a SCC-related shared virtual memory manage-

ment system that is implemented in terms of a bare-metal
hypervisor and located within a virtualization layer between
the SCC’s hardware and the current operating system. This
new hypervisor will undertake the crucial task of coherency
management by the utilization of special SCC-related features
such as its on-die Message-Passing Buffers (MPB). In order
to offer a maximum of flexibility with respect to resource
allocation and to an efficiency-adjusted degree of parallelism
a dynamic partitioning of the SCC’s computing resources into
several coherency domains will be enabled.

This paper focuses on the design of the MetalSVM kernel
and its drivers optimized for the SCC as well as the SVM
system. In Section II we refer to our previous work on the
SCC and summarize related work regarding SVM system.
We present a detailed insight in Section III to the design
of MetalSVM and our small self-developed operating system
kernel that builds the base of MetalSVM. The realization
of an SVM system prototype is presented in Section VI.
Important facts on the SCC supporting the path to MetalSVM
are mentioned in Section IV and V with a focus on the
memory system of the SCC followed by the implementation
of a communication layer for MetalSVM. Section VII contains
the knowledge on the port of a virtual IP interface to the SCC
and presents related benchmark results. In Section VIII we
describe first results for an exemplary parallel program using
the SVM system prototype.

II. PREVIOUS WORK

Referring to our previous work on the SCC we present
further development on the fast inter-kernel communication
layer as well as a closer look at the SVM system in this
paper. The motivation and concept of our MetalSVM has been
introduced at the 3rd MARC Symposium [2]. In addition to a
summary of previous work on cluster-based SVM systems we
first outline the potential of our approach. Other contributions
to this Symposium have also shown that the memory system
of the SCC is special and established methods hold a high
potential for optimization. [3]

In [4], we evaluated different programming models (es-
pecially shared-memory and message-passing) for the SCC
and we have shown how these models can be improved with

7

respect to the SCC’s many-core architecture. Our experiments
have shown that in particular the shared-memory programming
is very complex and involved if caches are enabled because
of the missing hardware cache coherency.

The Chair for Operating Systems (LfBS) at the RWTH
Aachen University developed since 1996 the Shared Memory
Interface (SMI) [5] as a programming interface that provides
a large function set such as allocation and management of
cluster-wide shared memory regions and its distribution and
synchronization services. SMI provides no virtual common
address space in contrast to an SVM system. However, shared
memory regions can be explicitly allocated and managed.
A small subset of its capabilities is used in this paper to
benchmark our prototype of MetalSVM.

Existing SVM solutions are mainly based on traditional
message-passing oriented networks. However, the SCC has the
capability to directly access memory. From a programmer’s
perspective this is comparable to the Scalable Coherent Inter-
face (SCI) standard [6] that belongs to the memory-mapped
networks. In addition to the offer of a transparent read/write
access to remote memory, SCI also defines a cache coherency
protocol. But, PCI-SCI adapter cards that are available on the
market do not support this feature. Several research projects
used SCI-based PC clusters, which possessed a similar char-
acteristic like SCC. Both systems consist of several processing
units which are able to communicate transparently over shared
memory regions without the support of cache-coherency.

At the LfBS, we have developed an SVM system for Intel
architecture based compute clusters, called SVMlib [7], [8],
which stores write notices and related changes in the global
memory to realize a Lazy Release Consistency [9] model.
Experiments have shown that the implementation of SVMlib
at user level decreases the usability.

Furthermore, SVM systems can be integrated into virtual
machines providing a simpler and more transparent access to
the shared memory for an easy application of common oper-
ating systems and development environments. The vSMP ar-
chitecture by ScaleMP1 enables a cluster-wide cache-coherent
memory sharing by implementing a virtualization layer un-
derneath the OS that handles distributed memory accesses
via InfiniBand-based communication on x86-based compute
clusters. A similar project is vNUMA [10], which used Eth-
ernet as interconnect. This project shares characteristics with
our hypervisor approach such that the implementation of the
SVM system takes an additional virtualization layer between
the hardware and the operating system.

In fact, we want to exploit the SVM system with SCC’s
distinguishing capabilities of transparent read/write access to
the global off-die shared memory.

III. DESIGN OF METALSVM

The concept of MetalSVM is to run a common Linux version
without SVM-related patches on the SCC in a multicore

1http://www.scalemp.com

manner. For a better understanding, the structured diagram of
Figure 1 illustrates the design approach of MetalSVM.

A major advantage of our approach, as introduced in [2],
is no binding of MetalSVM to a certain version of Linux,
because integrating would for example mean patching the
kernel. The light weight hypervisor is based upon the idea
of a small virtualization layer based on a monolithic-kernel
developed from the scratch by the authors. A well-established
interface to run Linux as para-virtualizated guest which is part
of the standard Linux kernel is used to realize our hypervisor.
Consequently, no modifications to the Linux kernel are needed.

Application

Para-virtualized Standard Linux

Hypervisor

Kernel Kernel

Core 0 Core n

Communication

Layer

SCC Hardware
M

et
al

S
V

M

Fig. 1: Concept and Design of MetalSVM

The aim of common processor virtualization is to provide
multiple virtual machines for separated OS instances. We want
to use processor virtualization that provides one logical but
parallel and cache coherent virtual machine for a single OS
instance, for instance Linux, on the SCC. Hence, the main
goal of this project is to develop a bare-metal hypervisor, that
implements the required SVM system (and thus the memory
coherency by applying appropriate consistency models) within
this hardware virtualization layer in such a way that an
operating system can run almost transparently across the entire
SCC system.

IV. MEMORY SYSTEM

In this section we first briefly recap the memory system of
the SCC and second outline the effects on the realization of
an SVM system.

The SCC possesses four memory controllers providing a
maximum capacity of 64 GByte of DDR3 memory. Each
core has logically assigned 8 kByte of a tile’s local memory
buffer, called message passing buffer (MPB). To close the gap
between register and main memory access time, the SCC cores
have a classical memory hierarchy consisting of a local Level 1
and Level 2 cache. In addition to a Level 1 data and instruction
cache size of each 8 kByte, all cores have a local Level 2 cache
size of 256 kByte. Caches are organized with a cache-line size
of 32 Byte in a non cache-coherent manner.

Intel Labs extended the P54C instruction set architecture
(ISA) by a new instruction CL1INVMB that is closely con-
nected to a new memory type (MPBT) indicated by a flag on

8

page granularity to support the use of the MPB. Accesses to
this new memory type bypass the Level 2 cache and by default
message-passing buffer entries are tagged.

Moreover, the flag that indicates MPBT can be used in a
more generic way. Generally speaking, information about a
special data type is tagged in hardware. However, this mapping
is not fixed and can be adapted to use the hardware support
that facilitates a coherent view on the MPB also for an SVM
system.

Another extension of the SCC cores to the P54C architecture
is a write combine buffer that holds one cache-line of 32 Byte.
In write through mode accesses touching the same cache-line
are wrapped together and written back en block from the
Level 1 cache to the next level in memory hierarchy. This
behavior may turn out to be useful for the SVM system. The
intention for adding this feature was to accelerate the message
transfer between the cores [1].

The P54C architecture uses an external Level 2 cache with-
out the possibility to flush contents using hardware support. A
flush routine has been developed that replaces all L2 contents
by reading invalid data but this turned out to be costly. [11]
We limit our first experiments to an SVM system prototype
that only enables L1 caching for a shared memory region.
To control write strategy of cached data a page table entry
contains a bit, that the memory management of MetalSVM
sets for shared pages to uses a write through strategy.

Obviously, a drawback of this solution is a significantly
smaller amount of cache in use for shared regions. But to
waive the use of Level 2 cache for shared memory regions
a major advantage arises that is the possibility to tag SVM
related data. Thus, a selective invalidate of cached data via
CL1INVMB is possible. Due to the fact that our current SVM
system uses write through, a method called fool write combine
buffer is sufficient to flush cached data. The method simply
touches an MPBT tagged cache-line that is only used for this
purpose. Thus, the off-die memory holds current data.

V. COMMUNICATION LAYER

The realization of the hypervisor needs a fast inter-core
communication layer, which will be used to manage resources
between the kernels. An important requirement to this commu-
nication layer is the support of asynchronous message-passing
because it is not predictable when a kernel needs an exclusive
access to a resource that is owned or managed by another
kernel instance. As a result, the synchronous communication
library RCCE [12] is not suitable for MetalSVM. An alternative
approach is to copy the message to the message-passing buffer
of the receiving core and afterwards to signalize the incoming
message with a remote interrupt.

Interrupt Handling

Realization of event based communication between the
SCC-cores needs either interrupts or events have to be checked
at defined points in time. We followed an interrupt driven
approach for our communication layer to enable a fast com-
munication. On the one hand the latency of signal passing is

important. On the other hand the time to process signals and its
scalability influences the performance of our communication
layer.

Previous versions of sccKit only supported the generation
of an Inter-Processor Interrupt (IPI) by writing directly to the
receiving core’s configuration register. Hence, the receiving
core can be interrupted this way but no information can
be obtained about the sender of a specific interrupt. Since
sccKit 1.4.0 the system FPGA holds a Global Interrupt Con-
troller (GIC) [13]. In addition to the direct method to generate
an IPI the possibility arises to indirectly generate an IPI using
the GIC. Consequently, this IPI can be used to obtain the
information by which core it has been raised.

Event processing of the mailbox system, described in the
following, is realized in the interrupt handler of MetalSVM.
With the focus on scalability the information on the sender
of an interrupt creates the option for a mailbox system to
selectively check mailboxes.

Mailbox System

A mailbox system has become part of MetalSVM’s com-
munication layer and extends iRCCE [14] to enable an event
driven and fast asynchronous communication path between
the SCC cores. For each communication path between two
cores a mailbox of one cache-line size is reserved at each
local MPB. Thus, the mailbox system takes 1.5 kByte of MPB
space per core assuming a maximum number of 48 cores.
RCCE provides a memory allocation scheme to manage the
remaining MPB space of 6.5 kByte.

Accesses to a specific mailbox of a target core are restricted
by only allowing the receiver to read data and toggle a send
flag that the mailbox contains. A sender with the intention to
pass a signal is allowed, in addition to toggle the send flag, to
write data to the mailbox. Whenever a receiver toggles the send
flag a signal has been processed and when a sender toggles
the send flag a new signal has been placed. As a result of
this communication method the generation of a single reader
single writer problem leads to a simplified synchronization
scheme that is enabled by the restriction of accesses to the
mailboxes.

Signals between the cores are passed in a remote write and
local read approach in contrast to the local write and remote
read approach of the RCCE library. The mailbox system
reverses the data flow compared to the RCCE send respective
receive methods because event processing is realized in the
interrupt handler.

VI. SVM SYSTEM

The SVM system manages pages located in shared memory.
A coherent view on the virtual common address space is
enabled by flushing cached data at defined points in time. For
a first prototype three functions are sufficient to enable the use
of the SVM system and thereby explore the capabilities of the
SCC for a software managed coherence scheme. Following
SMI like functions are provided under MetalSVM to a kernel
task of the current SVM version:

9

• svm_alloc
• svm_flush
• svm_invalidate

The function svm_alloc is used to allocate an amount
of bytes in a cached shared memory region. The function
svm_flush is used to implicitly write back modified data2,
and svm_invalidate to remove possibly outdated data
from the cache. This is either done within the interrupt handler
of the current page owner or within the page fault handler on
the core where the access violation occurs.

The SVM system of MetalSVM uses the mailbox system for
the crucial task to change access permissions of shared pages.
Therefore, a signal is sent to the page owner which can be
identified because the information of ownership is located in
a shared memory region and therefore accessible by all cores.
If the ownership has changed in the meantime, e. g. another
core has requested the page, the receiver of the signal has to
forward the message to its new destination. As a result, the
first sender of a signal in addition to the address of the target
shared page is necessarily encoded by a signal, so that the
owner vector entry can be updated.

. . .

page frames

Shared off-chip DRAM

. . . 47 . . .

owner vector

Private off-chip DRAM

Core 0 Core 47

entry

page tables

entry

page tables

Message Passing Buffer
2

1

3

4

Fig. 2: Concept and design of the SVM subsystem

A strong consistency model is supported by the prototype
implementation of our SVM system. At each point in time only
one owner of a page exists which is allowed to read or write to
it. This ownership is registered in an ownership vector, which
is also located in the off-die memory as exemplarily illustrated
by Figure 2. Each core possesses its private page tables.

Whenever a page is accessed without permission a kernel
enters the page fault handler and sends a request to the current

2In this scenario, flushing of the write combining buffers.

owner via the mailbox system. Regarding the strong consis-
tency model no parallel access to shared pages is allowed and
the ownership has to be exchanged. First, the current owner
of the page clears its access permission. Second, it flushes the
cache and third sets the new owner id to the ownership vector
as an acknowledgment. As a result the core that requested
access is registered as the new owner. After this procedure the
requesting core can continue its calculation. Obviously, the
performance of the mailbox system has a direct impact to the
performance of the SVM system.

Figure 2 shows an example where an SVM related page fault
occurs at Core 0 involving Core 47. Following steps have to
be performed:

1) A page fault occurs at Core 0
2) After sending a message to Core 47 requesting the page,

Core 0 is polling on the owner vector entry
3) Core 47 flushes its cache and changes the page table

entry
4) Core 47 changes the ownership

After this procedure Core 0 is the new owner and hereby has
full access permissions.

VII. IP STACK

In this section we present the realization of two IP devices,
one memory mapped virtual device for the realization of on-
die communication and one eMAC device for the off-die
communication. For this purpose the light-weight IP (lwIP)
stack [15] has been integrated into the MetalSVM kernel. As a
result, established BSD sockets are supported to enable an easy
integration of standard application. In addition, we analyze a
variant that interacts with the IP driver using an overloaded
socket that bypasses the full IP stack. For further performance
optimizations the developed devices are fully configurable
having options to choose the MPB or off-chip DRAM for
communication and to enable L1 caching. Applications for
the described devices can be a monitoring the SVM system or
providing an IP service to the guest operating system. Here,
the guest can use a tunnel device to hand down IP packets to
MetalSVM.

In principle, the first driver is a porting of Linux’s eMAC
device driver to lwIP and builds an interface to the Ethernet
ports that are connected to the SCC. We used the driver
of SCC Linux from sccKit 1.4.1 within the scope of Linux
kernel 2.6.38.3-jbrummer as a reference, which uses
non-cachable memory for the communication between kernel
and hardware device. Again, the SCC offers the possibility
to invalidate in one cycle the cache entries for MPBT tagged
pages. The option to enable the L1 cache for the receive buffers
of the eMAC device generates the possibility to visualize the
benefit of this hardware support for communication. Here,
specific cache entries have to be invalidated before the receiver
reads data from its receiver buffer. When compared to the
Linux driver that holds the L1 cache disabled for the receive
buffers, a positive impact on performance is expected for
the MetalSVM driver that reads a whole cache-line from the
memory.

10

1 4 16 64 256 1 k 4 k 16 k
0

10

20

30

40

Packet Size [Byte]

T
hr

ou
gh

pu
t
[M

B
y
te
/
s]

Linux eMAC device
MetalSVM eMAC device
MetalSVM eMAC device L1 cache

(a) SCC→MCPC

1 4 16 64 256 1 k 4 k 16 k
0

10

20

30

40

Packet Size [Byte]

(b) MCPC→SCC

Fig. 3: Transfer Throughput between MCPC and SCC via eMAC

Obviously this method reduces the number of memory
accesses up to a factor of:

8 · tCM

tCM + 7 · tCH

Where, tCM is the time for a cache miss and tCH is the time
for a L1 cache hit.

The second driver uses an established standard and enables
a virtual IP interface to realize inter-kernel communication.
The support of standard interfaces for communication is not
in the focus of MetalSVM. However, a driver has been written
that realizes communication via memory mapped regions. For
this driver a configuration exists to use either the off-die or
the on-die memory (MPB).

The first configuration uses the off-die shared memory for
communication and therefore generates no load to the MPB.
An application might be to monitor the SVM system. The
use of the second configuration is preferred to reach a higher
performance. However, using the MPB can generate noise to
the SVM system that runs in parallel.

In principle, each receiver optionally creates its own receive
buffer either in on-die or off-die memory. The senders copy
their data directly into the receive buffer and wake up the
receiver via an inter processor interrupt. To allow parallel
access between the receiver and senders, the receive buffer
is managed as heap. The maximum transfer size is:

1

2
· sizeof(buffer)− sizeof(cacheline)

The result of the split of larger messages into smaller sub-
messages is that the receiver is able to process sub-messages
that are present during the next transfer operation of the sender.

The data structure to manage the heap is located at the
off-die memory to increase the size of the receiver buffer. In
contrast to the presented mailbox system the lwIP drivers use

only one receive buffer per core. This is because the incoming
messages are clearly larger than a mail of the mailbox system.
Accesses to the receive buffers have to be synchronized.
Therefore, the current version uses RCCE locks which enable
an access to the hardware implemented Test-And-Set registers.
Many features of the IP stack are needless for the inter-core
communication. For instance, on the SCC it is not possible
to receive corrupt data. To benefit from this behavior, we
have developed a prototype, which emulates the BSD socket
interface, bypasses the IP stack and forwards the messages
directly to the receivers. In our approach, a parallel using of
the IP stack and the bypassing approach is possible.

A. Benchmark Results

All diagrams of this section show the throughput average
by different package size from small packages of 1 Byte up
to large packages of 32 kByte. The test platform has been
configured with a core frequency of 533MHz, a memory and
mesh frequency of 800MHz. The driver uses as receive buffer
size either 8 kByte for the off-die or 7 kByte for the on-die
memory. For the evaluation of the performance of MetalSVM’s
IP stack the established benchmark netio3 has been used.

First of all, we present the results of our eMAC driver in
comparison to the driver of SCC Linux. We used a standard
configured SCC and MCPC from the MARC Data Center.
Figure 3b shows the throughput from MCPC to SCC and Fig-
ure 3a illustrates the inverse direction. By enabling the cache
for the receiving buffer of the SCC, the sending throughput of
MCPC is increased by factor 5. These results document the
huge impact of the MBPT flag.

Figure 4a shows the performance of the inter-core commu-
nication using the full IP stack. The performance of the current
Linux driver is added as a reference.

3http://www.ars.de/ars/ars.nsf/docs/netio

11

1 4 16 64 256 1 k 4 k 16 k
0

20

40

60

80

Packet Size [Byte]

T
hr

ou
gh

pu
t
[M

B
y
te
/
s]

Linux MPB device
MetalSVM MM device
MetalSVM MM device L1 cache
MetalSVM MM device via MPB

(a) Full lwIP version

1 4 16 64 256 1 k 4 k 16 k
0

20

40

60

80

Packet Size [Byte]

(b) Bypassing version

Fig. 4: Sending Throughput from Tile 0 to Tile 1

It can be noticed that the current Linux driver shows a
poor performance and should be improved. All versions of
our driver, which optionally use the off-die memory , the
off-die memory with enabled L1 cache or the message
passing buffers perform clearly better than the standard
Linux driver, which also uses the message passing buffer as
transport medium.

Figure 4b shows the results of bypassing the IP stack. When
the throughput of the bypassing version is compared with
the throughput of the lwIP versions it can be noticed that
bypassing the IP stack results in a higher peak performance.
However, regarding small packets below a size of 256 Bytes
the lwIP version benefits from the usage of Nagle’s algorithm
that combines small packages. [16] The maximum of the
throughput is reached at a package size of 2 kByte.
Here, the package size is the largest size to the power of two
that fits twice into the message passing buffer regarding the
requirements of the RCCE library.

VIII. APPLICATION

For the demonstration of our SVM system we have chosen
a classical synchronous iteration program example. The heat
distribution of square metal sheet with known temperatures
at its edges represents a two-dimensional Laplace problem.
Figure 5 illustrates the further described method.

The resulting partial differential equation can be solved
with the common Jacobi Over Relaxation (JOR) algorithm
standing for a simple parallel program example using a shared
memory approach. The Jacobi iterations can be described by
the following formula:

uk+1
i,j =

1

4
· [uk

i−1,j + uk
i+1,j + uk

i,j−1 + uk
i,j+1]

An analysis of the capabilities offered by the MetalSVM
layer is reached by executing kernel threads in the MetalSVM

kernel. Therefore, the function svm_alloc is used in a
collective way to allocate a shared memory region with Level
1 cache enabled.

Allocated memory is used as follows: The simulation data
of 1024×512 double values are stored in two arrays namely
old and new. After each iteration the values from new are
moved to old by exchanging the references. A barrier follows
to ensure that iterations are processed synchronously. We used
the linear barrier implementation of the RCCE library. A static
distribution to n cores of the squared problem size is used.
Each core iterates over N/n lines. The shared memory ap-
plication assumes a synchronous behavior after each iteration
which creates the requirements for an SVM system to provide
correct data. Enabled caches have to be flushed and invalidated
implicitly, regarding a strong release consistency model, or
explicitly, regarding a lazy release consistency. The current
version of MetalSVM supports both as described in Section VI.

ui−1,j

ui+1,j

ui,j−1

ui,j+1

N

N

Fig. 5: Heat Distribution Problem

12

Figure 6 shows benchmark results of the previously de-
scribed application with a different core count on the SCC plat-
form 4. Curve depicts terms of a message passing laplace
variant based on iRCCE [14], which uses a non-blocking
behavior to exchange rows after each iteration. Curves
and represent the performance measurements of a strong
consistency model. The first setup is the usage of only one
memory controller (MC) holding the entire matrix. Here, the
well known memory wall problem occurs. The consequence is
a reduction of the scalability. As a second setup the matrix is
statically partitioned to all four MC’s to distribute the memory
load. The result is a better scalability up to 8 cores. The
scalability has to be improved for the use of more than 8 cores.
As a third setup a lazy release memory model has been applied
to the given problem. Here, the caches are flushed after each
iteration without the generation of an interrupt or an exception.
Measurements of this setup show a nearly optimal result.

1 2 4 8 16 32 48
0

100

200

300

400

Cores

Ti
m

e
[s
]

strong consistency
strong and all MC’s
lazy release
message passing via iRCCE

Fig. 6: Laplace Runtimes

Nevertheless, it has to be considered that the JOR algorithm
is an extremely stressful example for an SVM system. Here,
the barrier after each iteration leads to a synchronized access
of all cores to their neighbors’ data. In the case of a lazy
consistency, the majority of cores send a request mail and IPI
to its neighbor just after the synchronization point. Certainly,
for such an extremely stressful example the results are ex-
cellent. The linear runtime of the shared memory application
is approximately half of the linear runtime of the message
passing application. What shows the impact of the write
combining buffer. In this experiment the message passing
application reaches a super-linear speedup in a region of 32 to
48 cores by using the L2 Cache. Here, the problem size fits
into the L2 Cache.

4core/mesh/memory frequency of 533/800/800 MHz

IX. CONCLUSIONS AND OUTLOOK

In this paper, we have presented our first steps to design
and implement a strong memory model for the SVM system
that has been integrated into MetalSVM. The basic concept
is based on a mailbox system with a low-latency inter-
kernel communication layer. First benchmark results of our
SVM system prototype are promising. In fact, the overhead
of the Strong Release Consistency compared to the Lazy
Release Consistency Model is tolerable. Moreover, this paper
shows that the current drivers of SCC Linux’s IP stack have
potential for improvement. In the majority of the presented
benchmarks the IP stack of MetalSVM reaches a significantly
better performance.

In the future, we will investigate other, weaker memory
models, to achieve the best performance for our bare-metal
hypervisor. We plan to use experiences [17] from the design of
kernel extensions for NUMA systems to reach a more dynamic
memory distribution strategy like Affinity-on-Next-Touch [18].
In addition, improvements regarding the scalability of our
synchronization layer and the collective operations ,provided
by MetalSVM, are in progress.

We aim for the nearer future to increase of the usability
of MetalSVM to address a broader audience. Besides, we
recommend an integration of our improved IP solution back
to SCC Linux so that all MARC members can benefit from
this work.

ACKNOWLEDGMENT

The research and development is funded by Intel Corpo-
ration. The authors would like to thank especially Ulrich
Hoffmann, Michael Konow and Michael Riepen of Intel
Braunschweig for their help and guidance.

13

REFERENCES

[1] SCC External Architecture Specification (EAS), Intel Corporation,
November 2010, Revision 1.1.

[2] P. Reble, S. Lankes, C. Clauss, and T. Bemmerl, “A Fast Inter-
Kernel Communication and Synchronization layer for MetalSVM,” in
Proceedings of the 3rd MARC Symposium, KIT Scientific Publishing,
Ettlingen, Germany, July 2011.

[3] M. van Tol, R. Bakker, M. Verstraaten, C. Grelck, and C. Jesshope, “Ef-
ficient Memory Copy Operations on the 48-core Intel SCC Processor,”
in Proceedings of the 3rd MARC Symposium, KIT Scientific Publishing,
Ettlingen, Germany, July 2011.

[4] C. Clauss, S. Lankes, P. Reble, and T. Bemmerl, “Evaluation and
Improvements of Programming Models for the Intel SCC Many-core
Processor,” in Proceedings of the International Conference on High
Performance Computing and Simulation (HPCS2011), Workshop on New
Algorithms and Programming Models for the Manycore Era (APMM),
Istanbul, Turkey, July 2011.

[5] M. Dormanns, K. Scholtyssik, and T. Bemmerl, “A Shared-Memory
Programming Interface for SCI Clusters,” in SCI: Scalable Coherent
Interface, H. Hellwagner and A. Reinefeld, Eds. Springer Verlag, 1999,
pp. 281–290.

[6] IEEE, Ed., Standard for Scalable Coherent Interface (SCI), ser. IEEE
Standards. The Institute of Electrical and Electronics Engineers, Inc.,
1992, no. 1596.

[7] S. Paas, T. Bemmerl, and K. Scholtyssik, “Win32 API Emulation on
UNIX for Software DSM,” in Proceedings of the 2nd USENIX Windows
NT Symposium, Seattle, Washington, USA, August 1998, pp. 39–46.

[8] K. Scholtyssik and M. Dormanns, “Simplifying the use of SCI shared
memory by using software SVM techniques,” in Proceedings of 2.
Workshop Cluster Computing, Karlsruhe, Germany, March 1999.

[9] P. Keleher, A. L. Cox, and W. Zwaenepoel, “Lazy Release Consistency
for Software Distributed Shared Memory,” in Proceedings of the 19th
Annual International Symposium on Computer Architecture, 1992, pp.
13–21.

[10] M. Chapman and G. Heiser, “vNUMA: A virtual shared-memory
multiprocessor,” in Proceedings of the 2009 USENIX Annual Technical
Conference, San Diego, CA, USA, Jun 2009, pp. 349–362.

[11] M. van Tol, “SCC L2 flush routine,” http://marcbug.scc-dc.com/
bugzilla3/show bug.cgi?id=195.

[12] T. Mattson and R. van der Wijngaart, RCCE: a Small Library for
Many-Core Communication, Intel Corporation, May 2010, Software 1.0-
release.

[13] The sccKit 1.4.x User’s Guide, Intel Labs, October 2011.
[14] C. Clauss, S. Lankes, T. Bemmerl, J. Galowicz, and S. Pickartz, iRCCE:

A Non-blocking Communication Extension to the RCCE Communication
Library for the Intel Single-Chip Cloud Computer, Chair for Operating
Systems, RWTH Aachen University, July 2011, Users’ Guide and API
Manual.

[15] A. Dunkels, Design and Implementation of the lwIP TCP/IP Stack,
Swedish Institute of Computer Science, 2001.

[16] J. Nagle, “Congestion control in IP/TCP internetworks,” SIGCOMM
Computer Communication Review, vol. 14, no. 4, pp. 11–17, 1984.

[17] S. Lankes, B. Bierbaum, and T. Bemmerl, “Affinity-On-Next-Touch: An
Extension to the Linux Kernel for NUMA Architectures,” in Proceedings
of the 8th International Conference on Parallel Processing and Applied
Mathematics (PPAM 2009), Workshop on Memory Issues on Multi- and
Manycore Platforms, Springer Berlin / Heidelberg, Volume 6067/2010
of LNCS, Wroclaw, Poland, 2010, pp. 576–585.

[18] L. Noordergraaf and R. van der Pas, “Performance Experiences on Sun’s
WildFire Prototype,” in Proceedings of the 1999 ACM/IEEE conference
on Supercomputing, Portland, Oregon, USA, November 1999.

14

Parallel AI Planning on the SCC
Vincent Vidal, Simon Vernhes, and Guillaume Infantes

Abstract—We present in this paper a parallelized version of an
existing Artificial Intelligence automated planner, implemented
with standard programming models and tools (hybrid Open-
MP/MPI). We then evaluate this planner with respect to its
sequential version through extensive experiments over a wide
range of academic benchmarks, on two different target architec-
tures: a small standard cluster and the research processor SCC
(“Single-chip Cloud Computer”) developed by Intel Labs and
made available to the research community through the MARC
program (“Many-core Applications Research Community”). We
obtain interesting speedups (super-linear in some cases) on both
architectures. Interestingly enough, these experiments also reveal
different behaviors between the cluster and the SCC.

I. INTRODUCTION

Automated Planning in Artificial Intelligence [1] is a general
problem solving framework which aims at finding solutions
to combinatorial problems formulated with concepts such as
actions, states of the world, and goals. For more than 50
years, research in Automated Planning has provided mathe-
matical models, description languages and algorithms to solve
this kind of problems. We focus in this paper on Classical
Planning, which is one of the simplest model but has seen
spectacular improvements in algorithm efficiency during the
last decade.

The sequential planning algorithm that will form the ba-
sis of our parallel algorithm has been implemented in the
YAHSP2 planner [2][3] which participated to the 4th and 7th

International Planning Competitions1 (IPC) in 2004 and 2011.
It uses a forward state-space heuristic search algorithm with
relaxed plan extraction inspired by the FF planner [4]. The
main differences with FF are that (1) the search algorithm is
a complete weighted-A* algorithm [5] (while FF first tries an
incomplete one), (2) the heuristic function is based on hadd

[6] instead the length of the relaxed plan length and (3) at each
node of the search, a lookahead strategy is performed before
classical node expansion in order to try to reach a node closer
to a goal state, in a computationally easy way by using actions
from the relaxed plan.

The parallelization scheme we propose is based on the
principle already used in TDS [7] and HDA* [8]: to distribute
search nodes among the processing units (PUs) based on a
hash key computed from planning states. In this way, the list
of nodes to be expanded (the open list) owned by each PU
are disjoint: computations made on a given state (applicable
actions, heuristic function, lookaheads, etc.) are performed
only once, by the PU the node belongs to. Another important

All authors are working at Onera, the French Aerospace Lab, in the DCSD
department, Toulouse center. Email addresses: first-name.last-name@onera.fr.

This work has been funded by the Onera research program PR-SCC and
supported by Intel Labs through a research proposal for working with Intel
SCC and the Many-core Applications Research Community (MARC).

1See http://ipc.icaps-conference.org/ for more information about the IPCs.

aspect is that communication between PUs can be performed
in an asynchronous way: a PU expands nodes from its open
list, sends sons to the PUs they belong to, and periodically
checks its incoming messages to incorporate new nodes into its
open list (between OpenMP threads, this last step is seamlessly
performed by writing to shared memory).

We evaluate the performance of the parallel algorithm with
respect to its sequential version over a wide range of academic
benchmarks issued from the IPCs, on two architectures: a
small standard cluster composed of four 12-core servers (48
cores in total), and the research processor SCC (“Single-chip
Cloud Computer”) embedding 48 cores on a single chip devel-
oped by Intel Labs. These experiments show that interesting
speedups, sometimes super-linear, are obtained thanks to the
parallelization. Unfortunately, some super-linear speed-downs
are also observed, which suggests some improvements to the
parallelized algorithm that could combine the advantages of
both. This behavior was not unexpected, as the parallelized
algorithm does not perform the same computations as the se-
quential version: the order of node evaluation being modified,
the search space is not explored the same way, which can help
or deserve the parallel algorithm.

The paper is outlined as follows. After introducing the
research domain of Classical Planning in Artificial Intelligence
and the mathematical STRIPS model of planning, we present
the sequential algorithm implemented into the YAHSP2 plan-
ner. We then briefly explain the principles of the parallelization
we propose, and the main modifications of the sequential
algorithm. After having described the experimental evaluation,
we conclude and draw some future works.

II. BACKGROUND ON CLASSICAL PLANNING IN AI

Classical Planning is about finding a sequence of actions
(possibly optimal) leading from an initial state towards a
defined goal. We make some assumptions about the world:

• finite number of possible states of the world,
• full observability: one always know the state of the world,
• determinism: the result of applying an action to a state s

is always a single state s′.
An example of an Automated Planning problem is described

in Figure 1. There, a robot arm can move a single block at
a time. It is able to unstack two blocks by taking the upper
one; stack a block on another; pick-up a block from the
table or put-down a block on the table. A planning algorithm
should find a plan (a sequence of defined actions) that the
robot can execute to reach the goal state from the initial one.

Planning is hard, in our case it has been shown to be
PSPACE-complete [9]. The major problem for planning al-
gorithms is to deal with the combinatorial explosion of the
number of states during search.

15

B A
C

Start State

C
B
A

Goal State

Fig. 1. An Automated Planning classic domain: BlocksWorld

a) PDDL (Planning Domain Definition Language):
PDDL [10] is a language commonly used to represent plan-
ning problems, as for instance in IPCs. It helps to compare
planners with well-established benchmarks2 (over 40 different
application domains and several thousand instances).

The operator stack of the previous domain (Figure 1)
written using PDDL syntax is shown below:

(: a c t i o n s t a c k
: p a r a m e t e r s (? ob ? underob)
: p r e c o n d i t i o n (and (c l e a r ? underob) (h o l d i n g ? ob))
: e f f e c t (and (arm−empty) (c l e a r ? ob)

(on ? ob ? underob) (not (c l e a r ? underob))
(not (h o l d i n g ? ob))))

After parsing a PDDL problem, planners transform the
PDDL first-order language into a set-theoretic representation
(sets of propositions) like STRIPS (see below). To do so,
PDDL operators, like (stack ?ob ?underob), are instanti-
ated into ground actions {(stack A B), (stack A C), . . . }.

b) The STRIPS model of Classical Planning: Planning
problems can be expressed into the STRIPS model defined as
follows. A state of the world is represented by a set of ground
atoms. A ground action a built from a set of atoms A is a
tuple 〈pre(a),add(a),del(a)〉 where pre(a) ⊆ A, add(a) ⊆
A and del(a) ⊆ A represent the preconditions, add effects
and del effects of a respectively. A planning problem can be
defined as a tuple Π = 〈A,O, I,G〉, where A is a finite set
of atoms, O is a finite set of ground actions built from A,
I ⊆ A represents the initial state, and G ⊆ A represents the
goal of the problem. The application of an action a to a state
s is possible if and only if pre(a) ⊆ s and the resulting state
is s′ = (s \ del(a)) ∪ add(a). A solution plan is a sequence
of actions 〈a1, . . . , an〉 such that for s0 = I and for all i ∈
{1, . . . , n}, the intermediate states si = (si−1 \ del(ai)) ∪
add(ai) are such that pre(ai) ⊆ si−1 and G ⊆ sn.

c) Prior work on Automated Planning: Different ap-
proaches exist [1]. One of the most successful for suboptimal
planning is state-space search where each node corresponds to
a state of the world and edges between nodes are applicable
actions which allow to move from a state s to a state s′ (state
transition). Finding a path from the initial state I (node) to
the goal state G provides a plan for a problem. Heuristic
search algorithms like A* are mainly used to find such a path.
Various domain-independent heuristics have been developed
to guide search. Many successful state-of-the-art sequential
planners are based on Fast Downward [11].

Several approaches to parallel planning have been proposed
in recent years. Most of them are modifications of the A*
algorithm, trying to transform sequential planning techniques

2The benchmark problems used in past planning competitions are all
available on the IPC webpages

Algorithm 1: plan-search
input : a planning problem Π = 〈A,O, I,G〉 and a weight ω for the

heuristic function
output : a plan if search succeeds, ⊥ otherwise

1 open ← closed ← ∅
2 create a new node n:
3 n.state ← I
4 n.parent ← ⊥
5 n.steps ← 〈〉
6 n.length ← 0
7 n′ ← compute-node(Π, ω, n, open, closed)
8 if n′ 	= ⊥ then return extract-plan(n′)
9 else

10 while open 	= ∅ do
11 n ← argminn∈open n.heuristic
12 open ← open \ {n}
13 foreach a ∈ n.applicable do
14 create a new node n′:
15 n′.state ← (n.state \ del(a)) ∪ add(a)
16 n′.parent ← n
17 n′.steps ← 〈a〉
18 n′.length ← n.length+ 1
19 n′′ ← compute-node(Π, ω, n′, open, closed)
20 if n′′ 	= ⊥ then return extract-plan(n′′)

21 return ⊥

into parallel ones. Some algorithms use a distributed hash
function to allocate generated states to a unique processing
unit and avoid unnecessary state duplications, like HDA* [8].
Parallel Frontier A* with Delayed Duplicate Detection [12]
uses a strategy based on intervals computed by sampling to
distribute the workload among several workstations, targeting
distributed-memory systems. The Adaptive K-Parallel Best-
First Search [13] algorithm presents an asynchronous parallel
search for multi-core architectures. This paper also provides
a recent bibliography about parallel planning. In the IPC
2011 competition, a multi-core track has been started. The
most efficient planners were the ones using a portfolio-based
approach, meaning they run different planners (or the same
planner with different configurations) on each processor (or
core) like ArvandHerd [14] and ay-Also-Plan Threaded [15].

III. THE SEQUENTIAL PLANNING ALGORITHM

Algorithm 1 (plan-search) constitutes the core of the
best-first search algorithm (a weighted-A* here). The first
call to compute-node may find a solution to the problem
without search, by recursive calls to the lookahead process. If
not, nodes are extracted from the open list following their
heuristic evaluation and are expanded with the applicable
actions (already computed and stored in nodes inserted into
the open list), and a solution plan is returned as soon as
possible. Search can be pursued in an anytime way, in order
to improve the solution, with pruning of partial plans whose
quality is lower than that of the best plan found so far. In our
experiments, the weight ω has been set to 3.

Algorithm 2 (compute-node) first performs duplicate state
detection. It then computes the heuristic, checks if the goal is
obtained or cannot be reached, and updates the node with the
heuristic and the applicable actions given by compute-hadd.
The node is then stored in the open list and a lookahead

16

Algorithm 2: compute-node
input : a planning problem Π = 〈A,O, I,G〉, a weight ω for the

heuristic function, a node n, the open and closed lists
output : a goal node if search succeeds, ⊥ otherwise; open and

closed are updated

1 if ∃n′ ∈ closed |n′.state = n.state then return ⊥
2 else
3 closed ← closed ∪ {n}
4 〈cost, app〉 ← compute-hadd(Π, n.state)
5 gcost ← Σg∈G cost[g]
6 if gcost = 0 then return n
7 else if gcost = ∞ then return ⊥
8 else
9 n.applicable ← app

10 n.heuristic ← n.length+ ω × gcost
11 open ← open ∪ {n}
12 〈state, plan〉 ← lookahead(Π, n.state, cost)
13 create a new node n′:
14 n′.state ← state
15 n′.parent ← n
16 n′.steps ← plan
17 n′.length ← n.length+ length(plan)
18 return compute-node(Π, ω, n′, open, closed)

state/plan is computed by a call to lookahead. A new node
corresponding to the lookahead state is then created and
compute-node is recursively called. Recursion is stopped
when a goal, duplicate or a dead-end state is reached.

The other algorithms are not shown here due to lack of
space (more details can be found in [3]), but their role can be
summarized as follows. Algorithm compute-hadd computes
hadd and returns a vector of costs for all atoms and actions,
as well as actions applicable in the state for which hadd is
computed obtained as a side-effect. Algorithm lookahead

computes a lookahead state/plan from a relaxed plan given
by a call to extract-relaxed-plan. Once a first applicable
action of the relaxed plan is encountered, it is appended to the
lookahead plan and the lookahead state is updated. A second
applicable action is then sought from the beginning of the
relaxed plan, and so on. When no applicable action is found,
a repair strategy tries to find an applicable action of minimum
cost from the whole set of actions, in order to replace an action
of the relaxed plan which produces an unsatisfied precondition
of another action of the relaxed plan, and the process loops.
Algorithm extract-relaxed-plan computes a relaxed plan
from a vector of action costs. A sequence of goals to produce
is maintained, starting from the goals of the problem. The
first one is extracted, and an action which produces it with
the lowest cost is selected and stored in the relaxed plan. Its
preconditions are appended to the sequence of goals, and the
process loops until the sequence of goals is empty. An atom
already satisfied, i.e. produced by an action of the relaxed
plan, is not considered twice. The relaxed plan is finally sorted
before being returned, by increasing costs first, and for equal
costs by trying to order first an action which does not delete
a precondition of the next action.

IV. AN HYBRID OPENMP/MPI PARALLEL PLANNING
ALGORITHM

The main idea for parallelizing YAHSP2 is based on the
same principle than in TDS [7] and HDA* [8]: to distribute

search nodes among the PUs based on a hash key computed
from planning states. A PU can either be an MPI process
running a single thread, or an OpenMP thread started with
several others by an MPI process.

One important consequence of the hash-based distribution
principle is that several occurrences of a given state, encoun-
tered in any PU, will be sent to the same PU that will either
discard it if it has already been encountered, or expand it in the
opposite case. Another consequence is that this communication
scheme can be performed in an asynchronous way: PUs send
nodes that do not belong to them (i.e. the state hash key
identifies another PU), and receive nodes from any other PUs,
while expanding nodes they currently own in their open list.

The main differences with respect to TDS and HDA* are
that (1) we focus on suboptimal planning, while TDS and
HDA* search optimal plans, (2) we have integrated the looka-
head strategy into this framework, and (3) we implemented
this principle as an hybrid OpenMP/MPI algorithm (while
TDS and HDA* only use MPI). The advantages of using
OpenMP are that problem parsing, instantiation, and all other
preprocessing tasks are performed only once (thus saving
memory), and communication between threads by shared
memory is much more efficient than communication between
MPI processes. The main drawback of using OpenMP is that
memory locks are sometimes necessary; but fortunately, this
does not happen often because the algorithm spends most of
its time in computing the hadd heuristic (Algorithm 2 line 4).

Each PU (either an MPI process running a single thread,
or an OpenMP thread inside an MPI process) runs the search
algorithm described in Algorithm 1, with its own open and
closed lists, with several modifications:
The first initial node (lines 2–6) is created only by the master
thread of the first MPI process.
The main loop condition (line 10) is modified in order
for the loop to be executed even if the PU has no node
yet (i.e., it is waiting for states sent by other PUs). This
loop is stopped when a PU finds a solution, which will be
handled by special messages. We have not yet implemented a
distributed termination algorithm in the case where the search
space is completely explored without finding a solution (which
happens extremely rarely on academic benchmarks). In HDA*,
a termination algorithm from [16] has been used.
Calls to compute-node (lines 7 and 20) are performed only
if the corresponding nodes belong to the current PU; in the
opposite case, they are sent to their associated PU. This
is performed by either sending a message to another MPI
process, or by incorporating the node into the open list of
another thread within the same MPI process. In the latter case,
it is required to lock the open list of the destination thread.
Before choosing the next node to be expanded (line 11),
incoming MPI messages are checked and all new nodes are
incorporated into the open list: either the open list of the
current PU, or into the open list of another thread of the same
MPI process –which requires once again a lock on this list.

In order to completely follow the hash-based distribution
principle, Algorithm 2 should also be modified in order to send
nodes to their appropriate PUs (as in the third point above):
line 18 should be executed only in the case where the obtained

17

node belongs to the current PU, and if not, this node should be
sent to its correct destination. However, after some preliminary
experiments, we observed that the strategy of performing full
lookaheads –i.e. the full recursive calls of compute-node

inside a single PU– was more efficient than distributing them.
One consequence is that a given node may appear in different
PUs, thus duplicating the work of expanding it. Many other
variations and strategies can be imagined, and the description
and comparison of various node distribution policies will be
the subject of a more extensive study.

The last main modification of the sequential algorithm is
about the reconstruction of the solution, which is distributed
among the different PUs. Indeed, when nodes are communi-
cated between PUs, the actions attached to it (which represent
the path from a node to its son) are kept in the PU they are
computed, in order to minimize the traffic. All messages thus
have the same size, as states are represented with bit arrays
whose size is the number of ground atoms of the problem,
which is determined during the planning problem instantiation.
When a PU finds a solution, it sends a special message to all
nodes meaning that a synchronization step is required. These
messages are checked in the same place than MPI incoming
messages are treated (before line 11 of algorithm 1). In the
case of synchronization, a function is called by all PUs at this
place, into which they exchange messages to build the solution
plan and aggregate statistics on the current run (everything
being controlled and owned by the master thread of the first
MPI process). This procedure was a bit tricky to implement,
but do not deserves more details in this paper. One important
remark though is that all PUs play exactly the same role in the
algorithm, except in two minor cases where the master thread
of the first MPI process plays a special role: when search starts
(initial node of the problem) and when a solution is built.

V. EXPERIMENTAL EVALUATION

In order to evaluate the different parallel implementations
of the algorithm, we conducted a set of experiments with
1171 benchmarks from the 3rd to the 7th IPCs (all sequential
problems from these IPCs). The cluster is composed of 4
servers with two 6-core Intel Xeon X5670 running at 2.93GHz
and 24GB of RAM. The different configurations are:

• c1: 1 process with the sequential algorithm;
• c48: 48 MPI processes uniformly distributed;
• c4x12: 4 MPI processes, each one of them including 12

OpenMP threads, uniformly distributed (cluster only);
• c48-I and c4x12-I: 48 independent MPI processes or 4

MPI processes including 12 independent threads (cluster
only) executing the sequential algorithm in exactly the
same way with no communication (all PUs are equivalent
to configuration c1 and perform identical computations on
the same data), in order to assess the impact of memory
contention.

In the following, we compare absolute (wall-clock) time
used for finding a solution with a timeout of 600 sec., and the
ratio of search times used by compared versions. This will be
shown as speedup in the figures. Thus, the shown speedup will
be the amount of time used by the quickest implementation
divided by the amount of time used by the slowest one.

10-3

10-2

10-1

100

101

102

10-3 10-2 10-1 100 101 102

w
c-

tim
e

(c
lu

st
er

: c
4x

12
)

wc-time (cluster: c48)

100

101

102

103

104

 0 20 40 60 80 100 120

instances which require at least 1 sec. for one version

cluster: c48 faster (79 inst.)
cluster: c4x12 faster (127 inst.)

Fig. 2. Comparison of the wall-clock time in seconds between cluster
versions (either 48 MPI processes, or 4 MPI processes of 12 threads each)
and speedup of both versions (Blue curve –dotted lines– represent the speedup
of the 48 processes version when it is faster, while red curves –plain lines–
represent the speedup of the 4x12 version when it is faster.).

a) Cluster versions compared: Figure 2 compares c48
and c4x12 on the cluster. On the top figure, the solving time
is compared, problem by problem. As most of the points are
on the bottom right part, we can deduce that c48 performs
worse. While the number of threads is the same, the overhead
caused by the MPI message passing mechanism makes this
version generally worse than c4x12. In further experiments,
we then will only compare c4x12 to c48 on the SCC. The
bottom figure shows the speedup of both versions, for the
problems were the particular version performs better. Again,
it can be seen that c4x12 performs better in a larger number of
cases than c48. Interestingly, when problems become harder,
the speedup can become extremely large: one of the versions
typically go around 10000 times faster than the other one.

b) Parallel vs. sequential: On Figure 3 can be seen the
comparison between the sequential version and the parallel
implementation. Hopefully, the parallel version performs better
than the sequential one as soon as the problem is complex
enough to take more time to solve than the overhead induced
by communication mechanisms. Another reason for the par-
allel version not to always perform better is that the order
in which nodes are explored is not the same, and the aim
of the heuristic used is to make the sequential version use a
very good order, while in parallel version there is much more
variation around the order implied by the use of the heuristic
value. One can also remark a very large number of problems
unsolved before timeout for the sequential version, especially
on the SCC: they are the many points on the right frame.

c) Detailed speedup analysis: Figure 4 shows the com-
parison between c4x12 and c1 on the cluster. We show
different curves in order to emphasize the effect of the com-

18

10-3

10-2

10-1

100

101

102

10-3 10-2 10-1 100 101 102

w
c-

tim
e

(c
lu

st
er

: c
4x

12
)

wc-time (cluster: c1)

10-3

10-2

10-1

100

101

102

10-3 10-2 10-1 100 101 102

w
c-

tim
e

(s
cc

: c
48

)

wc-time (scc: c1)

Fig. 3. Comparison of the wall-clock time in second between parallel (4x12
on the cluster and 48 processes on the SCC) and sequential versions.

munication overhead, independently of the parallelism itself;
this because communication overhead has a large influence for
very simple problems, and becomes less important for larger
ones. So we show results for problems taking at least 0.001
second to solve for one of the version, 0.1 second to solve
and so on. As expected, the sequential version performs better
for problems that can be very quickly solved, but the parallel
version becomes generally better as soon as the problems need
at least 0.1 second to be solved. On the other hand, this trend
becomes less obvious when the problems are very complex
(more than 100 seconds to be solved for one version). We
think that this is because both versions get trapped into long
useless explorations that do not lead to find the goal.

We conducted the very same comparison on the SCC, as
shown on Figure 5. Interestingly, the trend observed on the
cluster for the larger problems (that the parallel version does
not perform better and better compared to the sequential one)
is not present here (even with comparable complexity obtained
by comparing 30 sec. of cluster time with 600 sec. of SCC
time –not shown here–). So the SCC parallel version performs
better and better with the problem complexity, whereas the
cluster version just performs better, but not better and better.

At this point, we are unsure why this occurs. One expla-
nation is that the amount of data exchanged increases super-
linearly with the problem complexity, thus the SCC imple-
mentation would be less sensitive to the problem complexity.
It may also be the case that all threads being trapped into bad
explorations may occur only for a larger timeout. . .

d) Influence of the amount of data exchanged: In order
to figure this out, we present Figure 6, where one can see
the speedups related to the amount of data exchanged. This
is performed on a selection of 5 problems in each planning
domain (210 instances in total), for anytime runs of 100
seconds (search continues after a solution is found, producing
solutions of increased quality). In the cluster version, there
is a clear trend of worse speedup when the amount of data
exchanged increases, whereas there is no correlation for the
SCC. Indeed on the cluster, for the instances where the
exchanges are about 10GB (nearly 800 Mb/sec) we seems to
reach the I/O capacities (1Gib/sec). This seems to be a good
explanation of the “less-sensitivity” to the problem complexity
of the SCC implementation compared to the 4x12 cluster one.

e) Influence of concurrent resources access: Finally, we
present as Figure 7 the speedups in node generation of parallel

 0

 10

 20

 30

 40

 50

 60

 70

103 104 105 106 107 108 109 1010 1011

w
c-

tim
e

sp
ee

du
p

bytes exchanged on the cluster (c4x12)

 0

 10

 20

 30

 40

 50

 60

 70

103 104 105 106 107 108 109 1010 1011

w
c-

tim
e

sp
ee

du
p

bytes exchanged on the SCC (c48)

Fig. 6. Wall-clock time speedup of parallel algorithms vs. the sequential
version in function of the total number of bytes exchanged between all
processes (between the 4 MPI processes) for anytime runs of 100 seconds.

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100 120 140 160 180

w
c-

tim
e

sp
ee

du
p

instances

scc: c48 vs c1
scc: c48 vs c48-I
cluster: c48 vs c1

cluster: c48 vs c48-I
cluster: c4x12 vs c1

cluster: c4x12 vs c4x12-I

Fig. 7. Wall-clock time speedup in node generation of parallel algorithms
vs. sequential versions for anytime runs of 100 seconds, on the cluster and
on the SCC. Curves labelled by “architecture: x vs y” compare on the given
architecture the speedup of running x processes versus running y processes
(single process or 48 non-communicating processes running the same instance
in the same way, or 4 non-communicating MPI processes of 12 OpenMP
threads each also running the same way).

implementations relative to one sequential process, but also to
the same number of sequential processes, in order to see the
speedup obtained with a comparable bottleneck for memory
access. This is performed in the same experimental conditions
as in the previous experiment (anytime search on 210 problems
during 100 seconds).

For small instances, the speedup can be small due to the
overhead of message passing, while for larger instances, the
complexity of problems causes the sequential algorithm to get
trapped into exploring non-interesting states for a very long
time, making very large speedups. This shows that for complex
problems the sequential algorithm would perform better sim-
ply by avoiding such traps. More interestingly, the “center”
part of the curves, for average instances show very large
differences between the SCC and the cluster implementations.
More precisely, there is a large difference between the “cluster:
c48 vs c1” and the “cluster: c48 vs c48-I” curves (same for
“c4x12” versions) meaning that on the cluster there is a lot of
memory contention (c48-I is a lot less efficient than c1: only
one process). This is less the case for the SCC versions: on
the SCC, the sequential non-communicating processes almost
do not slow down each other. Several conclusions can thus
be stated: on a cluster implementation, good cooperation is
mandatory in order to achieve large speedups, in order to
reduce memory usage of each core. On the other hand, our

19

100

101

102

103

104

 0 100 200 300 400 500 600 700

w
c-

tim
e

sp
ee

du
p

instances which require at least 0.001 sec. for one version

cluster: c1 faster (700 inst.)
cluster: c4x12 faster (361 inst.)

100

101

102

103

104

 0 50 100 150 200 250

w
c-

tim
e

sp
ee

du
p

instances which require at least 0.1 sec. for one version

cluster: c1 faster (177 inst.)
cluster: c4x12 faster (262 inst.)

100

101

102

103

104

 0 20 40 60 80 100

instances which require at least 10 sec. for one version

cluster: c1 faster (64 inst.)
cluster: c4x12 faster (104 inst.)

100

101

102

103

104

 0 10 20 30 40 50 60

instances which require at least 100 sec. for one version

cluster: c1 faster (51 inst.)
cluster: c4x12 faster (68 inst.)

Fig. 4. Wall-clock time speedup of the parallel algorithm with 4 MPI threads of 12 threads each vs. the sequential version running on the cluster, for all
instances which require at least a given number of seconds (see x-axis) for one version.

100

101

102

103

104

 0 100 200 300 400 500 600

w
c-

tim
e

sp
ee

du
p

instances which require at least 0.001 sec. for one version

scc: c1 faster (603 inst.)
scc: c48 faster (414 inst.)

100

101

102

103

104

 0 50 100 150 200 250 300 350

w
c-

tim
e

sp
ee

du
p

instances which require at least 0.1 sec. for one version

scc: c1 faster (241 inst.)
scc: c48 faster (391 inst.)

100

101

102

103

104

 0 50 100 150 200

instances which require at least 10 sec. for one version

scc: c1 faster (49 inst.)
scc: c48 faster (227 inst.)

100

101

102

103

104

 0 20 40 60 80 100 120

instances which require at least 100 sec. for one version

scc: c1 faster (21 inst.)
scc: c48 faster (128 inst.)

Fig. 5. Wall-clock time speedup of the parallel algorithm with 48 MPI threads vs. the sequential version running on the SCC, for all instances which require
at least a given number of seconds (see x-axis) for one version.

implementation achieves a good speedup between the “c48 vs
c48-I”, meaning that the main bottleneck for improving it is
the memory contention problem itself (which will be hard to
avoid for our algorithm). On the SCC, this is not a problem,
so we can either try to improve the communication scheme
for more complementarity, or try a very different “portfolio”
approach, where the cores are more independent, and try to
solve the problem in different ways.

VI. CONCLUSION

We described in this paper the parallelization of an auto-
mated planner based on forward heuristic search and looka-
heads for suboptimal sequential classical planning. It is based
on a hash-based node distribution, implemented in hybrid
OpenMP/MPI. Experiments show performance improvements
with respect to the sequential version, especially for difficult
problems. As the search space is not explored the same way
in the sequential and parallel versions, super-linear speedups
are observed, but also super-linear speed-downs. This suggests
trivial improvements of the parallel version, for example by
running the sequential version on a single processing unit
and the parallel algorithm on the remaining processing units.
More elaborate strategies can be imagined, that will make
the subject of further studies. The experiments also revealed
some differences in the behavior of the parallel algorithm
on a standard cluster and on the SCC. These differences
suggest that improvements of the parallel version may be more
beneficial to an execution on the SCC (which suffers less from
memory contention and benefits from faster communications),
but clearly more in-depth studies are needed to understand
these differences in order to better take advantage of the
capabilities of the SCC.

ACKNOWLEDGMENT

The authors would like to thank Intel Labs for providing
access to the SCC, and for their reactivity in solving all

problems that arose during the SCC exploitation. They also
thank Eric Noulard from Onera for insightful discussions.

REFERENCES

[1] M. Ghallab, D. Nau, and P. Traverso, Automated Planning, theory and
practice. Morgan-Kaufmann, 2004.

[2] V. Vidal, “A lookahead strategy for heuristic search planning,” in Proc.
ICAPS, 2004, pp. 150–159.

[3] ——, “YAHSP2: Keep it simple, stupid,” in Proc. of the 7th Interna-
tional Planning Competition (IPC’11), 2011.

[4] J. Hoffmann and B. Nebel, “The FF planning system: Fast plan gener-
ation through heuristic search,” JAIR, vol. 14, pp. 253–302, 2001.

[5] I. Pohl, “Heuristic search viewed as path finding in a graph,” Artificial
Intelligence, vol. 1, no. 3, pp. 193–204, 1970.

[6] B. Bonet, G. Loerincs, and H. Geffner, “A robust and fast action selection
mechanism for planning,” in Proc. AAAI, 1997, pp. 714–719.

[7] J. W. Romein, A. Plaat, H. E. Bal, and J. Schaeffer, “Transposition table
driven work scheduling in distributed search,” in Proc. AAAI, 1999.

[8] A. Kishimoto, A. S. Fukunaga, and A. Botea, “Scalable, parallel best-
first search for optimal sequential planning,” in Proc. ICAPS, 2009.

[9] T. Bylander, “The computational complexity of propositional strips
planning,” Artificial Intelligence, vol. 69, no. 1-2, pp. 165–204, 1994.

[10] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso,
D. Weld, and D. Wilkins, “PDDL – The Planning Domain Definition
Language,” Yale Center for Computational Vision and Control, New
Haven, CI, USA, Tech. Rep. CVC TR-98-003/DCS TR-1165, 1998.

[11] M. Helmert, “The fast downward planning system,” Journal of Artificial
Intelligence Research, vol. 26, no. 1, pp. 191–246, 2006.

[12] R. Niewiadomski, J. N. Amaral, and R. C. Holte, “Sequential and
parallel algorithms for frontier a* with delayed duplicate detection,” in
Proc. AAAI, 2006.

[13] V. Vidal, L. Bordeaux, and Y. Hamadi, “Adaptive k-parallel best-
first search: A simple but efficient algorithm for multi-core domain-
independent planning,” in Proc. 3rd Symposium on Combinatorial
Search (SOCS’10), 2010.

[14] R. Valenzano, H. Nakhost, M. Muller, and J. Schaeffer, “Arvandherd:
Parallel planning with a portfolio,” in Proc. 7th International Planning
Competition (IPC’11), 2011.

[15] J. Ernits, C. Gretton, and R. Dearden, “Ay also plan: Bitstate pruning for
state-based planning on massively parallel compute clusters,” in Proc.
7th International Planning Competition (IPC’11), 2011.

[16] F. Mattern, “Algorithms for distributed termination detection,” Dis-
tributed Computing, vol. 2, no. 3, pp. 161–175, 1987.

20

Performance modeling for power consumption
reduction on SCC

Bertrand Putigny12, Brice Goglin12, Denis Barthou2,
1 Inria

2 Univ. Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France

Abstract—As power is becoming one of the biggest challenge
in high performance computing, we are proposing a performance
model on the Single-chip Cloud Computer in order to predict
both power consumption and runtime of regular codes. This
model takes into account the frequency at which the cores of the
SCC chip operate. Thus, we can predict the execution time and
power needed to run the code for each available frequency. This
allows to choose the best frequency to optimize several metrics
such as power efficiency or minimizing power consumption, based
on the needs of the application. Our model only needs some
parameters that are code dependent. These parameters can be
found through static code analysis. We validated our model by
showing that it can predict performance and find the optimal
frequency divisor to optimize energy efficiency on several dense
linear algebra codes.

Index Terms—Intel SCC, performance model, performance
prediction, power, energy efficiency, optimization.

I. INTRODUCTION

Reducing power consumption is one of the main challenge
in the HPC community. Indeed power is the leading design
constraint for next generation of supercomputers [4]. Therefore
energy efficiency is becoming an important metric to evaluate
both hardware and software.

The Intel Single-chip Cloud Computer (SCC) is a good
example of next generation hardware with an easy way to
control power consumption. It provides a software API to
control core voltage and core frequency. This opens promising
opportunities to optimize power consumption and to explore
new trade-offs between power and performance.

This paper aims at exploring the opportunities offered by
SCC to reduce power consumption with a small impact on
performance. It is organized as follow: Section II describes
the model used to predict performance, the Section III demon-
strates the reliability of our model by applying it to several
basic linear codes, we will also explain how to choose the
frequency to optimize a given metric. Sections IV, V, and VI
present respectively the related work, future work and conclu-
sion.

II. PERFORMANCE MODEL

In this section we provide a performance model in order to
predict the impact of core frequency scaling on the execution
time of several basic linear algebra kernels on the SCC chip.

Project ProHMPT is funded by the French National Agency for Research
under the ANR-08-COSI-013 grant.

As we focus on dense linear algebra, we only need a few
data to predict a given code performance. The considered
datasets being too large to fit in cache, we need the execution
time of one iteration of the innermost loop of the kernel and
the memory latency.

A. Memory model

To build the memory model, we assume that the application
can exploit perfectly data reuse and therefore we assume that
each data is accessed only once. We do not take the number
of cache accesses into account in the prediction of the overall
memory access time because they are not actual memory
accesses since the request does not have to go all the way to
DRAM. Moreover the cache is not coherent. Therefore there
is no overhead due to the cache coherence protocol.

On SCC, a memory access takes 40 core cycles + 4×n×
2 mesh cycles + 46 memory cycles (DDR3 latency) where
n is the number of hops between the requesting core and
the memory controller [1]. In our case, we are only running
sequential code, therefore we are assuming that the memory
access time is 40×c+46×m cycles, where c is the number of
core cycles and m the number of memory cycles. Accessing
memory takes 40 core cycles plus 46 memory cycles.

Frequency scaling only affects core frequency, the memory
frequency is a constant, (in our case 800MHz). Therefore,
changing frequency mostly impacts the code performance if it
is computation bound. The number of core cycles to perform
one DDR3 access is: 40 + 46× core freq

800 .
As we can see from the formula dividing the core frequency

by 8 (from 800MHz to 100MHz) will only reduce the memory
performance by 46%

As the P54C core used in the SCC supports two pending
memory requests, we can assume that accessing x elements
will take x

2 (40 + 46× core freq
800) core cycles.

B. Computational model

In order to predict the number of cycles needed to perform
the computation itself we need the latency of each instruction.
Agner Fog measured the latency of each x86 and x87 instruc-
tion [7]. We used his work to predict the number of cycles to
perform one iteration of the innermost loops of each studied
kernel. The computation model is very simple, as most of the
instructions use the same execution port, there is almost no
instruction parallelism. A more complex performance model,
considering also measured latencies as a building block of the

21

Freq divisor Tile freq (MHz) Voltage (volts)
2 800 1.1
3 533 0.8
4 400 0.7
5 320 0.6
6 266 0.6
7 228 0.6
8 200 0.6
9 178 0.6

10 160 0.6
11 145 0.6
12 133 0.6
13 123 0.6
14 114 0.6
15 106 0.6
16 100 0.6

TABLE I: Relation between voltage and frequency.

model, is used in the performance tuning tool MAQAO [2]. We
use such tool to measure the execution time of one iteration
of the innermost loop. As most of the execution time of the
codes we consider is spent in inner loops, this performance
estimation is expected to be rather accurate.

From this computation model the impact of frequency
scaling on the computation performance is straightforward.
The number of cycles to perform the computation is not
affected by the frequency. Thus, reducing the core frequency
by a factor of x will multiply the running time by x.

C. Power model

We use a very simple power model to estimate the power
saved by reducing the core frequency. Table I shows the
voltage used by the tile for each frequency, these data are
provided by the SCC Programmer’s guide [1].

The power consumption model used in this paper is the
general model:

P = CV 2f

where C is a constant, V the voltage and f the frequency of
the core. As shown In Table I the voltage is a function of the
frequency, thus, we can express the power consumption as a
function of the core frequency only.

We choose not to introduce a power model for the memory
for two reasons: first we have no software control on the
memory frequency at runtime. We can change the memory fre-
quency by re-initializing the SCC platform but not at runtime.
Thus, the memory energy consumption is constant and we
have no control over it. Therefore it would be almost worthless
to complicate our model with such information. The other
reason is that until now we used models that can be transposed
to other architectures. As the memory architecture of the SCC
is very different from more general purpose architecture, its
energy model would not fit for those architectures. Thus, the
model described in this paper is completely general and can
be easily transposed to other architectures.

D. Overall model

In this section we describe how to use both the memory and
computational models to predict the performance of a given
code.

As the P54C core can execute instructions while some
memory requests are pending, we assume that the execution
time will be the maximum between the computation time and
the memory access time:

runtime(fc) = MAX

(
computation

fc
,mem access(fc)

)

with fc the core frequency.
With this runtime prediction, we estimate how a code

execution is affected by changing the core frequency. Taking
the decision to reduce the core frequency in order to save
energy can be done with a static code analysis.

As show in Section II-A the memory access performance is
almost not affected by reducing core frequency, while reducing
core frequency increases dramatically the computation time.
From this observation we see that reducing core frequency
for memory bound code is highly beneficial for power con-
sumption because it will almost not affect performance while
reducing dramatically energy consumption. However, reducing
core frequency for compute bound code will directly affect
performance.

III. MODEL EVALUATION

In this section we compare our model with the real runtime
of several regular codes in order to check its validity. We used
three computation kernels, one BLAS-1, one BLAS-2 and one
BLAS-3 kernels namely dot product, matrix-vector product
and matrix-matrix product.

First let us describe how we applied our model to these
three kernels: In the following formulas, fdiv denotes the
core frequency divisor (as shown in Table I) and power(fdiv)
the power used by the core when running at the frequency
corresponding to fdiv (see Table I). An important point is that
we used large data sets that do not fit in cache so as to measure
the execution time of the code. Thus, the kernel actually gets
data from DRAM and not from caches. However, the matrix-
matrix multiplication is tiled in order to benefit from data reuse
in cache.

A. Dot product multiplication

For the dot product kernel, the memory access time in cycles
is:

cyclesmem(fdiv) = size×
(
40 + 46× 2

fdiv

)

The computation time in cycles is given by:

cyclescomp(fdiv) = size×
(

body

unroll

)
,

with body the execution time (in cycles) of the innermost loop
body and unroll the unroll factor of the innermost loop. In
the case shown on Figure 1 body = 36 and unroll = 4. Then
the power efficiency is:

powereff (fdiv) =
flop

model(fdiv)
freq × power(fdiv)

,

22

with flop the number of floating point operations of the kernel,
model(fdiv) the number of cycles predicted by our model and
freq the actual core frequency (1600fdiv

). In the case shown on
Figure 1,

model(fdiv) = MAX

(
cyclesmem(fdiv), cyclescomp(fdiv)

)

= cyclesmem(fdiv)

Figure 1a shows that the number of cycles for both the
memory model and obtained through benchmark decreases
when frequency decreases. The reason is that frequency scal-
ing only affects core frequency. For memory bound codes such
as dot product, reducing the core frequency reduces the time
spent in waiting for memory requests. However, the code is
not executing faster, as shown in Figure 1b.

B. Matrix-vector product

Similarly the model for the matrix-vector product is:

cyclesmem(fdiv) =
matrix size

2
×

(
40 + 46× 2

fdiv

)

cyclescomp(fdiv) = matrix size×
(

body

unroll

)

With matrix size = 512×1024 elements, body = 64 cycles,
and unroll = 4 for the case shown on Figure 2.

powereff (fdiv) =
flop

model(fdiv)
freq × power(fdiv)

In this case, again, the memory access time is more im-
portant than the time for the computation, thus, the runtime
is given by the memory access time. (ie. model(fdiv) =
cyclesmem(fdiv))

Figure 2a shows that the number of cycles for both the
memory model and obtained through benchmark decreases
when frequency decreases. The reason is the same as for the
dot product.

C. Matrix-matrix product

The model for the matrix-matrix multiplication is:

cyclesmem(fdiv) = 3× matrix size2

2
×
(
40 + 46× 2

fdiv

)

cyclescomp(fdiv) = matrix size3 ×
(

body

unroll

)

powereff (fdiv) =
flop

model(fdiv)
freq × power(fdiv)

With matrix size = 160 elements (each matrix is 160 ×
160 elements big), body = 43 cycles, and unroll = 1 for the
case shown on Figure 3.

For this BLAS-3 kernel, as expected, the computation
time is bigger than accessing memory, thus, model(fdiv) =
cyclescomp(fdiv))

D. Power efficiency optimization

Our objective in this section is to show that thanks to
the performance model we built, the frequency scaling that
optimizes power efficiency can be selected. Then the higher
performance version is chosen among the most power efficient
versions.

We can see that the dot and matrix-vector products are
memory bound while the matrix-matrix product is compute
bound. Power efficiency is measured through the ratio of
GFlops/W. The best frequency optimizing power efficiency of
those two kind of code are different. For the case of memory
bound codes, the core frequency can be reduced by a large
divisor as performance is limited by memory bandwidth which
is not very sensitive to core frequency. On the contrary, for
computation bound codes, the performance in Gflops decreases
linearly with the frequency.

Figures 1c, 2c and 3c represent power efficiency in
GFlops/W for respectively dot, matrix-vector and matrix-
matrix products. They show that our performance model is
similar to the measured performance (from which we deducted
power efficiency). Power efficiency for matrix-matrix product
is optimal from a frequency divisor of 5, to 16. Among those
scalings, the best performance is obtained for the scaling of
5 according to Figure 3a. For the dot product 1c, codes are
more energy efficient using a frequency scaling of 5, and their
efficiency increases slowly as frequency is reduced. According
to our performance model, around 25% of Gflops/W is gained
from a frequency divisor of 5 to a frequency divisor of 16,
and for this change, the time to execute the kernel has been
multiplied by a factor 2.33 (according to our model). In reality,
these factors measured are higher than those predicted by the
model, but the frequency values for optimal energy efficiency,
or some tradeoff between efficiency and performance are the
same. Note that for divisor lower than 5, energy efficiency
changes more dramatically since the voltage also changes.

We have chosen to show how to optimize energy efficiency,
but as our model predicts both running time and power
consumption for each frequency, it is easy to build any other
metric depending on power and runtime and optimize it.
Indeed using this model allows to compute the metric to
optimize for each frequency divisor and then to choose the
one that fits the best the requirement. Even with a very simple
model as we presented, we can predict the running time of
simple computational kernels within an error of 38% in the
worst case.

Our energy efficiency model is interesting because it shows
exactly the same inflection points as the curve of the actual
execution. This point allows us to predict what is the best
core frequency in order to optimize the power efficiency of
the target kernel.

It is also interesting to see that even with a longer running
time all the kernels (even matrix multiplication which is
compute bound) benefits from frequency reduction. This is
caused by the following facts:

• The run time of such kernels is proportional to the
frequency;

• The power consumption is also proportional to the fre-

23

quency.
So the energy efficiency does not depend on the core fre-
quency. But the 3 firsts step of frequency reduction also reduce
the voltage which has an huge impact on power consumption.

IV. RELATED WORK

Power efficiency is a hot topic in the HPC community and
has been the subject of numerous studies, and the Green500
List is released twice a year. Studies carried out at Carnegie
Mellon University in collaboration with Intel [6] have already
shown that the SCC is an interesting platform for power
efficiency. Philipp Gschwandtner et al. also performed an
analysis of power efficiency of the Single-chip Cloud computer
in [11]. However, this work focuses on benchmarking, while
our contribution aims at predicting performance according to
a theoritical proposed model.

Performance prediction in the context of frequency and
voltage scaling has also been actively investigated [5], [10],
[12], and the model usually divides the execution time into
memory (or bus, or off-chip) [8], [9], instruction and core
instruction, as we did in this paper.

Our contribution is slightly different from usual approach
as we do not use any runtime information to predict the
impact of frequency and/or voltage scaling on performance.
As we use static code analysis to predict performance of a
kernel, this could be done at compile time it and does not
increase the complexity of runtime system. Static Performance
prediction has also been used in the context of autotuning.
Yotov et al. [13] have shown that performance models, even
when using cache hierarchy, could be used to select the
version of code with higher performance. Besides, In [3], the
authors have shown that a performance model, using measured
performance of small kernels, is accurate enough to generate
high performance library codes, competing with hand-tune
library codes. This demonstrates that performance models can
be used in order to compare different versions, at least for
regular codes (such as linear algebra codes).

V. FUTURE WORK

The next step for this study is to extend the performance
model presented in this paper to parallel kernels. This is much
easier on the SCC Chip than on more classical architectures as
the cache access time is constant because of its non-coherence.
Bandwidth taken by cache-coherency protocol and possible
contention are difficult to model in general. Moreover memory
contention on NUMA architecture is a difficult problem.
Indeed in such architectures, memory contention not only
depends on the memory access pattern but also on the process
placement. Philipp Gschwandtner et al. showed how memory
contention on a single memory controller when several cores
are accessing it [11]. We believe it would be very interesting to
lead the same experiments for several sets of core frequency.
Indeed reducing the core frequency could lead to reducing the
stress on the memory controller by spacing memory requests.

Also we would like to improve the model in order to take
into account that applications are usually composed of several
phases, some compute bound phases followed by others that

might be memory bound. Enlarging our model to predict what
would be the best frequency for each of those phases.

It would also be interesting to develop a framework, inside a
compiler or a performance tuning tool such as MAQAO [2], in
order to perform the code analysis automatically. This would
reduce the time to build the model for new codes, allowing us
to do it on a large number of codes.

VI. CONCLUSION

We have described a method to predict performance of some
linear algebra codes on the Single-chip Cloud Computing
architecture. This model can predict performance of a given
code for all available frequency divisor and using the known
relation between frequency scaling and voltage, it can also
predict power efficiency. Based on this prediction we can
choose what will be the best frequency to run the kernel. We
have shown that we can save energy through this method,
but it is actually even more powerful: using the running time
prediction and the power model we can choose the frequency
in order to optimize either the running time, or the power
consumption, or the energy efficiency.

REFERENCES

[1] The scc programmer’s guide, 2011.
[2] Denis Barthou, Andres Charif Rubial, William Jalby, Souad Koliai,

and Cdric Valensi. Performance tuning of x86 openmp codes with
maqao. In Matthias S. Mller, Michael M. Resch, Alexander Schulz,
and Wolfgang E. Nagel, editors, Tools for High Performance Computing
2009, pages 95–113. Springer Berlin Heidelberg, 2010.

[3] Denis Barthou, Sebastien Donadio, Alexandre Duchateau, Patrick Car-
ribault, and William Jalby. Loop optimization using adaptive compilation
and kernel decomposition. In ACM/IEEE Intl. Symp. on Code Optimiza-
tion and Generation, pages 170–184, San Jose, California, March 2007.
IEEE Computer Society.

[4] S. Borkar. The exascale challenge. In VLSI Design Automation and Test
(VLSI-DAT), 2010 International Symposium on, pages 2 –3, april 2010.

[5] Matthew Curtis-Maury, Filip Blagojevic, Christos D. Antonopoulos,
and Dimitrios S. Nikolopoulos. Prediction-based power-performance
adaptation of multithreaded scientific codes. IEEE Trans. Parallel
Distrib. Syst., 19:1396–1410, October 2008.

[6] R. David, P. Bogdan, R. Marculescu, and U. Ogras. Dynamic power
management of voltage-frequency island partitioned networks-on-chip
using intel’s single-chip cloud computer. In Networks on Chip (NoCS),
2011 Fifth IEEE/ACM International Symposium on, pages 257 –258,
may 2011.

[7] Agner Fog. Instruction tables lists of instruction latencies, through-
puts and micro-operation breakdowns for intel, amd and via cpus.
http://www.agner.org/optimize/, 2011.

[8] R. Ge and K.W. Cameron. Power-aware speedup. In Parallel and Dis-
tributed Processing Symposium, 2007. IPDPS 2007. IEEE International,
pages 1 –10, march 2007.

[9] Sang jeong Lee, Hae kag Lee, and Pen chung Yew. Runtime performance
projection model for dynamic power management. In Asia-Pacific
Computer Systems Architectures Conference, pages 186–197, 2007.

[10] Georgios Keramidas, Vasileios Spiliopoulos, and Stefanos Kaxiras.
Interval-based models for run-time dvfs orchestration in superscalar
processors. In Conf. Computing Frontiers, pages 287–296, 2010.

[11] Radu Prodan Philipp Gschwandtner, Thomas Fahringer. Performance
analysis and benchmarking of the intel scc. In Conference on Cluster
Computing, pages 139–149, 2011.

[12] B. Rountree, D.K. Lowenthal, M. Schulz, and B.R. de Supinski. Practical
performance prediction under dynamic voltage frequency scaling. In
Green Computing Conference and Workshops (IGCC), 2011 Interna-
tional, pages 1 –8, july 2011.

[13] K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong, M. Garzaran,
D. Padua, K. Pingali, P. Stodghill, and P. Wu. A comparison of
empirical and model-driven optimization. In ACM SIGPLAN Conf. on
Programming Language Design and Implementation (PLDI’03), pages
63–76, San Diego, CA, June 2003.

24

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 1.8e+08

 2e+08

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
im

e
(c

or
e

cy
cl

es
)

Freqency divisor

real runtime
memory

computation

(a) Dot product: the cycle count is shown according to the core frequency divisor

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
im

e
(m

ic
ro

se
co

nd
)

Freqency divisor

real runtime
memory

computation

(b) Dot product: runtime in microsecond depending on the core frequency divisor

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
ne

rg
y

ef
fic

ie
nc

y

Freqency divisor

model
Real code

(c) Dot product: power efficiency (in GFlops/W) depending on the core
frequency divisor

Fig. 1: Vector dot product model: sequential dot product with
2 vectors of 16 MB.

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
im

e
(c

or
e

cy
cl

es
)

Freqency divisor

real runtime
memory

computation

(a) Matrix-vector product: the cycle count is given according to the core
frequency divisor.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
im

e
(m

ic
ro

se
co

nd
)

Freqency divisor

real runtime
memory

computation

(b) Matrix-vector product: the execution time is given in microsecond depending
on the core frequency divisor

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
ne

rg
y

ef
fic

ie
nc

y

Freqency divisor

Model
Real code

(c) Matrix-vector product: power efficiency (in GFlops/W) depending on the
core frequency divisor

Fig. 2: Matrix-vector multiplication model: sequential code
with a 512 by 1024 element size matrix.

25

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
im

e
(c

or
e

cy
cl

es
)

Frequency divisor

real runtime
memory

computation

(a) Matrix-matrix product model: the cycle count is given according to the the
core frequency divisor

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
im

e
(m

ic
ro

se
co

nd
)

Frequency divisor

real runtime
memory

computation

(b) Matrix matrix product model: the time in microsecond depending on the
core frequency divisor

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
ne

rg
y

ef
fic

ie
nc

y

Frequency divisor

Model
Real code

(c) Matrix-matrix product model: power efficiency (in GFlops/W) depending on
the core frequency divisor

Fig. 3: Matrix-matrix multiplication model: sequential code
with two matrices of 160 by 160 elements.

26

Performance and Power Analysis of RCCE Message Passing
on the Intel Single-Chip Cloud Computer

John-Nicholas Furst Ayse K. Coskun
Electrical and Computer Engineering Department, Boston University, Boston, MA 02215 USA

{jnfurst, acoskun}@bu.edu

Abstract— The number of cores integrated on a single chip
increases with each generation of computers. Traditionally, a
single operating system (OS) manages all the cores and resource
allocation on a multicore chip. Intel’s Single-chip Cloud Com-
puter (SCC), a manycore processor built for research use with 48
cores, is an implementation of a “cluster-on-chip” architecture.
That is, the SCC can be configured to run one OS instance
per core by partitioning shared main memory. As opposed to
the commonly used shared memory communication between the
cores, SCC cores use message passing. Intel provides a customized
programming library for the SCC, called RCCE, that allows for
fast message passing between the cores. RCCE operates as an
application programming interface (API) with techniques based
on the well-established message passing interface (MPI). The
use of MPI in a large manycore system is expected to change
the performance-power trends considerably compared to today’s
commercial multicore systems. This paper details our experiences
gained while developing the system monitoring software and
benchmarks specifically targeted at investigating the impact of
message passing on performance and power of the SCC. Our
experimental results quantify the overhead of logging messages,
the impact of local versus global communication patterns, and
the tradeoffs created by various levels of message passing and
memory access frequencies.

I. INTRODUCTION

Processor development has moved towards manycore archi-
tectures in recent years. The general trend is to utilize advances
in process technology to include higher numbers of simpler,
lower power cores on a single die compared to the previous
trend of integrating only a few cores of higher complexity.
This trend towards integrating a higher number of cores
can be seen in desktops, servers, embedded platforms, and
high performance computing (HPC) systems. Future manycore
chips are expected to contain dozens or hundreds of cores.

While integrating a high number of cores offers the po-
tential to dramatically increase system throughput per watt,
manycore systems bring new challenges, such as developing
efficient mechanisms for inter-core communication, creating
strategies to overcome the memory latency limitations, and
designing new performance/power management methods to
optimize manycore system execution. A significant difference
of manycore systems compared to current multicore chips
comes from the on-chip communication: manycore systems
are likely to incorporate a network-on-chip (NoC) instead of
a shared bus to avoid severe performance limitations. One
method of enabling inter-core communication on a NoC is
a message passing interface (MPI).

In order to enable new research in the area of manycore
design and programming, Intel Labs created a new exper-
imental processor. This processor, called the “Single-Chip
Cloud Computer” (SCC), has 48 cores with x86 architecture.
The SCC chip provides a mesh network to connect the
cores and four memory controllers to regulate access to the
main memory [5]. The SCC includes an on-chip message
passing application framework, named RCCE, that closely
resembles MPI. RCCE provides multiple levels of interfaces
for application programmers along with power management
and other additional management features for the SCC [9].

The objective of this paper is to investigate the on-die
message passing provided by RCCE with respect to perfor-
mance and power. To enable this study, we first develop
the monitoring tools and benchmarks. Our monitoring infras-
tructure is capable of logging messages, track performance
traces of applications at the core level, and measure chip
power simultaneously. We use this infrastructure in a set
of experiments quantifying the impact of message traffic on
performance and power. Significant findings of this paper
are: overhead of our message logging method is negligible;
execution times of applications increase with larger distances
between communicating cores; and observing both the mes-
sages and the memory access traffic is needed to predict
performance-power trends.

We present the monitoring infrastructure for the SCC in
Section II. Section III describes the applications we developed
for SCC. Section IV documents the experimental results on
message logging overhead, effects of various message/memory
access patterns, and energy efficiency. Section V discusses
related work. Section VI concludes the paper.

II. MONITORING INFRASTRUCTURE FOR THE SCC

Analyzing the message passing system on the SCC requires
monitoring performance and power consumption of the system
at runtime. As the SCC was designed as a research system it
includes special hardware and software features that are not
typically found in off-the-shelf multi-core processors. Addi-
tional infrastructure is required to enable accurate and low-
cost runtime monitoring. This section discusses the relevant
features in the SCC architecture and provides the details of
the novel monitoring framework we have developed.

Hardware and Software Architecture of the SCC:
The SCC has 24 dual-core tiles arranged in a 6x4 mesh.

27

Each core is a P54C CPU and runs an instance of Linux 2.6.38
kernel. Each instance of Linux executes independently and the
cores communicate through a network interface. Each core
has private L1 and L2 caches. Cache coherence is managed
through a software protocol as opposed to commonly used
hardware protocols. Each tile has a message passing buffer
(MPB), which controls the message exchange among the
cores. The SCC is connected by a PCI-Express cable to a
PC acting as the Management Console (MCPC).

The SCC system has a power sensor used for measuring
the full SCC chip power consumption. Power is measured by
polling this sensor during application execution.

Each P54C core has two performance counters. These coun-
ters can be programmed to track various architectural events,
such as number of instructions, cache misses or memory
accesses. Performance counters can be accessed from the core
in which they are located by reading dedicated registers.

The SCC software includes RCCE, which is a lightweight
message passing library developed by Intel and optimized
for SCC [9]. It uses the hardware MPB to send and receive
messages. At the lower layer, the library implements two
message passing primitives RCCE put and RCCE get. These
primitives move the data between a local core buffer to the
MPB of another core.

Our system setup includes the SCC, the MCPC, and the
monitoring framework we developed. On the SCC we imple-
mented utilities to track performance counters, collect power
measurements, and log message traffic. On the MCPC we
developed software to load desired benchmarks and experi-
mental configurations to the SCC. After running experiments,
we analyze the collected data using our automated software.

Software Modules Developed for the SCC:
Performance Counters: To implement performance counter

polling we added a patch to the Linux kernel that RCKOS
runs. RCKOS is the operating system the SCC cores run and
is provided by Intel. Our patch involves a device used for
polling and the ioctl infrastructure to communicate with the
device. The ioctl is a system call that is device-specific and
allows for user-land access to protected kernel functionality.
Once the kernel is patched, RCKOS is recompiled and a new
binary image is created and used to flash the cores.

Performance polling is performed by setting the Control
and Event Select Register (CESR). The P54C cores on the
SCC have two registers (0x12, 0x13) allotted for performance
counters. The CESR contains a 6-bit Event Select field (ES),
a Pin Control bit (PC) and a three bit control field (CC) for
each of the two counters. The CESR is located at 0x11 and
is visualized in Figure 1. Two independent events can can be
counted by setting the appropriate codes for each ES. The
Counter Control is used for enabling / disabling the counters.
The CESR is programmed through using the Model Specific
Registers (MSR) which are available on RCKOS through the
/dev/msr0 device.

To measure L1 cache misses and instructions, we wrote
0xD600CE to the MSR. For tracking memory access density,

Fig. 1. Control and Event Select Register

we poll the counter “non-cacheable memory reads.” We em-
pirically determined non-cacheable memory reads as a good
metric for quantifying memory access intensity through mea-
surements with a set of custom designed microbenchmarks that
vary in their memory access density [6]. To measure memory
accesses and instructions, we wrote 0xD600DE to the MSR.
We ran multiple experiments to collect all three parameters
(cache misses, memory accesses, number of instructions). It
is also possible to multiplex the register polling to increase the
number of parameters collected with little loss of accuracy.

Message Logger: We modified the lower level RCCE put
and RCCE get routines in the RCCE library to log the number
of messages sent and the source/destination of each message.
At the end of each parallel thread the library generates a log
containing the communication matrix. Each element in the
matrix {mi,j} corresponds to the number of messages that
corei has sent to corej . In addition, we program the RCCE
library to trigger the logging of the performance counters at
the beginning of each of the parallel threads and save the trace
at the end of execution.

Software Modules Developed for the MCPC:
• Stress files and app-loader: These files contain the bench-
mark sequences for the tests. For each benchmark, the stress
file provides the name, number of threads, and the cores to
allocate the benchmark. The app-loader loads the files on
the SCC to start the experiments. We wrote a set of python
scripts that run on the MCPC. These scripts load the stress
configuration files and start the RCCE benchmarks in SCC.

• Post-processing SW: We designed software for processing
the collected data. This script interfaces with the collected
data and the stress file. For each benchmark, the script
collects the logs and parses them to extract useful statistics.
The script then stores the parsed measurements in a MySQL
database stored on the MCPC. A custom web-based front
end to this database was created to display the results. The
data are available for access by Matlab or Excel allowing
the implementation of other complex analysis functions.
In this paper we use the monitoring infrastructure described

above for analyzing the message passing system on the SCC.
The framework can also be leveraged for enabling runtime
management policies on the SCC computer.

III. APPLICATION SPACE

We employ a set of benchmarks to evaluate the perfor-
mance of the SCC and explore a variety of configurations.
Two of these benchmarks are Block Tridiagonal (BT) and
Lower-Upper (LU) from the NAS parallel benchmarks (NPB)
suite [1]. BT and LU have been re-programmed for the Intel
SCC, and are available to the MARC community. We also

28

use other benchmarks provided by Intel for the SCC. We build
upon the existing benchmarks to create a wider set of operating
scenarios in terms of number of cores used and the message
traffic. We also design a broadcast benchmark to emulate one
to multiple core communication. The complete benchmark set
we run in our experiments is as follows.

Benchmarks provided by Intel:
• BT: Solves nonlinear Partial Differential Equations (PDE)

with the Block Tridiagonal method.
• LU: Solves nonlinear PDEs with the Lower-Upper sym-

metric Gauss-Seidel method.
• Share: Tests the off-chip shared memory access.
• Shift: Passes messages around a logical ring of cores.
• Stencil: Solves a simple PDE with a basic stencil code.
• Pingpong: Bounces messages between a pair of cores.

Custom-designed microbenchmark:
• Bcast: Sends messages from one core to multiple cores.
The broadcast benchmark, Bcast, sends messages from a

single core to multiple cores through RCCE. We created the
benchmark based on the Pingpong benchmark, which is used
for testing the communication latency between pairs of cores
using a variety of message sizes.

Table I categorizes the Intel benchmarks based on
instructions-per-cycle (IPC), Level 1 instruction (code) misses
(L1CM), number of messages (Msgs), execution time in
seconds, and memory access intensity. All parameters are
normalized with respect to 100 million instructions for a
fair comparison. Each benchmark in this categorization runs
on two neighbor cores on the SCC. The table shows that
the Share benchmark does not have messages and is an
example of a memory-bounded application. Shift models a
message intensive application and Stencil models an IPC heavy
application. Pingpong has low IPC but heavy L1 cache misses.
BT has a medium value for all performance values except for
the number of messages. LU is similar to BT except that it
has even higher number of messages and the lowest number
of L1 code cache misses.

We update the Stencil, Shift, Share, and Pingpong bench-
marks so that they can run on cores in configurations de-
termining which cores communicate and which cores are
utilized. Note that for all configurations of these benchmarks,
communication occurs within “pairs” of cores (i.e., a core only
communicates to a specific core and to no other cores). The
configurations we used in our experiments are as follows:
• Distance between the two threads in a “pair”:

• 0-hops: Cores on the same tile (e.g., cores 0 and 1)
• 1-hop: Cores on neighboring tiles (e.g., cores 0 and 2)
• 2-hops: Cores on tiles that are at 2-hops distance (e.g.,

cores 0 and 4)
• 3-hops: Cores on tiles that are at 3-hops distance (e.g.,

cores 0 and 6)
• 8-hops: Cores on corners (e.g., cores 0 and 47)

• Parallel execution settings:
• 1 pair: Two cores running, 46 cores idle

TABLE I. BENCHMARK CATEGORIZATION. VALUES ARE NORMALIZED

TO 100 MILLION INSTRUCTIONS.

Benchmark L1CM Time Msgs IPC Mem.Access
Share High High Low Low High
Shift High Low High Medium Low

Stencil Low Low Low High Medium
Pingpong High Medium Medium Low Low
BT.W.16 Medium Medium High Medium Medium
LU.W.16 Low Medium High Medium Medium

Benchmark Categorization (normalized to 100M inst)—Numerical
Benchmark L1CM Time Msgs IPC Mem.Access

Share 372361 3.3622 871 0.0558 0.05
Shift 307524 0.7784 147904 0.2410 0.001

Stencil 97715 0.5528 23283 0.3393 0.03
Pingpong 280112 2.1116 68407 0.0888 0.001
BT.W.16 251096 1.11 229411 0.1682 0.03
LU.W.16 94880 1.15 305988 0.1631 0.03

• 2 pairs: Four cores running, 44 cores idle
• 3 pairs: Six cores running, 42 cores idle
• 4 pairs: Eight cores running, 40 cores idle
• 5 pairs: Ten cores running, 38 cores idle
• 6 pairs: Twelve cores running, 36 cores idle
• 24 pairs: 48 cores running

The idle cores run SCC Linux but do not run any user
applications and they are not in sleep states.

• Broadcast: The Bcast benchmark is run with one core
communicating to N cores, where 1 ≤ N ≤ 47.
The applications were run 5 times and the collected data

have been averaged. An additional warmup run was conducted
before the experimental runs. All of the experiments were
conducted with the tiles at 533 MHz, the mesh at 800MHz
and the DDR’s at 800MHz. Our recent work also investigates
the impact of frequency scaling on the SCC power and
performance [2].

IV. EXPERIMENTAL EVALUATION

The purpose of the experiments is to quantify the perfor-
mance and power of the Intel SCC system while running
applications that differ in number of messages, message traf-
fic patterns, core IPC, and memory access patterns. In this
way, we hope to understand the performance-energy tradeoffs
imposed by using MPI on a large manycore chip.

A. Overhead of Message Logging

We first analyze the overhead caused by our message log-
ging and performance monitoring infrastructure. Figures 2 and
3 demonstrate the overhead measured in execution time caused
by different levels of measurement while running BT and LU.
We choose BT and LU to study message over logging overhead
as they are standard multicore MPI benchmarks. In the figures,
control represents the case without any logging, performance
counters results are for tracking performance counters only,
counting messages is for logging both counters and number
of messages, message target also logs the sender/receiver cores
for each message, and message size logs the size of each
message on top of all the other information.

We see in figures 2 and 3 respectively that while there is an
overhead associated with the message logging, it is very small.

29

1 4 9 16 25 36
Control 176.76 46.67 24.32 14.14 9.81 7.37
Performance�Counters 176.39 46.36 24.23 14.24 9.81 7.45
Counting�Messages 176.79 46.79 24.39 14.28 9.8 7.43
Message�Target 175.82 46.8 24.43 14.24 9.77 7.47
Message�Size 176.45 47.24 25.41 15.42 12.06 8.68

176.79�

47.24�

25.41�
15.42� 12.06� 8.68

0
20
40
60
80

100
120
140
160
180
200

Ex
ec
ut
io
n�
Ti
m
e�
(s
)�

�

Cores:�

Fig. 2. BT Class W Execution Time(s) vs. # of Cores vs. level of logging.
The execution time is shown for a varying number of cores. In each case the
the addition of logging shows very small overhead.

1 2 4 8 16 32
Control 884.43 427.94 168.24 80.87 38.72 21.48
Performance�Counters 883.98 427.32 166.81 81.85 39.27 21.54
Counting�Messages 884.04 428.18 167.92 81.51 39.37 21.3
Message�Target 880.37 426.68 164.96 81.99 39.12 21.55
Message�Size 884.42 430.31 170.93 88.75 48.21 38.6

880.37�

430.31�

170.93�
88.75�

48.21� 38.6
0

100

200

300

400

500

600

700

800

900

1000

Ex
ec
ut
io
n�
Ti
m
e�
(s
)�

�

Cores:�

Fig. 3. LU Class W Execution Time(s) vs. # of Cores vs. level of logging. The
execution time is shown for a varying number of cores. Again, the overhead
of message logging is very low.

We have seen similar low overhead when we measured the
overhead for the other benchmarks. For example, for message
target logging, we see only a 0.21% overhead in execution
time when running the Stencil benchmark.

When logging message size is added to the infrastructure
we see a significant increase in execution time, especially
when a large number of cores are active (see Figures 2-3).
For the Pingpong and Stencil benchmarks we have seen an
increase over 200%. For message intensive benchmarks such
as Shift, the execution time is over 600% longer compared to
the message target logging. These large overheads are due to
the large amount of data logged when the size of the messages
is considered. The message size distribution varies depending
on the benchmark. Some benchmarks such as Pingpong are
heterogeneous in their message sizes, as shown in Figure 4.
Benchmarks Stencil and Shift have fixed sized messages of 64
bytes and 128 bytes, respectively.

The rest of the experiments use the message target logging,
which logs the performance counters, number of messages,
and message sender/receiver information at a low overhead.

0

100000

200000

300000

400000

500000

600000

2 64 128 192 288 416 608 832 1216 1600 2048 2880 3200 3456 4864 5760 6880 8128

Fr
eq

ue
nc

y

Message Size (Bytes)

Frequency

Fig. 4. Pingpong message size histogram. The majority of Pingpong
messages are small; however, there are also a significant number large
messages. As the broadcast benchmark is derived from Pingpong it has the
same distribution of message sizes.

0.324

0.326

0.328

0.33

0.332

0.334

0.336

0.338

0.34

0.342

11.6

11.7

11.8

11.9

12

12.1

12.2

12.3

Stencil
0hop2

Stencil
1hop

Stencil
2hop

Stencil
3hop

Stencil
4hop

Stencil
5hop

Stencil
6hop

Stencil
7hop

Stencil
8hop

IP
C

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

Distance (Hops)

Average of time Average of IPC

Fig. 5. Stencil with one pair of cores. The distance between the cores
increases from local communication on the same router to the maximum
distance spanning 8 routers.

B. Impact of Communication Distance

Next, we analyze how the distance between communicating
cores affects performance. We look at the case of a single pair
of cores that are running on the SCC. Figure 5 demonstrates
that as the distance between the cores increases, the execution
time increases. In the figure, we plot the execution time of
Stencil as the distance between cores is increased from 0 hops
(local) to the maximum distance of 8 hops (cores 0-47). There
are clear linear trends for both the IPC and the execution time.
Stencil is chosen in this experiment as it demonstrates the
largest difference in execution time owing to its high IPC (as
outlined in Table I). Similar trends can be seen for Shift.

C. Impact of Memory Accesses

To measure the impact of memory accesses, we keep the
distance constant but increase the number of cores (i.e., num-
ber of pairs simultaneously running). In this way, we expect to
increase the accesses to the main memory. In this experiment,
we do not see any measurable difference in execution time for
Stencil or Shift, as their memory access intensity is low. The
Share benchmark, which has a high memory accesses density
at 0.05 (see Table I), is prone to significant delays when there
is memory contention. Figure 6 demonstrates this point. We
see significant delay when 24 pairs of cores are concurrently
executing a benchmark that is heavy in memory accesses. The
combined load of 24 pairs accessing memory is saturating
the memory access bandwidth and causing the delay. While
this effect is due to the uncached accesses to the DRAM and
specific to the SCC, the trend is observed in many multicore
applications which become memory bound.

30

0

0.01

0.02

0.03

0.04

0.05

0.06

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

IP
C�

Ex
ec
ut
io
n�
Ti
m
e�
(s
)�

Pairs�

Average�Time Average�IPC

Fig. 6. Execution time of Share with local communication, as a function of
the number of pairs executed concurrently.

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0

20

40

60

80

100

120

140

160

Share�3hop Share
24pair3hop

Shift�3hop Shift
24pair3hop

Stencil�3hop Stencil
24pair3hop

M
sg
/I
ns
t�

Ex
ec
ut
io
n�
Ti
m
e�
(s
)�

Benchmark�

Time Msg/Inst

Fig. 7. Share, Shift, and Stencil with 3 hops communication. One pair
compared to 24 pairs executed concurrently.

D. Impact of Network Contention

For exploring the impact of network contention, we compare
3-hop communication of a single pair of a benchmark versus
running 24 pairs. Shift, which has low memory accesses but
high message density, does not exhibit significant changes in
execution time when comparing one pair with 24 concurrent
pairs; this is visualized in Figure 7. When we look at Stencil,
which has both memory accesses and messages, we still do not
see significant differences in execution time as seen in Figure
7. In fact, the only major difference occurs for Share, owing
to its memory access intensity. We believe these benchmarks
have not been able to cause network contention; therefore, the
dominant effect on the execution time is the memory access
frequency in the figure.

E. Impact of Broadcast Messages

Next, we analyze performance for applications that heavily
utilize broadcast messages. We run our Bcast benchmark
for this experiment. The benchmark is an adaptation of the
Pingpong benchmark, so as in Pingpong, Bcast sends many
messages of different sizes. Instead of sending the messages
to a specific core, Bcast sends messages to all of the receiver
cores in a one to N broadcast system. Figure 8 demonstrates
that as the number of cores in the broadcast increases we have
significantly slower execution. It is particularly interesting that
there is a peak IPC at N = 8 cores. This peak suggests that
when N > 8 for the Bcast benchmark, the performance of the
sender core and the network become bottlenecks.

Figure 9 demonstrates how as the number of cores in the
broadcast increases, the messages per instruction increases

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0

50

100

150

200

250

300

350

400

Bcast
2

Bcast
3

Bcast
4

Bcast
6

Bcast
8

Bcast
10

Bcast
12

Bcast
16

Bcast
20

Bcast
24

Bcast
28

Bcast
32

Bcast
36

Bcast
40

Bcast
44

Bcast
48

IP
C

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

Number of Cores

Average of time Average of IPC

Fig. 8. Execution of Bcast with respect to number of cores. As the number
of cores increase we see the growth in execution time.

0

0.002

0.004

0.006

0.008

0.01

0.012

0

50

100

150

200

250

300

350

400

Bcast
2

Bcast
3

Bcast
4

Bcast
6

Bcast
8

Bcast
10

Bcast
12

Bcast
16

Bcast
20

Bcast
24

Bcast
28

Bcast
32

Bcast
36

Bcast
40

Bcast
44

Bcast
48

M
sg
/I
ns
tr
�

Ex
ec
ut
io
n�
Ti
m
e�
(s
)�

Cores�

Time Msg/Inst

Fig. 9. Broadcast with increasing number of cores. As the number of cores
increase we see a higher number of messages per instruction.

with it. Again we see that at N = 8 cores there is a local
inflection point. This helps confirm that for this particular
broadcast benchmark, broadcasting to a large number of cores
saturates the traffic from the sender core, which in turn causes
delays. This result highlights the importance of carefully
optimizing broadcasting to ensure desirable performance lev-
els. A potential optimization policy would be to allow for
broadcasting to a small number of cores at a given time
interval.

F. Power and Energy Evaluation

As part of our analysis, we also investigate the power and
energy consumption for each benchmark. Figure 10 compares
the Share, Shift, Stencil and Pingpong benchmarks in 24-
pair 0-hop (local communication) configuration. We see that
at full utilization of all 48 cores, a significant difference
exists in the amount of power drawn by each benchmark.
The Share benchmark, heavy in memory accesses and low in
messages (see Table I), has relatively low power consumption
compared to the Shift and Stencil benchmarks which have
significantly higher IPC and power consumption. Overall, IPC
is a reasonable indicator of the power consumption level.

Looking at power alone is often not sufficient to make an
assessment of energy efficiency. Figure 11 compares energy-
delay product (EDP) (delay normalized to 100 M instructions)
for Share, Shift, Stencil and Pingpong benchmarks in 24-pair
0-hop configuration. Again, significant differences exist in the
EDP across the benchmarks. The high EDP in Share is a result

31

45

47

49

51

53

55

57

59

61

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Share Shift Stencil Pingpong

Po
w

er
 (w

)

IP
C

Benchmark

IPC Power

Fig. 10. Comparing IPC vs power for the Share, Shift, Stencil and Pingpong
benchmarks. All benchmarks were executed with 24 pairs of cores, all with
local communication.

0
20000
40000
60000
80000
100000
120000
140000
160000

0

500

1000

1500

2000

2500

Share Shift Stencil Pingpong

M
sg

s

En
er

gy
-D

el
ay

 P
ro

du
ct

(J

*s
)

Benchmark

Energy-Delay Product Msgs

Fig. 11. Comparing EDP vs. number of messages for the Share, Shift, Stencil
and Pingpong benchmarks. All benchmarks were executed with 24 pairs of
cores, all with local communication.

of the high memory intensity and low IPC, which cause high
delay. Stencil has the highest IPC, a low number of messages,
and a medium level of memory accesses, which jointly explain
the low EDP. Shift and Pingpong both have a considerable
amount of messages. However, Pingpong misses a lot in the
L1 cache, resulting in lower performance. Thus, its EDP is
higher compared to Shift.

We have also compared running one pair of Share against 24
pairs. For one pair the power consumed is 31.616 Watts. When
24 pairs are run concurrently the power consumed jumps to
50.768 Watts. The power drawn follows linearly with the
number of active cores. Due to the offset and leakage power
consumption of the chip, running the system with a large
number of active cores when possible is significantly more
energy-efficient (up to 4X reduction in EDP per core among
the benchmark set).

V. RELATED WORK

There has been several projects relevant to the design,
development, and experimental exploration of the Intel SCC.
As part of Intel’s Tera-scale project, the Polaris 80-core chip
can be regarded as the predecessor of the SCC [8]. The main
purpose of the Polaris chip was to explore manycore archi-
tectures that use on-die mesh networks for communication.
However, unlike the SCC, it only supported a very small
instruction set and lacked corresponding software packages
that facilitate manycore application research [10].

Previous work describes low-level details of the SCC pro-
cessor hardware [4]. Special focus is given to topics regarding
L2 cache policies and the routing scheme of the mesh net-
work. Other recent research on the SCC looks at benchmark
performance in RCCE focusing on the effects of message sizes
[7]. The authors also provide detailed performance analysis of
message buffer availability in RCCE [7].

Another related area is the development of the message
passing support. The RCCE API is kept small and does not

implement all of the features of MPI. For example, RCCE only
provides blocking (synchronous) send and receive functions,
whereas the MPI standard also defines non-blocking communi-
cation functions. For this reason, some researchers have started
to extend RCCE with new communication capabilities, such
as the ability to pass messages asynchronously [3].

VI. CONCLUSION

Future manycore systems are expected to include on-chip
networks instead of the shared buses in current multicore
chips. MPI is one of the promising candidates to manage
the inter-core communication over the network on manycore
systems. This paper investigated the performance and power
impact of the message traffic on the SCC. We have first de-
scribed the monitoring infrastructure and the SW applications
we have developed for the experimental exploration. Using our
low-overhead monitoring infrastructure, we have demonstrated
results on the effects of the message traffic, core performance
characteristics, and memory access frequency on the system
performance. We have also contrasted the benchmarks based
on their power profiles and their energy delay product. Overall,
the paper provides valuable tools and insights to researchers in
the manycore systems research area. For future work, we plan
to analyze the traffic patterns in more detail, create various
local and global network contention scenarios, investigate
opportunities to track other performance metrics (such as
L2 cache misses), and utilize the experimental results for
designing energy-efficient workload management policies.

ACKNOWLEDGMENTS
The authors thank the Intel Many-Core Applications Research Commu-

nity. John-Nicholas Furst has been funded by the Undergraduate Research
Opportunities Program at Boston University.

REFERENCES

[1] D. Bailey et al. The NAS parallel benchmarks. Technical Report RNR-
94-007, March 1994.

[2] A. Bartolini, M. Sadri, J. N. Furst, A. K. Coskun, and L. Benini.
Quantifying the impact of frequency scaling on the energy efficiency
of the single-chip cloud computer. In Design, Automation, and Test in
Europe (DATE), 2012.

[3] C. Clauss, S. Lankes, P. Reble, and T. Bemmerl. Evaluation and
improvements of programming models for the intel SCC many-core
processor. In High Performance Computing and Simulation (HPCS),
pages 525 –532, July 2011.

[4] J. Howard et al. A 48-core IA-32 message-passing processor with DVFS
in 45nm CMOS. In Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), pages 108 –109, Feb. 2010.

[5] Intel. SCC external architecture specication (EAS).
http://techresearch.intel.com/spaw2/uploads/files//SCC EAS.pdf.

[6] M. A. Khan, C. Hankendi, A. K. Coskun, and M. C. Herbordt. Software
optimization for performance, energy, and thermal distribution: Initial
case studies. In IEEE International Workshop on Thermal Modeling
and Management: From Chips to Data Centers (TEMM), IGCC, 2012.

[7] T. G. Mattson et al. The 48-core SCC processor: the programmer’s view.
In High Performance Computing, Networking, Storage and Analysis
(SC), pages 1 –11, Nov. 2010.

[8] T. G. Mattson, R. Van der Wijngaart, and M. Frumkin. Programming
the Intel 80-core network-on-a-chip terascale processor. In High Per-
formance Computing, Networking, Storage and Analysis (SC), pages 1
–11, Nov. 2008.

[9] T. G. Mattson and R. F. van der Wijngaart. RCCE: a small library for
many-core communication. Intel Corporation.

[10] S. R. Vangal et al. An 80-tile sub-100-W teraFLOPS processor in 65-nm
CMOS. IEEE Journal of Solid-State Circuits, 43(1):29 –41, jan. 2008.

32

Ruby on SCC: Casually Programming SCC with
Ruby

Kouhei Ueno, and Koichi Sasada

Abstract—Ruby is a popular lightweight programming lan-
guage widely known for its high productivity. Intel single-
chip cloud (SCC) is a 48-way many-core CPU with integrated
message passing buffers. We explored Ruby as a tool for
casually developing distributed programs on SCC. In particular,
we have experimented with Distributed Ruby (DRb), a pure-
Ruby implementation of the distributed objects environment. We
developed a Ruby binding for RCCE, enabling Ruby to use the
communication hardware facilities of SCC. We also extended
RCCE to support more flexible message passing primitives as
required in DRb. In this paper, we share our early experiences
of using Ruby on SCC, discuss the implementation of a Ruby
binding for RCCE and the optimization for DRb implementation
using the RCCE binding, and present the performance evalua-
tions of these methods from the perspective of micro-benchmarks.

I. INTRODUCTION

INTEL single-chip cloud (SCC) is a 48-way many-core
CPU platform, which Intel has made available to the

research community. The SCC chip consists of a mesh of 24
tiles with 2 processors, a router, and a shared communication
buffer on each tile. Each processor is assigned an off-chip
private memory that is analogous to the main memory of
a conventional PC, and an on-chip communication buffer
(shared between 2 processors in a tile) for message passing
across cores. A Linux port is available for SCC and can be
configured such that each processor runs an instance of the
Linux operating system. Thus, SCC can be considered a 48-
node distributed memory cluster on a chip.

Distributed programming is difficult. In particular, it is a
tough task to write distributed programs that use the SCC’s
hardware facility. RCCE[1], [2] is a “C” library for utilizing
specialized hardware for inter-core communication on SCC.
RCCE provides an MPI-like API for messaging passing across
cores for SCC, but it still requires a programmer for system
programming such as memory management.

There have been efforts to reduce the programmer’s effort
in distributed programming on SCC. Welc et al.[3] success-
fully offloaded heavy JavaScript workloads from web browser
clients to SCC. X10 is a high-productivity distributed pro-
gramming language based on the PGAS model. Chapman et
al.[4] experimented running X10 on SCC and reported the
performance gain by porting RCCE.

Our focus is to use the Ruby programming language[5] to
casually write distributed programs for SCC. The design focus
of Ruby is the programmer’s productivity. Ruby programs
are short and concise. Ruby enables users to write code with

K. Ueno and K.Sasada is with the Graduate School of Information Science
and Technology, The University of Tokyo.

little effort. If the programmer does not find Ruby grammar
satisfactory, domain specific languages (DSLs) within Ruby
are supported by meta-programming features. As a dynamic
language, Ruby features object-oriented programming with
reflective features. Classes can be dynamically created while
running the code, and inexistent method calls can be dynam-
ically handled by a user.

A distributed object is a well-known distributed program-
ming primitive. A server exposes access to its objects to
a remote node, and a client can send messages (invoke its
methods) using the same syntax as that used for local objects.
The implementation of the distributed objects environment
transparently forwards the messages sent to the local proxy
object for remote node communication.

Distributed Ruby (DRb)[6] is a pure-Ruby implementation
of the distributed objects environment. It fully uses Ruby’s
dynamic nature to transparently provide distributed objects
without painful interface declarations. A DRb (proxy) object
behaves just like a regular Ruby object, automatically trans-
lating its method calls to remote method invocation.

In this paper, we share our early experiences with Ruby on
SCC. First, we built a Ruby interpreter executable for running
on SCC. Next, we developed a Ruby binding for RCCE to
access SCC’s message passing buffers (MPBs) from Ruby
programs. In this process, we extended RCCE to support the
communication primitives required for DRb. Last, using the
Ruby binding of RCCE, we added the optimization code to
DRb, a distributed object implementation for Ruby, to support
communication via RCCE. In the following sections, we will
discuss the above method and its performance evaluation from
the perspective of micro-benchmarks in detail.

II. RUBY ON SCC
To run Ruby programs on SCC, we have compiled a Ruby

interpreter binary for running on SCC. For our platform, we
used the SCC Linux binary available in sccKit 1.3.0.

We chose the original Ruby interpreter in C, also known
as CRuby, for the Ruby language implementation. Although
other Ruby language implementations are available, CRuby
was selected as it has high portability and requires only an
ANSI C compiler, a POSIX-compliant OS, and support for C
extensions that allow the Ruby library to be written in C.

We used the latest development branch of CRuby, revision
32047. We could build this version of Ruby using Intel C
Compiler 8.1 with no source code modification. To avoid
problems related to the shared library, we built a statically
linked single binary Ruby executable.

We verified that the executable could run Ruby programs
correctly. UDP and TCP/IP communication using the standard

33

“socket” module was functioning. Unmodified DRb functioned
via the TCP/IP transport.

III. RUBY BINDING OF RCCE LIBRARY

We developed a Ruby language binding of RCCE[1] to take
advantage of SCC’s inter-core communication hardware.

SCC has a unique hardware support for message passing.
SCC consists of 24 mesh tiles, and each of these tiles contains
two x86 processors, a router, and MPB. MPB is implemented
as a 16 KB SRAM in each tile, and its data can be accessed
from other tiles. Note that MPB is faster than private memory,
which is located off-chip and accessed via memory controllers
located at the edge of the mesh. For the synchronization prim-
itive, a special register called the test-and-set register, which
supports a well-known test-and-set operation, is available per
processor core.

RCCE[1], [2] is a lightweight message passing library that
uses the MPB attached to each tile. RCCE has two interfaces,
namely, the “basic” interface and the “gory” interface; we
kept within the “basic” interface for code simplicity. When the
“basic” interface was used, RCCE assigned an 8 KB region
from MPB to each processor core. The 8 KB region was
used for storing the message body and control flags. Message
transfer in RCCE is processed by using MPB. To send data
to a foreign core, RCCE first copies the message to the local
MPB. Then, it updates the “message is sent” flag on the target
core’s MPB. The receiver core waiting for data notices that the
flag is ready, and copies the message body from the remote
sender’s MPB to the receiver’s local private memory. After
the transfer is completed, the receiver core notifies the sender
core by setting the “next message ready” flag on the sender’s
MPB.

To use this MPB-based message transfer from Ruby,
we developed a Ruby binding of RCCE. The Ruby
binding was created as a C extension of the CRuby
interpreter; it provides access to the basic RCCE
functions RCCE_init, RCCE_finalize, RCCE_ue,
RCCE_barrier_world, RCCE_send, and RCCE_recv
from Ruby programs.

Although the original RCCE interface specifies a message
by passing a pointer to the message body as an argument,
Ruby by itself does not provide a way to handle raw pointers.
Our binding works around the problem by specifying string
values as the message body instead. The String value in Ruby
can hold an arbitrary byte sequence and is commonly used as
a general buffer.

IV. ADDING MESSAGE POLLING SUPPORT TO RCCE

As our goal is to create a distributed objects environment
over SCC, we needed a flexible message communication
system, which is out of the scope of the original RCCE library.

The original RCCE implementation assumes the program to
be in the single-program multiple-data (SPMD) style, which
is very similar to MPI. However, the implementation of a dis-
tributed objects environment needs relatively flexible message
communication primitives: unmatched send-and-receive and
variable-sized messages.

int RCCE_peek(char* pbuf, size_t sz, int src)
{

/* return if data is not ready */
if(! RCCE_probe(RCCE_sent_flag[src]))

return 1;

/* copy the content of remote MPB
to local private memory */

RCCE_get(
(t_vcharp)pbuf, RCCE_buff_ptr, sz, src);

return 0;
}

Fig. 1. RCCE_peek source code

First, we needed to support unmatched send-and-receive.
RCCE assumes that RCCE_send and RCCE_recv are writ-
ten in pairs. RCCE_recv, the message receive function in
RCCE, requires the sender core UE, a unique id given to every
participating core, which corresponds to“ rank” in MPI.

However, in the distributed objects environment, programs
do not have prior knowledge of where and when the message
is going to be sent or received. Nodes in the distributed
objects system are not required to have similar roles. A node
may only be responsible for a certain type of task, such
as providing a database or giving an access to an external
device. It is impossible to know the message flow beforehand.
Every node may send data to another random node at any
time. This random communication cannot be handled by the
existing RCCE communication primitives, RCCE_recv and
RCCE_send.

Next, we needed to support variable-sized messages.
Method invocations to remote objects are translated to remote
node communication in a distributed objects environment. As
all methods have different arguments and return values, it
is impossible to know the size of the messages beforehand.
RCCE requires the receiver to know the size of the incoming
message. The RCCE recv function takes the message size as
an argument.

To resolve the above issues with minimum modification,
we have added a function called RCCE_peek, named after
MSG_PEEK in the UNIX socket API. RCCE_peek checks the
message arrival from the specified core and retrieves the header
part without affecting a subsequent call to RCCE_recv. It is
defined as shown in Figure 1. The RCCE peek function first
checks the local flag to see if the remote core has a message
for a particular node. Then, if the flag indicates that the remote
core is attempting to send a message, it peeks at the message
body from the remote MPB and copies the first N bytes. The
RCCE_peek function does not set the “next message ready”
flag on the remote core MPB. Therefore, the same message
can be read again with a subsequent call to RCCE_recv.

The RCCE_peek function can be used for implementing
unmatched send-and-receive and variable-sized messages. We
set up a listener thread that periodically peeked into messages
from all possible sender cores. All messages were sent with
a header containing the message body size. The RCCE_peek
function is used for checking whether an incoming message

34

Fig. 2. Architecture overview of DRb on SCC. Light-gray parts are adopted
from the original DRb implementation. White parts are our implementation.

Fig. 3. The request/reply message header in RCCEProtocol

exists and read the message header containing the message
body size. If an incoming message exists, RCCE_recv is
called with the message body size specified in the message
header.

V. DRB ON SCC

Distributed Ruby (DRb)[6] is a distributed objects environ-
ment implementation for Ruby. By using Ruby’s reflective fea-
tures, DRb provides distributed objects without any interface
declarations.

We extended DRb to support transport over SCC commu-
nication hardware. DRb on SCC is achieved by replacing
DRb’s inter-node communication implementation (Figure 2).
By default, DRb uses its TCP-based protocol for remote
method invocation and will not use SCC-optimized transports.
As DRb’s inter-node communication implementation is ab-
stracted, a user can implement an original protocol for re-
mote method invocation by implementing the DRbProtocol
interface. We developed module called RCCEProtocol, an
RCCE-based implementation of DRbProtocol to support
message transfer using MPB.
DRbProtocol requires the methods recv_request/

send_request and recv_reply/send_reply for inter-
node messaging, but it assumes a stream-oriented transport,
which is open-ed and accept-ed beforehand. With a stream-
oriented transport, a reply is expected to come from the stream
in which the request is sent. However on RCCE, a message
is not associated with any stream; hence, a received reply
message cannot be associated with the sent request by itself.

To emulate this stream-oriented transport on RCCE, every
request is given a unique id, a reqid. Each message has
a header as shown on Figure 3. The reply message always
contains the reqid to match the request that the reply is
for. In the RCCE protocol implementation, all messages are
received in a dedicated receive thread. The recv_reply is
implemented as a function that blocks until the corresponding

TABLE I
BENCHMARK ENVIRONMENT

MCPC SCC
CPU Intel Core i7-950 3.07GHz x86 P54C 533MHz
Memory DDR3 12GB DDR3 256MB per core
Linux 2.6.32 2.6.16 (sccKit 1.3.0)
Mesh Clock N/A 800MHz

TABLE II
CRUBY PERFORMANCE ON MCPC AND SCC.
EXECUTION TIME (IN SECONDS) IS SHOWN.

benchmark MCPC SCC MCPC/SCC
ackerman 0.07 1.10 6.70%
erb 0.62 14.29 4.35%
factorial 0.12 10.04 1.16%
fib 0.85 10.79 7.88%
mandelbrot 0.21 5.69 3.76%
pentomino 21.01 409.33 5.13%
raise 0.66 21.11 3.15%
strconcat 0.70 11.57 6.08%
tak 1.24 15.11 8.21%
tarai 0.98 12.19 8.00%
uri 1.05 25.73 4.06%

reply message is received from the server. The receive thread
wakes the corresponding thread waiting for the recv_reply.

For method invocation serialization and deserialization, we
used DRbMessage from the original DRb. This allows the
RCCEProtocol to be called from InvokeMethod, which
initiates remote method invocation.

VI. PERFORMANCE EVALUTATION

First, we have measured CRuby interpreter performance on
SCC using benchmark programs included in CRuby distri-
bution (Table II). We chose benchmarks which depend on
performance of interpreter itself and not involving network or
filesystem IO. The benchmarks ackerman, factorial, fib, tak,
tarai, mandelblot compute the corresponding functions. The
benchmarks erb, strconcat, uri measures time for string ma-
nipulation. The raise benchmark measures exception handling
overhead. We run these benchmarks on SCC Linux using one
of its cores, and on host MCPC. The system configuration
details are shown on Table I. The same interpreter binary was
used in the measurement.

The results show that performance of CRuby on SCC is
around 5% that of modern PC. The memory access pattern of
the program affects its performance on SCC. The benchmarks
which access private memory intensively are slower. For
example, fib benchmark creates many temporary Bignum1

object for storing its result.
Next, we measured inter-core communication latency for

Ruby on SCC (Figure 4). We measured time of ping-pong
latency of TCP and UDP/IP using Ruby’s TCPSocket and
UDPSocket. The rckmb network interface[2] was config-
ured to use off-die shared memory instead of on-die SRAM.
The RCCE ping-pong latency was measured using the RCCE
Ruby binding we have developed. The latency was calculated
by taking fastest time of 3 trials, each consisting of 100 ping-
pong communications.

1Bignums hold large integers over 31-bit

35

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 32 64 128 256 512 1024

pi
ng

po
ng

 la
te

nc
y

(m
ill

is
ec

on
ds

)

message size (bytes)

TCP (core 0<=>1)
UDP (core 0<=>1)

RCCE (core 0<=>1)
TCP (core 0<=>47)
UDP (core 0<=>47)

RCCE (core 0<=>47)

 0

 100

 200

 300

 400

 500

 600

16 64 256 1024 4096 16384 65536 262144 1048576

pi
ng

po
ng

 la
te

nc
y

(m
ill

is
ec

on
ds

)

message size (bytes)

TCP (core 0<=>1)
RCCE (core 0<=>1)
TCP (core 0<=>47)

RCCE (core 0<=>47)

Fig. 4. Pingpong latency of TCP/UDP/RCCE communication on Ruby on
SCC

TABLE III
REMOTE METHOD INVOCATION OVERHEAD OF DRB OVER TCP AND

RCCE (IN MILLISECONDS)

Argument size (in bytes) TCP RCCE
0 3.52 3.44
64 3.65 3.62
256 4.02 4.33

The results show that communication over RCCE Ruby
binding is 2 times faster than communication over TCP or
UDP/IP. RCCE transfers small message effectively. Messages
below 256 bytes can be transferred 4 times faster than TCP or
UDP/IP. Sending large messages in RCCE are 2 times faster
than TCP/UDP. Large messages are sent by splitting into small
messages in both cases, but RCCE allows larger chunk to be
sent at once. RCCE can send message by 8160 byte chunks,
but rckmb is limited by 1500 byte MTU.

Then, we measured remove method invocation overhead of
DRb over TCP and RCCE (Table III). We measured time
calling a remote method 100 times from core 0 to core 1.
The remote method does nothing but return value 0. We also
measured on core 0 to core 47, but could not find difference
in result.

The results show that using RCCE speed up method calls
with argument size under 64 bytes speed up slightly by 2%,
but slows down on method calls with argument size 256 bytes.
Comparing these values with latency measurements (Figure
4), the overhead of DRb library is 10-20 times higher than

raw communication cost. The speed down on large arguments
come from overhead of RCCE protocol implementation added
to DRb, which performs more String operation on the
received message headers as described in Section V.

VII. CONCLUSION

We developed a Ruby-based distributed objects environment
for Intel single-chip cloud (SCC). A user could easily write
programs for SCC by using the highly productive Ruby
language and take advantage of the SCC communication
hardware transparently in a distributed objects manipulation.
We built a CRuby executable running on SCC Linux to
run DRb, a distributed objects environment implementation
in pure-Ruby. We developed the Ruby binding for RCCE
to use SCC’s inter-core messaging hardware. We extended
RCCE to support communication primitives required for DRb
and implemented an SCC-optimized DRb transport layer. The
performance evaluation using micro-benchmarks show that the
raw communication improved by 200% the remote method
invocation via DRb improved by 2%.

As our future work, we plan to develop an optimize dis-
tributed objects implementation with lower overhead. Eval-
uation showed that the overhead of DRb library is 10-20
times higher than raw communication cost. We found that
this is from high abstractions in the DRb implementation to
support customizations. We expect that lower overhead can
be achieved by creating minimal implementation that only
support RCCE communication.

Also, we plan to explore various Ruby-based distributed
applications on SCC. Examples are web applications and
natural language processing. There are various frameworks for
creating web applications on Ruby, such as Ruby on Rails[7].
The web common interface Rack[8] can be accelerated using
SSC hardware in a similar way as by using DRb. Natural
language processing is a region where implementation in a
low-level language such as C is difficult. Ruby has a rich
String class for manipulating text strings and has built-
in support and external frameworks for tools such as regular
expressions.

We expect that our alternative development environment
using Ruby will open up various unexplored uses of SCC.

REFERENCES

[1] R. van der Wijngaart and T. Mattson, “RCCE: A small library for
many-core communication.” [Online]. Available: http://techresearch.intel.
com/spaw2/uploads/files/RCCE Specification.pdf

[2] R. F. van der Wijngaart, T. G. Mattson, and W. Haas, “Light-weight com-
munications on intel’s single-chip cloud computer processor,” SIGOPS
Oper. Syst. Rev., vol. 45, pp. 73–83, February 2011.

[3] A. Welc and R. L. Hudson, “Javascript farm on scc.” [Online]. Available:
http://communities.intel.com/docs/DOC-5646

[4] A. H. Keith Chapman, Ahmed Hussein, “X10 on the SCC.” [Online].
Available: http://communities.intel.com/docs/DOC-6255

[5] Yukihiro Matsumoto, et al., “Ruby Programming Language.” [Online].
Available: http://www.ruby-lang.org

[6] M. Seki, “dRuby.” [Online]. Available: http://www.druby.org/ilikeruby/
druby.en.html

[7] Rails Core Team, “Ruby on Rails.” [Online]. Available: http:
//rubyonrails.org

[8] C. Neukirchen, “Rack: a ruby webserver interface.” [Online]. Available:
http://rack.rubyforge.org/

36

Characterization and analysis of pipelined
applications on the Intel SCC

Tommaso Cucinotta,Vivek Subramanian
Real-Time Systems(ReTiS) Lab

Scuola Superiore Sant’Anna
Pisa, Italy.

cucinotta@sssup.it, vivek@retis.sssup.it

Abstract—Many-core computing platforms can be used to
parallelize computations by dividing the data to be processed into
smaller chunks and processing them simultaneously on different
cores. One possible approach in such parallelization is to set up
a pipeline such that each smaller chunk of data passes in turn
through all the processors involved. In this paper we examine
some approaches to set up such a pipeline on the Intel SCC. We
use a combination of the message passing and the shared memory
capability of the SCC hardware through the interfaces provided
by the RCCE library for our implementation. We build a model
to analyze and compare the performance of such pipelines by
measuring the total time for computation. This model is used to
illustrate the effects of type of memory scheme used, ordering of
cores in the pipeline and caching.

Index Terms—pipeline, real-time streaming, message passing,
shared memory, SCC

I. INTRODUCTION

THE parallelization of a computing task is a well-studied
problem. There are several approaches and methods to

achieve parallelization depending on the nature of the com-
puting task. One of them is the pipeline approach that may
be applicable in situations where input data may be divided
into smaller fragments, each of which must have a certain
set of operations carried out in a specified order. This is
particularly effective whenever the data to be processed is
available progressively, for example, in multimedia streaming
applications, where pipelining the application results in a
higher sustainable throughput.

In several instances the current operation to be carried
out on a certain fragment is not dependent on either the
result of the previous or the subsequent fragment. Also, the
computing task maybe divided to be carried out at different
processing elements. As an example; an audio-processing
application that processes an input audio file for streaming,
or DES encoding of an input file. The operations carried out
at each processing element could be different (e.g the audio-
processing application, where a different filter is used each
time) or identical (e.g the cryptographic application). Setting
up a pipeline for processing such tasks serves to reduce the
amount of computing that a single processing element needs
to perform before switching to the next data chunk, thus
increasing the possible throughput, or reducing the computing
requirements on a single processing element.

There are several factors that affect the performance of a
pipeline such as the latency in memory accesses and the over-

heads involved in moving data between processing elements.
If the processing elements communicate over an interconnect
network, then simultaneous use of the network, by more than
one processing elements results in contention for bandwidth
which affects the performance of the pipeline.

In this work, we introduce a set of variables and equations
to describe the pipeline. We use experimental implementations
to help validate these models of the pipeline. The aim of these
experiments is to have a method to build models of the various
building blocks of the pipeline and of the pipeline itself.
These may then be used to gauge the expected performance
of pipeline and this, in turn, be used to guide the process of
actual implementation and deployment that leads to gains in
throughput and processing times.

II. RELATED WORK

The availability of the fast message passing buffers on the
SCC allow for using these for inter-core communications.
The RCCE library [2] provides a framework to implement
message-passing on the SCC, however a number of authors
addressed the problem of efficient inter-core communications
on the SCC. For example, Rotta [8] presents design options for
message passing protocols and discusses them. Villa et al. [11]
study the efficiency and scalability of barrier synchronization
in NoC-based many-core systems. The NoC-based architecture
of the SCC that uses the mesh-network to access the off-chip
RAM presents challenges introduced by this additional latency.
Verstraaten et al. [4] presents methods to implement memory
copy mechanisms aimed at increasing the throughput. Abts et
al. [1] explores issues in placement of memory-controllers and
the effect on latency. Petrot et al. [6] present a software-based
solution for cache coherency and memory consistency in NoC-
based multiprocessors. Prell and Rauber [7] address methods
for achieving task parallelism on the Intel SCC using runtime
task schedulers. Kierstscher et al. [10] present the effects of
MPI applications having knowledge of the topology, while Tol
et al. [3] discuss the mapping of a distributed implementation
of the S-Net on the SCC. Bo et al. [9] discusses the opti-
mization of data-parallel operations in the context of many-
core platforms. Papagiannis and Nikoloppoulos [5] examines
bottlenecks in scalability of the MapReduce algorithm and
presents an implementation of the same for the SCC.

37

III. PRELIMINARIES

A. Modeling memory access

Consider the Intel SCC which uses a tile-based architecture
with a mesh NoC that connects the tiles and the memory
controllers. Each tile has two cores, their caches and a small
local memory (the local memory buffer or the message passing
buffer).Each core on the SCC is assigned space in the message
passing buffer (MPB). The RCCE library uses this buffer to
implement message passing between the cores.

Let mpb(i, b) denote the time taken by a core i to write b
bytes of data into its own MPB. Let coord(i) be the coordi-
nates of the tile that contains core i, such that coord(i).x and
coord(i).y indicate, respectively, the x-coordinate and the y-
coordinate. Let dist(i, j) denote the routing distance between
elements i and j. Note that, the elements may be either cores
or memory-controllers. As the SCC uses dimension-ordered
routing, we may write dist(i, j)as:

dist(i, j) = |coord(i).x− coord(j).x|+
|coord(i).y − coord(j).y| (1)

If the data rate of the links of the NoC are denoted by μ,
then the time taken to transfer b bytes from i to j can be
expressed as tt:

tt(i, j, b) =
dist(i, j) · b

μ
(2)

The above expression assumes that only a single transfer is
happening over the set of links. We assume this simplistic way
to model the memory access and further assume that it would
be an upper bound on the time it takes to access memory in
the worst scenario in this simple case. This might not always
be the situation and there may be more than one core using
the same links of the NoC. In this case, the effective data rate
may be lower (see VII).

Define a function mem(i) similar to coord(i), but instead
of indicating the coordinates of i, mem(i), indicates the coor-
dinates of the memory controller that has the private memory
of i. Similarly define shmem(i) to indicate the coordinates
of the memory controller that has the shared memory that i is
using.

B. Modeling message passing

The RCCE library provides synchronous blocking send()
and receive() interfaces for transferring messages between
cores. The send() method accepts the rank of the core that
is the destination and the receive() method accepts the rank
of the core that it expects to receive a message from. These
calls have to be matched - for every send executed to j from
i, j must execute a matching receive from i.

RCCE implements this mechanism such that the sending
core writes the message from its private memory to the MPB,
and signals the destination core. The destination core reads
the message from the source’s MPB (via the lookup table
entries) and stores into its own private memory. Thus, a send
and receive operation consists of one off-chip memory read

Figure 1. Representation of the pipeline

by the source, one write by the source to its own MPB, one
read of the source’s MPB by the destination and one write to
the off-chip memory by the destination. For a message of size
b bytes, we may write this time taken as tm:

tm(i, j, b) = tt(i,mem(i), b) +

mpb(i, b) +

tt(i, j, b) + (3)
tt(j,mem(j), b)

IV. PIPELINE

The pipeline that we consider has several stages through
which each chunk of data must be processed. For the purpose
of this study, we have kept the operation performed at each
stage to be identical. Also, a single core is mapped to exactly
one stage in the pipeline. Each stage in the pipeline does the
following:

• receive a single chunk of data from the previous stage
• perform the operation on that chunk
• send the chunk to the next stage in the pipeline

Since we use the RCCE library for message passing and
synchronization, the send and receive steps are synchronous.
Thus, all the cores are almost simultaneously doing one of the
three steps described above. The first and the last stages of
the pipeline are slightly different from the other intermediate
stages - the first stage instead of receiving a chunk, reads
a chunk from the input buffer and, the last stage instead of
sending a chunk forward, writes to an output buffer. Figure 1
shows a representation of the pipeline.

The pipeline has a set of parameters associated with it:
• D is the total size of data (in bytes) to be processed by

the pipeline.
• C is the size of each chunk (in bytes)
• N = D/C is the number of chunks
• m is the number of stages in the pipeline
• Z is the size of a token
• tc(i, b) is the time take to compute b bytes at stage i -

each compute step is a read from memory (private or
shared), process and write to memory(private or shared).

38

MCPCSCC

M M M M

C C C C

4 non-coherent domains 4 non-coherent domains
SCC

M M M M

C C C C C C C C

Cache

M M

1 coherent domain

heterogeneous distributed system

R R R R R R R R R

C

M

R Replicas in a Storage Container

Memory device

Caches & Control Container

Cores

Fig. 3. Memory view to the heterogeneous system from Figure 1. On the SCC groups of 12 cores share a single replica in their nearest memory device.
Because the MCPC has a shared last level cache, just one replica is sufficient. Note that all cores are required to have the same Instruction Set Architecture
as prerequisite for TACO.

following example two shared objects are created: A Barnes-
Hut tree with replication managed by entry consistency and a
shared particle vector with a single central instance, initially
located at the configured default location.

EntryConsistencySpace entrySpace;
Shared<BHTree> tree =

allocate<BHTree>(entrySpace)(init-args...);
... more allocations

MigrationSpace mSpace(default-core);
Shared<FVector> results =

allocate<FVector>(mSpace)(init-args...);
... more allocations

An instance of the desired sharing space is provided to the
allocator. This approach allows to create shared objects of any
type in any sharing space, while the sharing pointer hides all
implementation details of the space. For example, it is possible
for a space to manage replication of its objects collectively
instead of separately for each object. Then, unrelated objects
can be allocated in separate spaces by using several instances
of the sharing space class.

Access to the shared object is granted to other cores by
passing them a sharing pointer as argument in a remote method
invocation. The object is accessed by creating a temporary
access object, which triggers consistency management and
can acquire and release locks to protect critical sections. Our
first implementation provides three access types: non-exclusive
non-modifying (Reader), exclusive modifying (Writer), and
non-exclusive modifying (MultipleWriter)—but the frame-
work can be extended by more specific access types. The
example below acquires read access to the replicated Barnes-
Hut tree and non-exclusive write access to the central force
vector. The method call on the tree will be executed on the
local replica, while the second call on the vector will be sent
to the central instance.

{
Reader<BHTree> t(tree);
MultipleWriter<FVector> v(results);

Node n = t->invoke(m2f(&BHTree::nextNode));
... compute forces of particle i ...
v->apply(m2f(&FVector::put, i, forces));

} // destroys access object, releases locks

core 0 core 1 core 46 core 47

Shared Replica Shared Replica

Control
Container

Storage
Container

Global Object Space

Container
Pointer

Lo
ca

l A
dd

re
ss

 S
pa

ce
s

Fig. 4. A Control container and a Storage Container embedded into the
Global Object Space. The cores in a domain share one data replica but have
individual controllers. Other objects can point to these containers.

After the access object is acquired, the replica is accessed
using TACO’s method invocations. The invocations may be
executed locally or are redirected to another core depending
on the sharing model. The critical section is left and locks
are released when the access object is destroyed. In the above
example this happens automatically in the last line by leaving
the scope in which the access objects was created.

B. Distributed Containers as Implementation Vehicle

A container contains several object instances, called mem-
bers, that are distributed throughout the system, for example
with one member on each core. A special pointer class for
containers provides access the core-local member, any other
member, and all members collectively. These pointers can be
passed between cores and immediately allow other cores to
access all of the members.

As depicted in Figure 4, two implementations are particu-
larly interesting. Control containers have one member per core
and are useful to implement, for instance, the core’s cache
control. Storage containers reflect the heterogeneous memory
architecture by grouping the cores into sharing domains and
have a member in each domain. In the following paragraphs,
we introduce the interface to control containers and then
extend it with the additional aspects of storage containers.

69

TABLE II
BASIC COLLECTIVE OPERATIONS FOR DISTRIBUTED CONTAINERS.

interface semantics
map(f) apply f asynchronously on each member
step(f) call f synchronously on each member
step(f, future) as above, but deferred synchronous
reduce(f, op) invoke f and merge results by op
reduce(f, op, future) as above, but deferred synchronous

All members of a container are aligned across the individual
address spaces of the cores, which means they have the same
local address everywhere. Communication with members is
greatly simplified by this address alignment: Global object
pointers to individual members can be created on demand
by combining the local memory address with the target core.
Then, members can be accessed through TACO’s RMIs with
the mechanism summarized in Table I.

Collective operations on the members are provided as well
and the operations can be restricted to selected members
by providing a boolean predicate. TACO already provides
convenient collective operations on groups of objects based
on global object pointers, which are summarized in Table II.
In the MESH implementation, all containers share a single
TACO group for the propagation of their collective operations.
Internally, the method invocations and predicates are wrapped
in order to operate on the actual container’s members instead
of the helper group’s members. Details of the efficient parallel
implementation of collective operations are presented in [10].

In the following example, first a method is called on the
local member, followed by a method call on a remote member.
Finally, a collective step operation calls the invalidate()

method on each member of the container.

ControlPtr<MC> p = ...;
int i = p.local()->invoke(m2f(&MC::mgrCore));
p.other(i)->call(m2f(...));
p.each()->step(m2f(&MC::invalidate));

Control and storage containers share this interface. While
control containers have exactly one member per core, storage
containers have fewer members that are shared between cores.
Their main purpose will be to hold the replica of a shared
object. Note, that although their main purpose will be the
replication of a shared object, the storage container itself
does not know anything about the real object—it just contains
images of it [11]. The cores are partitioned into sharing
domains with one replica per domain. Each domain has a
leading core that is responsible for management tasks and each
core has a pointer to his leader, which also allows to check if
two cores are in the same domain. Storage containers extend
the collective operations interface to operations on all leaders
and on all cores of the own domain.

On the SCC, POPSHM is used to allocate physical shared
memory and the cores are grouped into four domains accord-
ing to the four DRAM devices. On other systems, POSIX
shared memory is used and the domains are discovered auto-
matically. The access to a replica can go through conventional
coherent caches, SCC’s non-coherent caches, or circumvent
the caches. Special care is necessary on the SCC, because the
replica in the memory device can be in a valid or invalid state,

Migration
Space

T

Sharing Model
acquireReader()
acquireWriter()
acquireMultipleWriter()
release...()

Entry
Consistency

Space

T

Controller
Container

*

Shared
Pointer

Reader Writer

1 *

T T

T

Fig. 5. Interaction and dependencies between spaces, controllers and access
objects.

while the cache can contain either no data, some unmodified
valid data, some unmodified outdated data, or modified data.
These results in six possible states, because a valid replica
with modified cache and an invalid replica with valid data in
the cache is not possible. Consistency protocols must ensure
that two cores in the same domain never have modified cached
data for the same replica, because their caches will write back
lines at any moment leading to inconsistent memory contents.

Replica data should not be transmitted between cores inside
a sharing domain, because explicit flushing parts of the cache
is sufficient. Between sharing domains, data transmissions
over the network are necessary. Note that this changes the
caching states of the sender (to unmodified data in the cache)
and receiver (to invalid replica with modified data in the
cache). Thus, consistency protocols must perform additional
cache control around such transmissions. Inside domains with
hardware coherent caches, the cache flushing actions are
simply ignored, although the consistency protocols may still
track the replica and cache state.

C. Implementing Sharing Spaces

Pointers to replicated objects point to a control container as
shown in Figures 4 and 5. The container’s members, called
controllers, implement a common interface to communicate
between access objects and the sharing model. Virtual methods
are used to hide implementation details about the sharing
model. An alternative implementation without virtual methods
is possible, but would increase the code complexity on the
application side, while the performance win is small as these
methods are called only at the construction and destruction of
access objects.

Our implementation currently provides two different sharing
models (migration spaces and replication spaces with per-
object entry consistency). Other models can be integrated by
implementing the respective controllers.

The allocator of migration spaces creates a storage container
for the shared object and initializes it only on one core,
called the central instance. The controllers have a global
object pointer to this central instance and implement a shared-
exclusive lock for the critical sections. The lock is distributed
in a way so non-exclusive acquisitions are performed locally,
while exclusive acquisitions perform a collective operation.
Migration of the central instance to another core is performed

70

by acquiring exclusive access, transmitting the replica, updat-
ing the controller’s object pointer collectively, and releasing
the exclusive access. Because no access object can be created
during this operation, the migration is not visible to the
application

The allocator for entry consistency spaces creates a storage
container for the replicas and a control container. The con-
trollers contain the shared-exclusive lock, a pointer to the stor-
age container, the local consistency state (see Section III-B)
and a pointer to the core that modified the object last.

When acquiring read access on a core with an invalid replica
state, the domain’s leader is asked to update the shared replica.
This ensures, that the data is transmitted just once from the
last writer to this domain: In case the leader knows that the
replica is already valid, the transmission is skipped.

Our implementation simplifies the consistency protocol by
avoiding three of the possible states: Sooner or later, modified
data in a cache has to be written back and, thus, we do it
as early as possible to eliminate the modified cache state.
Because the writer flushes his cache immediately, any core
in the same domain already knows, that his replica is valid.
Thus, there is no need to ask the leader for updates in case
the last writer was in the same domain. Outdated data in a
cache is produced by data transmissions from the last writer
to a new writer. This state is eliminated by flushing the cache
after such transmissions.

We focused on entry consistency, because it allows to
use the shared memory very efficiently. Object-based release
consistency can be implemented as well, but would require
separate data copies in each modifying access object in order
to compute the update messages.

IV. PERFORMANCE ESTIMATES

Our work-in-progress implementation already runs on
cache-coherent systems and is able to trigger the manual cache
flushing on the SCC. However, it is in a too early state for
meaningful performance benchmarks on the SCC.

We performed LOGP parameter [12] benchmarks for
TACO’s communication protocol. Based on these numbers, it
is possible to estimate, for example, the management overhead
for replication spaces with entry consistency. Here, we con-
sider a single 48-core SCC and an controller implementation
using a distributed shared-exclusive lock, that is non-exclusive
locking is done locally, but exclusive locking requires collec-
tive operations over all cores in the sharing space.

For a non-exclusive read access, the lock and release oper-
ations perform no communication and thus have just a very
small overhead. To acquire exclusive write access, the locks
have to be acquired by a collective operation over all cores
(one step). The same operation is also used to invalidate
all other replicas and inform the cores about the owner of
the new valid replica. Finally, when the write section is left,
a collective one-way operation releases all locks (one map)
Before updating an invalid replica with data from the last
writer, it is more efficient to check, whether the replica was
already updated in the own domain. This is achieved by asking
the domain leader (one invoke). Otherwise the data is fetched
from the last writer.

TABLE III
MICRO-BENCHMARK RESULTS FOR INDIVIDUAL PROTOCOL ACTIONS.

Action Local Overhead min. Completion Time
step 2600 cycles 8000 cycles
invoke 600 cycles 1500 cycles
apply 470 cycles 750 cycles
map 2100 cycles 5600 cycles
read acquire — —
read + update 1070 cycles 2250 cycles
write acquire 4700 cycles 13600 cycles
write + update 5770 cycles 15850 cycles

Table III summarizes pessimistic estimates for the four pos-
sible situations (read vs. write, valid vs. update) based on the
800 MHz core and 1600 MHz mesh frequency configuration.
The local overhead counts the send and receive overheads
at the core, and the completion time counts the time until
the operation is finished on all involved cores. In practice,
the operations will take longer, because the involved cores
have better work to do than idle polling. However, only the
computing overhead really matters as the cores cannot do any
useful computations in that time.

The consistency protocol has to transmit data copies over
the mesh network and to flush the L1 and L2 caches. Due
to current hardware limitations, the latter is implemented in
software by a Linux kernel module. Flushing a individual line
takes 280 to 580 cycles (clean vs. dirty) plus the system call
overhead.1 Flushing larger memory ranges is up to four times
more efficient due to the cache’s architecture.

V. RELATED WORK

In the past, frameworks for Distributed Shared Memory
(DSM) were unlikely confronted with non-cache-coherent
shared memory. The hardware either was entirely distributed
memory (clusters), or cache-coherent shared memory (multiple
cores), or a mix of both (clusters of multiple cores). The SCC
probably is one of the first systems available to researchers
that does not provide hardware-implemented cache coherence.
Thus, until now, the necessary distinction between control
and storage containers, as discussed by this paper, was not
immediately apparent.

The Multigrain Shared Memory system [13] is very similar
to the presented approach. It implements page-based release
consistency with many optimizations, particularly it uses the
cache-coherent shared memory of multi-core processors to
share replicas. As a pure DSM system, it does not integrate
sharing by function shipping.

In [4] a DSM implementation for the SCC is presented.
It is page-based and transparent to the applications running
on it, while our approach is embedded into the programming
language. Coherency domains are used to define which appli-
cations/cores have access to the shared data and the employed
release consistency creates local copies of accessed pages. In
contrast, our entry consistency approach eliminates the local
copies and the domains are used to share replicas between
nearby cores.

1Based on measurements reported by Michiel W. van Tol.

71

The PSHM [14] implementation of GASNet provides a
PGAS optimized for clusters of shared memory machines. The
PSHM processes on a cluster node share some cache-coherent
memory and use it for faster messaging and of course for direct
access (instead of RDMA mechanism) to the nearby partitions
of the global address space.

Baumann et al. [6] compared the performance of concurrent
access over cache-coherent shared memory versus concurrent
access over function shipping to a central server. Their exper-
iments show, that the latter message-based approach scales
better on current multi-core systems. The migration space
presented in Section III are equivalent to this central server
approach, but the presented framework enables also hybrid
solution between central servers and replication.

DSM implementations, like Midway [9] and Orca [15], have
separate synchronization variables to manage the consistency.
Our architecture is not different in this respect. The replicated
object pointers internally actually point to the synchronization
variable and just through this variable access to the shared
data is possible.

We used TACO to supply a global address space and remote
method invocation. However, the presented replication spaces
can be implemented on top of almost any framework that
supplies a global address space and function shipping. For
instance the well known GASNet platform [16] could be used
as well, but requires considerably more effort.

VI. CONCLUSIONS

No single sharing paradigm can serve all use cases equally
well and, thus, hybrid paradigms based on function shipping,
data replication, and local sharing of replicas are necessary.
Many-core systems like the Intel SCC combine aspects of
a distributed system with aspects of a (non-cache-coherent)
shared memory system. Thus, they support hybrid sharing
paradigms very well and applications on such systems also
benefit from hybrid sharing compared to conventional imple-
mentation approaches.

Conventional sharing approaches either consider cache
control without replication, full per-core replication without
exploiting shared memory, or communication with central
instances. The presented MESH framework is truly hybrid and
flexible by exploiting the available shared memory, performing
cache control just where necessary, and performing message-
based communication where sufficient. By layering various
control and storage containers as well as sharing spaces on
top of a common global address space, the different sharing
paradigms can be used together in applications.

ACKNOWLEDGMENTS

We express our gratitude to Sandra Beyer and Robert
Zimmermann, who provided us with valuable experience from
their Bachelor’s thesis projects. Furthermore, we thank Intel
for the access to the SCC and the opportunity to contribute
to its MARC (Many-core Applications Research Commu-
nity) program. In particular, we thank Michiel W. van Tol
(University of Amsterdam), Werner Haas (Intel Research
Braunschweig), and Jan-Arne Sobania (HPI Potsdam) for

tremendous insights into SCC’s non-coherent memory and
implementing the software-based L2 cache flushing.

REFERENCES

[1] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. F. B. III, and A. Agarwal, “On-chip
interconnection architecture of the tile processor,” IEEE Micro, vol. 27,
pp. 15–31, 2007.

[2] Y. P. Zhang, T. Jeong, F. Chen, H. Wu, R. Nitzsche, and G. R.
Gao, “A study of the on-chip interconnection network for the ibm
cyclops64 multi-core architecture,” in Proceedings of the 20th interna-
tional conference on Parallel and distributed processing, ser. IPDPS’06.
Washington, DC, USA: IEEE Computer Society, 2006, pp. 64–64.

[3] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl,
D. Jenkins, H. Wilson, N. Borkar, G. Schrom et al., “A 48-core IA-32
message-passing processor with DVFS in 45nm CMOS,” in Solid-State
Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE
International. IEEE, 2010, pp. 108–109.

[4] X. Zhou, H. Chen, S. Luo, Y. Gao, S. Yan, W. Liu, B. Lewis,
and B. Saha, “A Case for Software Managed Coherence in Many-
core Processors,” Poster on 2nd USENIX Workshop on Hot Topics in
Parallelism HotPar10, 2010.

[5] J. D. Owens, W. J. Dally, R. Ho, D. N. J. Jayasimha, S. W. Keckler, and
L.-S. Peh, “Research challenges for on-chip interconnection networks,”
IEEE Micro, vol. 27, pp. 96–108, September 2007.

[6] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania, “The multikernel: a new os
architecture for scalable multicore systems,” in Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles, ser. SOSP
’09. New York, NY, USA: ACM, 2009, pp. 29–44.

[7] J. Barnes and P. Hut, “A hierarchical O (N log N) force-calculation
algorithm,” Nature, vol. 324, pp. 446–449, 1986.

[8] J. Nolte, Y. Ishikawa, and M. Sato, “TACO – Prototyping High-Level
Object-Oriented Programming Constructs by Means of Template Based
Programming Techniques,” ACM Sigplan, Special Section, Intriguing
Technology from OOPSLA, vol. 36, no. 12, December 2001.

[9] B. Bershad, M. Zekauskas, and W. Sawdon, “The midway distributed
shared memory system,” in Compcon Spring’93, Digest of Papers.
IEEE, 1993, pp. 528–537.

[10] J. Nolte, M. Sato, and Y. Ishikawa, “TACO — Exploiting Cluster
Networks for High-Level Collective Operations,” in Proceedings of the
First IEEE/ACM International Symposium on Cluster Computing and
the Grid (CCGrid 2001), Brisbane, Australia. IEEE Computer Society
Press, May 2001.

[11] Plato and F. Cornford, “Allegory of the cave,” in The republic. Oxford
University Press, 1951.

[12] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos,
R. Subramonian, and T. von Eicken, “Logp: towards a realistic model
of parallel computation,” in Proceedings of the fourth ACM SIGPLAN
symposium on Principles and practice of parallel programming, ser.
PPOPP ’93. New York, NY, USA: ACM, 1993, pp. 1–12.

[13] D. Yeung, J. Kubiatowicz, and A. Agarwal, “Multigrain shared memory,”
ACM Trans. Comput. Syst., vol. 18, pp. 154–196, May 2000.

[14] F. Blagojević, P. Hargrove, C. Iancu, and K. Yelick, “Hybrid PGAS
runtime support for multicore nodes,” in Proceedings of the Fourth
Conference on Partitioned Global Address Space Programming Model.
ACM, 2010, pp. 3:1–3:10.

[15] H. E. Bal, M. F. Kaashoek, and A. S. Tanenbaum, “Orca: A language
for parallel programming of distributed systems,” IEEE Trans. Softw.
Eng., vol. 18, pp. 190–205, March 1992.

[16] D. Bonachea, “Gasnet specification, v1.1,” Berkeley, CA, USA, Tech.
Rep., 2002.

72

Towards Symmetric Multi-Processing Support for
Operating Systems on the SCC

Jan-Arne Sobania, Peter Tröger and Andreas Polze

Abstract—The Intel Single-Chip Cloud Computer (SCC) is an
experimental many-core system created for research purposes.
By default, it is operated as 48-node cluster-on-a-chip with one
operating system instance per core.

In this paper, we analyze the hardware capabilities expected
by a standard operating system for symmetric multi-processing
support. We discuss how the SCC lacks some of these manda-
tory capabilities, and present a technique for overcoming the
differences through virtualization. Our new Linux hypervisor
RockyVisor emulates missing SMP capabilities for the SCC
hardware, which allows the execution of para-virtualized SMP
operating systems on the SCC.

I. INTRODUCTION

THE Single-Chip Cloud Computer (SCC) is a 48-core
experimental processor [1] created by Intel Labs. It

is intended to act as a hardware platform for many-core
software research on different system levels. Highlights of
the SCC architecture are the on-die mesh network for com-
munication between cores and memory controllers, flexible
power management and frequency scaling capabilities, and a
reconfigurable shared memory hardware.

Due to differences in peripheral device and interrupt han-
dling, standard unmodified operating system kernels do not
run on the SCC, even on a single processor core. In [2],
we have analyzed necessary modifications for the Linux 2.6
kernel to support its execution on a single SCC core. To
utilize the entire chip, it is still needed to run 48 independent
instances of the operating system and use the resources as
cluster execution environment. With such a setup, applications
need to rely on a distributed parallel programming model, e.g.
with the Message Passing Interface (MPI) or the SCC-specific
RCCE [3] messaging facility. There is no default support for
parallel shared-memory based applications spanning multiple
SCC cores.

In this paper, we present a novel approach for not only
running parallel messaging-based applications, but also an
entire SMP operating system on the SCC. This would al-
low concurrent shared-memory applications to use the SCC
hardware resources as a whole. Our approach relies on a
new hypervisor with specialized support for the unique SCC
hardware environment – the RockyVisor. It implements a
virtualized provisioning of SMP capabilities, which allows the
guest operating system kernel to experience the hardware as a
traditional SMP system, so existing software can run without

The authors are with Hasso Plattner Institute for Software Systems En-
gineering, Potsdam, Germany – http://www.hpi.uni-potsdam.de.
E-Mail: [jan-arne.sobania/peter.troeger/andreas.polze]@hpi.uni-potsdam.de

Manuscript received October 22, 2011.

modification. By moving the handling of the shared-memory
SMP issues into the hypervisor layer, we reduce the amount
of necessary changes in both the host and the guest operating
system kernel.

In the following text, we first analyze the interface between
an x86 operating system and standard SMP hardware (Section
II), and contrast it to the Intel SCC (Section III) hardware
prototype interfaces. Based on this analysis, we present an
architecture for the RockyVisor to encapsulate hardware lim-
itations of the SCC (Section IV). Section V proposes an
implementation of this architecture, and Section VII discusses
related work.

II. X86 OPERATING SYSTEMS ON SMP HARDWARE

x86 processors have been used in multi-processor machines
for a long time. An accepted standard for symmetric multi-
processing (SMP) hardware support in x86 systems is the Intel
MultiProcessor specification [4]. It has the goal of “[extend-
ing] the performance of the existing PC/AT platform beyond
the traditional single processor limit, while maintaining 100%
PC/AT binary compatibility”. Although superseded by today’s
standards such as ACPI [5], this specification still acts as a
baseline for SMP support in the x86 architecture. Compliance
of SMP hardware to the specification requires special attention
in the following areas:

• PC/AT Backwards Compatibility. If an existing, non-SMP
operating system is executed on the hardware, it must still
function as if it was running on a single processor system.

• Memory Subsystem. All processors must have access
to the same memory locations that must be mapped
at the same physical address. Caching attributes must
be consistent and caches must be coherent. Interlocked
(commonly known as atomic) memory operations must
be honored by the hardware at least on aligned accesses.
Further details on the memory system are discussed later
in Section II-A.

• Interrupt Logic. Processors must be able to receive in-
terrupts from peripherals in a configurable manner, as
well as interrupt each other individually. This is further
discussed later in Section II-B.

• Reset Support. As part of backwards compatibility, both
a software and hardware reset is required to act on all
processors. Furthermore, the specification requires that
SMP-capable operating systems must be given a means
to reset processors individually.

• Configuration Information. Information about specific
hardware details, like the number and identifiers of

73

available processors and I/O buses, are reported by the
hardware via an in-memory structure known as the MP
Configuration Table.

Notably, higher-level functionality is not expected to work
synchronously between CPUs, such as the stateful operation
of the memory-management unit (MMU), the handling of
translation lookaside buffers (TLB) or model-specific register
provisioning (timestamp counter, system call vector). Those
resources are maintained individually by each processor, which
makes the operating system responsible for all required con-
sistency management activities.

A. Memory Subsystem

In the default case on x86 SMP systems, all processors have
access to the same memory locations with the same physical
addresses. This includes all locations in main memory, devices
mapped to I/O space, as well as memory-mapped devices like
controllers on peripheral extension cards. The only exception
are devices that are completely processor-specific, like the
local interrupt controllers (see Section II-B).

Most memory accesses are expected to work just as if the
program was running on a single-processor system, so the MP
specification lists the following requirements [4, pg.3-4]:

• Memory attributes, like whether or not a region is
cachable, are identical across all processors.

• Cache coherency is guaranteed by hardware. There is no
need for a software coherency mechanism.

• Caches support flushing. If a processor issues a flush call
(i.e., the WBINVD instruction), only its own caches are
guaranteed to be flushed.

• Atomic operations (i.e., instructions having the LOCK
prefix) are visible to all processors. However, atomicity is
guaranteed only on aligned accesses; caches may ignore
the LOCK prefix for unaligned operations.

• Memory write operations are observable by other proces-
sors in the order they appear in the program.

B. Interrupt Logic

The CPU In single-processor systems is the only target for
interrupt requests from peripheral devices. Traditionally, x86
CPUs have relied on an external Intel-8237-alike interrupt con-
troller to gather interrupt requests from devices and dispatch
them to the CPU. This scheme has been extended for SMPs
in two major ways.

First, Interrupt Routing from peripheral devices to pro-
cessors is configurable, thus allowing interrupts from certain
devices or buses to be handled by a subset of installed
processors. This can be used by administrators to link certain
devices with processors for increased system throughput.

Second, Inter-Processor-Interrupts (IPIs) must be addition-
ally supported in the system. They are the primary means of
the operating system to trigger other processors to perform
work. Similar to device interrupts, the interrupt vector number
is transferred with the request. If additional information is
needed by the recipient, it needs to be communicated via other
channels like shared memory.

1) The Advanced Programmable Interrupt Controller:
Starting with the MP specification, the traditional IBM PC-
style programmable interrupt controller (Intel 8259 PIC) has
been superseded by a set of Advanced Programmable Interrupt
Controllers (APICs). The older PIC (or a compatible device)
still needs to be present for backwards compatibility in single-
processor mode, but as soon as multiple processors are run-
ning, the APICs are the primary means of managing interrupts.

In the APIC system, there is one Local APIC (LAPIC)
for each processor, as well as at set of I/O APICs serving
interrupts from peripherals; typically one IOAPIC per device
bus, but other topologies could be used by manufacturers as
well. IOAPICs are mapped into global memory space, whereas
local APICs are mapped for their respective processor only.

2) IPIs and Processor Reset: A special case of signaling
other processors to perform work is a processor reset or
initialization request. Due to backwards compatibility, the MP
specification requires that only a single Bootstrap Processor
(BSP) is active when the BIOS code is executed. If the
machine is used by a single-processor operating system, the
BSP will act as this single processor and no other processor
will be active until a system restart. The BSP need not be
predetermined by the hardware, though; it is also possible
to start all processors at power-on, then run an agreement
protocol as part of the BIOS startup sequence to determine
a BSP and stop all other processors afterward.

For a multi-processor operating system, its startup code
is responsible for detecting the presence of other processors
and starting them. These other processors, named Application
Processors (APs) in the Intel MP specification, are identified
via the identifiers of their local APIC on the APIC bus. Startup
is accomplished by sending special IPIs; the type of IPIs
depends on whether the system uses external (Intel 82489DX)
or on-die local APICs.

The INIT IPI causes the remote processor’s local APIC
to reset the processor state and begin the normal bootstrap
sequence, just as if power had been turned on for the proces-
sor. In comparison, the STARTUP IPI causes the instruction
pointer to change to an address specified by the vector number
in the IPI message; all other CPU state remains unchanged.

III. WHY THE SCC IS NO X86 SMP

The SCC processor design consists of 48 GaussLake cores
that are organized in 24 dual-processor tiles, each having:

• its own independent clock generator,
• a set of core configuration registers,
• a scratch-pad memory called the Message-Passing Buffer

(MPB)
• a message router that interfaces the tile to the on-die

communication network [1].
The prototype platform does not have a “chipset”, but

instead contains an FPGA that is connected directly to the
on-die network [6]. Depending on the firmware version, the
FPGA contains a set of core-specific devices like queues for
the Ethernet ports. Furthermore, it acts as a communication
bridge, forwarding packets between the on-die network and the
Management Console PC (MCPC) connected via PCI-Express.

74

From an overall architecture perspective, each of the 48
processor cores conforms to the standard 32-Bit x86 architec-
ture. However, the whole SCC cannot be treated as x86 SMP
system, since it does not conform to the MP specification in
several areas, as described in the next sections. While some
of these differences could be alleviated by software running
either on the GaussLake cores itself (like a modified BIOS),
or the FPGA or the MCPC (for device emulation), certain
others like differences in the memory subsystem are inherent
for the hardware and would need a new silicon revision to be
changed. We discuss each of the categories below, providing
information on what could and cannot be changed in software.

A. BIOS Support

The MP specification requires the hardware to be in a spe-
cific state after the BIOS has performed its startup processing:
only one processor (the Bootstrap Processor, BSP) shall be
running, while each other (Application Processor, AP) shall
be placed in a state where it is inactive and waits for an INIT
or STARTUP IPI.

On the SCC, there does not exist a BIOS up to and
including sccKit 1.4.1.3. We submitted our minimal SCC
BIOS introduced in [2] for inclusion in sccKit 1.4.2, but it also
does not include support for the MP specification or the warm
restart. Instead, cores are reset directly from the MCPC, and
the initial memory contents that would be constructed from a
bootloader on a standard x86 system are transferred directly
via the MCPC to the memory controllers [2].

However, these differences could easily be overcome by
implementing a full BIOS; e.g., by providing the warm restart
vector as well as MP or ACPI tables.

B. Peripheral devices

In the current sccKit releases, no peripheral devices known
from a standard PC are implemented for the SCC. Instead,
if a core performs an I/O operation (via either the IN or
OUT x86 instruction), the corresponding network packet is
sent to the MCPC and potentially handled there. Implementing
these devices relates to an appropriate device emulator on
the MCPC side – the authors have prototyped this approach
by implementing virtual 16550A UARTs at standard PC
addresses, which could then be handled by build-in Linux
device drivers. Real-world systems based on SCC could then
contain the according true implementations of these devices.

C. Memory

As written in the SCC External Architecture Specification
(EAS) [6], the memory subsystem of the SCC is considerably
different than that of a standard x86 SMP. The main differ-
ences are as follows:

1) Additional memory mapping layer. The mapping of a
core’s physical addresses to system addresses is con-
trolled via Look-Up Tables (LUTs); these allow each
core to have a completely different view of the global
memory space. For SMP operation, the LUTs could be

configured to map all participating cores to the same
region in main memory.

2) Cache coherency is not maintained by the hardware, so
there is no single view of a global memory space if
caches are enabled.

3) Processor cores do not have a means to communicate the
LOCK signal to memory controllers, even with disabled
caches.

A formal workaround for incoherent caches is to disable
them completely, which is also clearly allowed by the MP
specification – but may not be desirable because of the
expected performance impact. However, there is no such
workaround for the missing LOCK signal: the corresponding
line from the GaussLake is not connected in hardware, and
the processor itself does not allow to emulate or trap on
instructions that use the prefix. Therefore, atomic operations
do not work on the SCC, as LOCK is silently discarded.
According to the checklist [4] in the MP specification, this
makes the SCC non-compliant, which prevents the operation
as standard x86 SMP system.

As part of our solution, we propose to solve this issue
by using a combination of a software coherency layer and
virtualization. When caches are enabled, the following condi-
tions are sufficient to prevent data corruption in a non-coherent
hardware environment:

1) At most one ’owner’ core has a physical page mapped
for write access at each point in time

2) When a write access has to be performed by another
core, the ’owner’ must perform a flush

The initial idea relies now on the possibility to prevent
a page write access by setting the corresponding page table
protection bits [7]. Furthermore, for guaranteeing sequential
consistency, it is necessary to disallow reading of a page on
a core if any other core has mapped it for writing. In our
concept, the RockyVisor distributed hypervisor fulfills the role
of such a memory access coordination entity.

D. Interrupt Handling
Similar to the memory subsystem, the SCC’s interrupt

handling support also differs significantly from traditional x86
systems. The GaussLake cores contain a local APIC, just like
the original P54C; however, these APICs are not connected.
Instead, the corresponding lines to the processor core are
exposed directly via the tile’s configuration registers [6].

Although one end of the bus is exposed, there is no means to
actually send a message over to a local APIC, as the signaling
protocol is not publicly documented. Furthermore, even if it
would be known, receiving messages is not guaranteed to
work, as it would require polling the bus wires at a high speed,
with no means to prioritize such traffic on the on-die mesh or
the link to the MCPC in the SCC system.

As one possible solution, we chose to simulate the APIC op-
erations at a higher abstraction level, by sending corresponding
IPI messages between hypervisor instances. In combination
with the memory management interception of a hypervisor
described above, we end up in a solution where a distributed
hypervisor adds the missing SMP capabilities for the SCC
platform.

75

IV. SMP VIA VIRTUALIZATION

Although the discussion so far is limited to one shared-
memory SMP system architecture, our general discussion is
strongly related to what is known as a Single-System Image
(SSI) view. In SSI systems, any process – no matter on which
physical processor or system of the cluster it runs – has always
the same view of the multi-computer. The term “SSI” can refer
to various layers of either software or hardware [8, pp350],
though, but we are discussing it here only in the context of
shared-memory SMP systems.

In traditional operating systems, there are two main oper-
ational modes for executing code. Applications run in non-
privileged (user) mode, whereas the kernel runs in privileged
(kernel) mode to control the hardware. When simulating an
SMP system through a hypervisor, we deliberately extend this
model. A new layer below the kernel is now responsible for
converting the existing hardware interface to a virtual one the
kernel understands. For traditional virtualization, the VMM
just provides the same interface (or a subset) to the kernel
as it would find on real physical hardware, probably with
some para-virtualized devices for increasing performance. In
our architecture, the VMM layer is responsible for simulat-
ing all aspects of a shared-memory SMP the real hardware
lacks, which let’s the VMM transparently add new hardware
capabilities.

��� ��� ��� ���

����	
 ����	
 ����	

��������� ��������� ���������

���������������������������

����	������ �
�����

���� ���� ���� ����

������ ������ ������

���������

����	

������

Fig. 1. RockyVisor with Guest OS

For the given approach, it is not relevant whether the VMM
itself runs directly on the physical hardware (Type 1 VMM)
or if it runs as a process in another host operating system
(Type 2 VMM). We also do not distinguish implementation
techniques of VMMs; e.g., whether it uses hardware-assisted
virtualization on a trap-and-emulate-virtualizable instruction
set, or a software technique such as binary translation or para-
virtualization [9]. As discussed in Section V below, we chose
a Type 2 VMM approach (Hosted VM) for our prototype
to allow for reusing code from an open-source hypervisor
(lguest). Figure 1 shows the resulting architecture.

We assume each processor to run a separate “Level 1” oper-
ating system instance, in order to manage low-level hardware
resources like communication devices. On top of this operating
system, our RockyVisor process runs as a regular application.
Multiple RockyVisor instances cooperate to provide a single,
coherent memory space; in addition, each RockyVisor supplies
a single virtual CPU. Inside the resulting virtual machine, the

“Level 2” operating system is executed as a standard SMP
operating system.

To realize the proposed software architecture on the SCC,
there are two fundamental problems to solve: The SCC CPU
cores must virtualized, and the overall virtual hardware used
by the LV2 operating system must show behavior similar or
equal to a real x86 SMP.

V. THE ROCKYVISOR: VIRTUALIZING THE SCC
As the GaussLake processor cores in the SCC are based

on the P54C [6], they do not contain virtualization support
instructions. Classical trap-and-emulate virtualization is there-
fore not possible [10]. We decided to use para-virtualization
for our prototype, since the lguest hypervisor is already
providing the capability with the standard distribution of the
Linux kernel. At the same time, this hypervisor is compact
enough to be easily understandable for research purposes.
lguest has been developed by Rusty Russell and is part of
Linux since version 2.6.23. It is a minimal, yet fully-functional
hypervisor that is implemented as a loadable kernel module.
It supports para-virtualization only, so the guest kernel must
be changed accordingly. For Linux, a corresponding sub-
architecture supplying necessary callbacks on the kernel’s
paravirt interface is provided.

The hypervisor itself has basic support for MMU virtualiza-
tion using shadow page tables [9], as well as device emulation
via Linux’ build-in virtio framework. Unlike Xen or KVM,
lguest is not meant as a commercial-grade solution, but as a
platform for research and experimentation. Specifically, lguest
favors readability of the hypervisor code over performance
wherever possible.

The current lguest hypervisor does not support multi-
processor guest systems. Specifically, it does not fully dis-
tinguish per-processor from machine state. Although the lg
kernel module contains structures for both hypervisor and
virtual CPU (vcpu) state, the separation is incomplete: some
fields are still present in the wrong structure, and the paravirt
layer installed in the guest does not have a notion of more
than processor.

In order to implement the RockyVisor, we first developed
an SMP extension of lguest. For this, we implemented support
for more than one virtual processor in the guest’s paravirt
layer, separating the hypervisor state into global and per-
virtual-CPU structures. The global state now consists of just
the virtual interrupt controller; virtual processor state includes
the interrupt enable flag, mask of pending interrupts, as well
as information required by the virtual MMU.

We also added new hypercalls to support emulation of local
APICs. As discussed in section II-B, local APICs provide
two basic operations not required in single-processor mode:
startup of APs (secondary processors), and signaling between
processors. In our implementation, we added corresponding
hypercalls that forward these operations to the lguest launcher
process, which then sends to other virtual CPUs via sockets.

VI. SMP MMU VIRTUALIZATION

As briefly mentioned in section II, the MMUs of all proces-
sors act independently in an x86 SMP. Unlike cache coherency

76

or the software-visible LOCK prefix, there is no implicit
communication between processors, so all MMU state changes
need to be explicitly requested by the operating system.

However, virtualization also provides opportunities for opti-
mization, especially in regards to the MMU [9]. Some of these
optimizations can have a major impact on hypervisor design,
which we are going to discuss in the remainder of this section.

On processors that support nested page tables, MMU vir-
tualization can be trivially implemented. This is not the case
for the SCC, as the GaussLake cores are based on the P54C
that predates any virtualization assists in hardware. Therefore,
MMU virtualization requires other techniques that allow the
guest operating system to safely change the real page tables
used by the physical hardware.

An example is Xen, which allows the guest to manipulate
its page table directly, giving the guest direct knowledge of the
physical page frame numbers it uses for its mappings. Before
such a page table is used by the processor, the hypervisor
just needs to check that the guest does not install any page
numbers it is not allowed to access. Other implementations
use shadow structures that are maintained by the hypervisor
and fully hidden from the guest operating system.

A. Emulated TLB

Another technique, traditionally implemented by VMware
and (in a modified form) by lguest, is called emulated trans-
action look-aside buffer (TLB) or (in optimized form) shadow
page tables [9]. For both techniques, the guest manipulates its
own page tables, and does not need any knowledge of real
(physical) memory addresses. The page table that is used by
the MMU to translate guest-virtual to physical addresses is
manipulated only by the hypervisor.

For the emulated TLB, the real page table represents the
TLB of the virtual CPU. On a guest page fault, the hypervisor
interprets the guest’s page tables. If it does not find a mapping
or its attributes do not provide sufficient access, the page fault
is reflected into the VM. Otherwise, the hypervisor retrieves
the guest-physical page number, performs the translation to a
host-physical page number itself, then install a mapping from
the guest-virtual to host-physical address in the page table. On
any later access, the processor just uses the already installed
entry directly.

The software TLB has a major drawback: loading any TLB
entry is considerably more expensive than the corresponding
hardware operation in a non-virtualized environment, as it
requires both a software pagetable walk to fill the software
TLB, then another hardware pagetable walk to fill the real
TLB. Furthermore, the real TLB needs to be flushed more
often, as the hypervisor’s page fault handler runs in hypervisor
space instead of guest space. Any page fault results in two TLB
flushes, whereas real hardware does not need to perform any
flushes in this case. Similarly, reloading the guest’s virtual CR3
(e.g., on a context switch in LV2) also leads to clearing the
entire software TLB, thus resulting in a storm of hidden page
faults afterward. We are currently investigating these issues
for further improvement.

B. Shadow Page Tables

As an optimization to the software TLB, hypervisors can use
shadow page tables. These use multiple page table hierarchies,
one for each value of the guest’s CR3 register: if the guest
operating system switches to another process that has already
been active before, it can just switch to the cached page table
corresponding to this CR3 value.

One major problem with shadow page tables is to decide
when to remove entries from inactive, but still cached shadows.
For the hypervisor to notice changes to page tables, it can make
use of traces: once a shadow page table has been constructed
for a page in guest memory, the guest is transparently disal-
lowed to perform any further changes. If the guest performs a
write, the hypervisor recognizes that the page being changed
has an associated shadow page table and invalidates it.The
lguest hypervisor also implements shadow page tables, but
the invalidation problem is solved in a different way: it relies
on the guest operating system to notify the hypervisor of
any changes to page tables. Therefore, whenever an entry is
removed or changed – in any page table – the hypervisor is
informed and purges corresponding entries from shadow page
tables.

C. RockyVisor Page Tables

As the emulated TLB is fully consistent with documented
behavior of real hardware, it was our first choice when
designing page table support for the cooperative RockyVisor.
The existing implementation of shadow page tables by the
underlying lguest has a major drawback here: as the guest
needs to communicate changes of the page tables to the
hypervisors, the RockyVisor would need to communicate all
changes to page tables across the entire system, leading to a
potentially huge number of useless simulated IPIs.

We implemented an optimization that is based on the
following observation: Linux maintains a bitmask for each
page table, noting which processors reference the page table.
If the kernel modifies a page table in memory, it automat-
ically sends a corresponding IPI to each CPU listed in the
bitmask, requesting it to perform the necessary TLB flush.
The abstraction level of this operation is fairly high, so more
detailed information is available: for example, the affected
virtual addresses are known, so a subset of TLB entries could
be flushed if the processor supported such a “selective” TLB
flush.

The page table indication bits are normally changed during
context switch. In our architecture, though, the guest just
sets the bit when it activates a page table. The bit of the
old page table’s mask is not cleared, because it may still be
cached by the hypervisor. Instead, the address of the bitmask
is communicated to the hypervisor as part of context switch,
allowing it to clear the bit for that virtual CPU when the
shadow page table is no longer available.

D. RockyVisor Memory Coherency

As caches on the SCC are not coherent, the RockyVisor
cannot simply map one physical page on more than one core

77

at a time. Instead, when enabling caches, it needs to obey the
criteria for cache coherency as discussed in section III-C.

The lguest implementation of shadow paging allows the
hypervisor to keep track of all pages it has mapped for a
virtual CPU, and transparently change these mappings (e.g.,
to make a page read-only) without the need to communicate
with the guest operating system. If a guest later requires to
access the page again, it will encounter another hidden page
fault. Therefore, on our architecture, memory coherency can
be implemented as follows:

• If a guest page fault is encountered, the corresponding
page is requested from the memory coherency driver. The
page fault handler completes once the page is available.

• If a shadow page table is torn down, all referenced pages
are released to the coherency driver.

• If the coherency driver is requested for a page that
violates above conditions, it informs the hypervisors that
still have the page mapped, requesting them to release
the page.

We are currently working on the according extension of the
prototype implementation.

VII. RELATED WORK

As precondition for the work presented here, we have
demonstrated a modified Linux kernel before that works on a
single core of the SCC [2]. This kernel only works on a single
SCC core at a time and does not provide SMP operation.

A completely different approach for multiprocessor opera-
tion is the Barrelfish operating system [11]. Barrelfish uses
satellite kernels and demands tailored high-level applications.
There is no backward compatibility to any existing application.

vNUMA [12], developed by Matthew Chapman as part of
his Ph.D. thesis, is a distributed hypervisor for IA-64 proces-
sors. It simulates an SMP system on networked workstations,
using Gigabit Ethernet as node interconnect. NEX [13] by
Xiao Wang et al. is a similar effort based on the open-
source XEN hypervisor, but requires hardware extensions for
virtualization. Versatile SMP [14] by ScaleMP is a commercial
product that claims to support up to 1024 processors (with
up to 8192 cores) on standard computers, interconnected via
Infiniband. All these projects rely on the availability of a
standard x86 processor, especially with respect to memory
coherency and device handling.

Finally, MetalSVM [15] is another project for hypervisor-
based SMP on the SCC. In contrast to the RockyVisor,
MetalSVM implements a Type 1 VMM that runs directly on
the hardware, instead of another operating system instance.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we analyzed the properties of an x86 SMP
system and denoted in which points the Intel SCC research
hardware differs. Based on this analysis, we presented the
architecture and first steps for the RockyVisor that is intended
to run a para-virtualized SMP operating system on the SCC.

We are currently in the process of finalizing this archi-
tecture, using the modified Linux kernel presented in [2]
as a unified LV1 and LV2 kernel. In the current state of

our prototype, a single GaussLake core can simulate a 2-
way SMP VM. The modified shadow page table mechanism,
as well as the reverse mapping for finding which shadows
contain references to specific physical pages have also been
implemented, but our implementation still lacks the cache
coherency layer. Future work will focus on the completion
of the prototype and the experimental evaluation.

REFERENCES

[1] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl,
D. Jenkins, H. Wilson, N. Borkar, G. Schrom, and et al., “A 48-Core
IA-32 message-passing processor with DVFS in 45nm CMOS,” 2010
IEEE International SolidState Circuits Conference ISSCC, vol. 9, pp.
58–59, 2010.

[2] J.-A. Sobania, P. Tröger, and A. Polze, “Linux Operating System Support
for the SCC Platform - An Analysis,” in 3rd Many-core Applications
Research Community (MARC) Symposium. KIT Scientific Publishing,
Karlsruhe , 2011.

[3] E. Chan, RCCE comm: A Collective Communication Library for the Intel
Single-chip Cloud Computer, http://communities.intel.com/docs/DOC-
5663, 2010.

[4] Intel Corporation, MultiProcessor Specification, May 1997.
[5] Hewlett-Packard Corporation, Advanced Configuration and Power Inter-

face Specification, Apr. 2010.
[6] Intel Labs, SCC External Architecture Specification (EAS), Apr. 2010.
[7] Intel Corporation, Intel Architecture Software Developer’s Manual,

Volume 3: System Programming, 1999.
[8] G. F. Pfister, In search of clusters, 2nd ed. Upper Saddle River, NJ,

USA: Prentice-Hall, Inc., 1998.
[9] K. Adams and O. Agesen, “A comparison of software and hardware

techniques for x86 virtualization,” SIGARCH Comput. Archit. News,
vol. 34, pp. 2–13, Oct. 2006.

[10] J. S. Robin and C. E. Irvine, “Analysis of the Intel Pentium’s ability
to support a secure virtual machine monitor,” in SSYM’00: Proceedings
of the 9th conference on USENIX Security Symposium. Berkeley, CA,
USA: USENIX Association, 2000, pp. 10–10.

[11] A. Schüpbach, S. Peter, A. Baumann, T. Roscoe, P. Barham, T. Harris,
and R. Isaacs, “Embracing diversity in the Barrelfish manycore operating
system,” in In Proceedings of the Workshop on Managed Many-Core
Systems, 2008.

[12] M. Chapman, “vNUMA: Virtual Shared-Memory Multiprocessors,”
Ph.D. dissertation, Computer Science and Engineering, The University
of New South Wales, 2008.

[13] X. Wang, M. Zhu, L. Xiao, Z. Liu, X. Zhang, and X. Li, “NEX: Virtual
Machine Monitor Level Single System Support in Xen,” in International
Workshop on Education Technology and Computer Science, vol. 3. Los
Alamitos, CA, USA: IEEE Computer Society, 2009, pp. 1047–1051.

[14] ScaleMP, “Versatile SMP (vSMP) Architecture,”
http://www.scalemp.com/architecture.

[15] S. Lankes, “MetalSVM: A Bare-Metal Hypervisor for Non-
Coherent Memory-Coupled Cores,” http://www.lfbs.rwth-
aachen.de/content/metalsvm, 2011.

78

