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ABSTRACT 

Strategic uncertainty is the uncertainty that players face with respect to the purposeful behavior of 
other players in an interactive decision situation. Our paper develops a new method for measuring 
strategic-uncertainty attitudes and distinguishing them from risk and ambiguity attitudes. We vary 
the source of uncertainty (whether strategic or not) across conditions in a ceteris paribus manner. 
We elicit certainty equivalents of participating in two strategic 2x2 games (a stag-hunt and a mar-
ket-entry game) as well as certainty equivalents of related lotteries that yield the same possible 
payoffs with exogenously given probabilities (risk) and lotteries with unknown probabilities (ambi-
guity). We provide a structural model of uncertainty attitudes that allows us to measure a prefer-
ence for or an aversion against the source of uncertainty, as well as optimism or pessimism regard-
ing the desired outcome. We document systematic attitudes towards strategic uncertainty that 
vary across contexts. Under strategic complementarity [substitutability], the majority of partici-
pants tend to be pessimistic [optimistic] regarding the desired outcome. However, preferences for 
the source of uncertainty are distributed around zero. 
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1. Introduction  

Strategic uncertainty is the uncertainty that players face with respect to the purposeful behavior 

of other players in an interactive decision situation. While economic theory mostly applies 

equilibrium concepts like Nash or rational expectations equilibria that are based on the absence 

of strategic uncertainty, experiments show that real decision makers are sensitive to strategic 

uncertainty. Laboratory experiments have indicated that many humans exhibit strategic 

uncertainty aversion: they are ready to waive a part of their expected payoff in order to avoid 

that their payoff depends on the decisions made by others.1 This behavioral phenomenon has 

far-reaching consequences for economic efficiency, because it implies coordination failures and 

suboptimal levels of investment and risk taking in markets.  

From early experiments, we know that humans tend to prefer situations with known 

probabilities of outcomes to “ambiguous” situations in which these probabilities are unknown 

(Camerer and Weber, 1992). This attitude is called ambiguity aversion. Tests of ambiguity 

aversion traditionally compare choices between lotteries with given probabilities and lotteries 

for which the probabilities are exogenously given but unknown to subjects. Ambiguity aversion 

might also apply to strategic interaction. However, the beliefs about the strategic behavior of 

other humans are also affected by the theory of mind: agents may put themselves in the shoes 

of other decision makers and form beliefs about their reasoning processes. This idea has been 

taken to the extreme by the Nash equilibrium concept in which each player’s strategy is a best 

response to the other players’ strategies. As a descriptive theory, Nash equilibrium assumes that 

players are able to guess the strategies of others either by simultaneously solving the others’ 

decision problems or by relying on experience (as in repeated games). Such reasoning processes 

may reduce perceived strategic uncertainty, so that strategic uncertainty aversion may have 

lower effects on behavior than ambiguity aversion in lotteries with completely unknown 

probabilities. On the other hand, strategic interactions are also more complex to analyze than 

lotteries. Humans try to avoid complexity and may doubt the logical consistency of their own 

reasoning processes or the logical consistency of other players’ reasoning processes or 

decisions. 

This paper develops a method for measuring strategic-uncertainty attitudes and distinguishing 

them from risk and ambiguity attitudes. The main idea is to elicit and exploit the information 

contained in certainty equivalents (willingness to accept) for lotteries under three different 

sources of uncertainty: strategic uncertainty, risk and ambiguity. We provide a structural model 

of uncertainty attitudes that allows us to measure two dimensions of uncertainty attitudes: a 

preference for, or aversion against, the source of uncertainty, modelled by an additional 

[dis]utility depending on the source, and optimism or pessimism2 regarding the outcome, which 

we formalize as a shift of the subjective weight that is put on the higher outcome.  

We conduct an experiment with interactive games and interaction-free lottery tasks. Unlike 

previous experiments, our novel methodology allows for a variation of the source of uncertainty 

(whether strategic or not) across conditions in a ceteris paribus manner. This means that we 

keep the potential payoffs constant but consider different mechanisms (random or strategic) 

that determine the realized payoff. Since strategic uncertainty typically characterizes 

coordination problems, we focus on two coordination games: one with strategic 

                                                           
1 See, for example, Greiner (2016). 
2 One might also interpret these as excitement or fear about the other player’s behavior. 
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complementarities in agents’ actions and one with strategic substitutability (anti-coordination). 

Following the literature on strategic uncertainty (see below), we apply our methodology to two 

classic 2x2 games: stag-hunt and market-entry games.3  

For the different sources of uncertainty – each of the two games, as well as the corresponding 

ambiguous lottery environments – we identify two subject-specific parameters of a model of 

uncertainty attitudes. We investigate two ways in which strategic uncertainty may affect 

behavior in a game. First, following Baillon et al. (2017), we define ambiguity as a situation 

where subjects have information about possible outcomes of a lottery but not about 

probabilities. Whether these given – exogenous to the decision maker – unknown probabilities 

are resulting from human decisions or nature does not affect this definition of ambiguity. We 

investigate whether, all other things being equal, attitudes towards uncertainty differ between 

strategic uncertainty and ambiguity conditions. Second, strategic uncertainty is related to 

conscious behavior of human players whose interaction exhibits common or opposite interests, 

and as such involves decisions based on strategic thinking. We study how the nature of the 

game (strategic complements versus substitutes) affects these uncertainty attitudes.  

We document systematic attitudes toward uncertainty. These attitudes vary across contexts and 

across subjects. The median participant exhibits neither a preference for, nor an aversion against 

ambiguity or strategic uncertainty. In the game with strategic complements [substitutes], the 

median participant is found to be pessimistic [optimistic] regarding the outcome that leads to a 

higher payoff given the player’s own choice. Comparing uncertainty attitudes across treatments, 

we observe more optimism in the entry game than in the stag-hunt game or under ambiguity 

(both of which, in turn generate similar results).  

The next section describes our contribution to the literature. Section 3 presents the experimental 

design and procedures. Section 4 lays out the theoretical underpinnings of our design. Section 

5 shows the results and Section 6 concludes the paper. 

 

2. Related literature 

Brandenburger (1996) defines strategic uncertainty as uncertainty about the purposeful 

behavior of players in an interactive decision situation. Experimental evidence reported in 

Beard and Beil (1994) can hardly be explained without assuming that players dislike situations 

in which their payoffs depend on the decisions made by other players. Camerer and Karjalainen 

(1994) attribute this behavior to ambiguity aversion, because there are no given probabilities 

for other players’ strategies. They use non-additive probabilities as in Gilboa and Schmeidler 

(1989) to model ambiguity aversion and argue that ambiguity aversion may be responsible for 

players not reaching an efficient equilibrium in coordination games with strategic complements 

(like the median effort game). Camerer and Karjalainen (1994) conduct an experiment on the 

median effort game, in which they elicit bounds on subjective probabilities for complementary 

and exhaustive events defined on the outcomes of the game. If the sum of these probabilities is 

smaller than one, a subject can be said to be ambiguity averse. Unfortunately, their method of 

                                                           
3 Stag-hunt games provide a useful paradigm to analyze a wide range of economic phenomena, such as 

macroeconomic fluctuations (Cooper and John, 1988), bank runs, debt and liquidity crises, speculative attacks 

(Morris and Shin, 2003; Heinemann, 2012), and commercial production processes (Brandts et al., 2015). Market-

entry games describe the prototypical situation of conflicting interests, such as Cournot competition or location 

choice. 
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eliciting subjective probabilities seems rather fragile as it may produce contradictory results 

and does not allow a clear distinction between subjective beliefs about others’ behavior and 

aversion against strategic uncertainty.  

Greiner (2016) is the first to clearly identify aversion against strategic uncertainty by comparing 

behavior in dictator, ultimatum, and impunity games. He shows that behavior in these games 

indicates a substantial aversion against strategic uncertainty that may be higher than ambiguity 

aversion. Subjects pay high prices for avoiding that their payoff depends on the decisions of 

their partners, even though they attribute high subjective probabilities to their partners’ 

decisions being favorable for them.  

Bohnet and Zeckhauser (2004) find similar evidence in a trust game, where the second mover 

could either be another subject or a lottery. They attribute subjects’ reluctance to depend on 

human second movers as betrayal aversion, but strategic uncertainty aversion might have 

played some role. Li et al. (2020) find that ambiguity preference affects the decision to trust a 

trustee. Note that the games used by Greiner (2016) and Bohnet and Zeckhauser (2004) all have 

a unique equilibrium and equilibrium choices of the second movers can be derived simply by 

eliminating dominated strategies.  

Kelsey and le Roux (2015) analyze behavior in an extended battle of the sexes game and find 

further evidence indicating that strategic uncertainty aversion may exceed ambiguity aversion 

in non-strategic games. They also conjecture that not only strategic uncertainty, but also 

strategic uncertainty aversion may depend on the nature of the game. However, they have no 

means to test this hypothesis. Nevertheless, this conjecture has to be taken seriously, because 

Ivanov (2011) finds that in a game that is solvable by iterative elimination of dominated 

strategies, 32 percent of subjects are strategic uncertainty loving, while only 22 percent are 

averse to strategic uncertainty. 

Nagel (1995) provides an experimental test of a game with strategic complements and shows 

that behavior can be described by assuming that subjects follow distinct levels of reasoning, 

where Level zero is defined as random choice of a strategy and Level k is defined as best 

response to Level k-1. Camerer et al. (2004) develop a cognitive hierarchy model based on 

levels of reasoning. Uncertainty about other players’ strategies can be modelled as uncertainty 

about the levels of reasoning applied by other players. In games with strategic complements, 

the number of levels of reasoning is in a monotone relationship with actions and, thus, 

experiments on such games can be used to measure the distribution of levels among players, 

but also the beliefs about others’ levels of reasoning. In games with strategic substitutes, 

however, the optimal strategy for a given number of levels of reasoning is non-monotonic. In 

entry games, for example, the optimal decision is to enter for any odd number of levels and to 

stay out for any even number of levels (or vice versa). This raises the question whether 

perceived strategic uncertainty or strategic uncertainty aversion differ between games with 

strategic complements and substitutes. 

Heinemann et al. (2009) propose a method to measure strategic uncertainty in coordination 

games with strategic complements. They let subjects play a variety of games, each consisting 

of a choice between two options A and B. Option A is associated with a safe payoff X, while 

Option B paid 15€ if at least a fraction k of the other subjects were choosing B in the same game 

and zero otherwise. The safe payoff was varied from 1.50€ to 15€ and subjects typically 

switched from B to A at some value of the safe payoff. The safe payoff at the switching point 
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can be interpreted as certainty equivalent for the uncertain option in this game and, thus, be 

used as a measure for strategic uncertainty. Subjective probabilities for success of Option B can 

be elicited directly or derived from comparing the certainty equivalent of a strategic game with 

certainty equivalents of lotteries with given probabilities. As the safe payoffs are part of the 

game and any pair A-B is a different game, switching points only provide precise measures of 

strategic uncertainty for games in which subjects are indifferent between A and B. Thus, this 

method can only give upper or lower bounds for strategic uncertainty in games in which 

subjects reveal their preference for one or the other option by choosing it.  

Following the same method as Heinemann et al., recent work by Chierchia et al. (2018) elicits 

certainty equivalents for choosing the uncertain option in coordination games with strategic 

complements (stag-hunt games) and substitutes (entry games). They find that most subjects 

have a unique switching point in stag-hunt games, but multiple switching points for entry 

games, which is in line with higher levels of reasoning.4 The observed multiple switching points 

in entry games indicate, however, that levels of reasoning and strategic uncertainty may be 

related, for which reason we focused on games with strategic complements and substitutes to 

measure strategic uncertainty aversion. In addition, many simultaneous-move games are 

characterized by strategies being either complements or substitutes, and games with these 

characteristics are applied in many domains of economics to model competition, monetary 

policy, financial crises, network externalities in growth, and political economy issues, to name 

just a few.  

While multiple price lists used by Heinemann et al. (2009) and others allow for measuring 

strategic uncertainty, the authors do not clearly distinguish strategic-uncertainty attitudes from 

ambiguity attitudes.5,6 At best, the existing methods suffice to distinguish whether a subject 

likes or dislikes strategic uncertainty. While the general conclusion is that subjects dislike 

strategic uncertainty, Ivanov (2011) provides evidence that strategic uncertainty may be 

preferred to risk. We thus reckon that the literature lacks a clear methodology to measure 

strategic-uncertainty attitudes. We fill this void by developing a method that can be used to 

measure strategic-uncertainty attitudes for any strategic binary-choice game and distinguish 

                                                           
4 Nagel et al. (2018) explain multiple switching points in entry games by the higher demand for strategic reasoning 

compared to a stag-hunt game. They analyze the brain activity of subjects during decision-making in an fMRI 

scanner. They show that strategic games activate the brain network that also mediates risk during lottery decisions 

(anterior insula, dorsomedial prefrontal cortex and parietal cortex) which indicates that strategic uncertainty is 

treated in a similar way as other forms of uncertainty. The activation of the risk mediating network is highest when 

subjects chose the risky action in the entry game which indicates that entry games are associated with a higher 

perceived strategic uncertainty. The level of strategic thinking is reflected in the activity of the dorsomedial and 

dorsolateral prefrontal cortex. These regions are more active among players with non-threshold strategies in the 

entry game, indicating higher levels of reasoning. 
5 Heinemann et al. (2009) compare strategic uncertainty to risk. Apart from the research question itself, many 

design features of our experiment differ from theirs (e.g. elicitation of certainty equivalent and subjective beliefs). 

In their experiment, subjects choose between a safe payoff and a risky payoff that they get if and only if a sufficient 

number of subjects chooses the risky option. Thus, the safe payoff was not a certainty equivalent for the game, but 

part of the game itself. Hence, the method employed by Heinemann et al. (2009) cannot identify any attitudes 

towards or against strategic uncertainty. In contrast, we elicit certainty equivalents for each potential action in the 

game without the stated certainty equivalents affecting payoffs in the game. 
6 A comparison of risk and ambiguity driven either by human behavior or computer is proposed by Farjam (2019). 

However, he focuses on non-strategic human-driven uncertainty and shows that computerized uncertainty is 

preferred. 
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optimism or pessimism regarding the outcome of the game from a preference for or aversion 

against the source of uncertainty.  

3. Experimental design and procedures 

We develop a method for measuring attitudes towards strategic uncertainty. We use a within-

subject design based on three distinct experimental conditions. The main condition of interest 

is STRATEGICUNCERTAINTY, in which the uncertainty that players face in the game stems from 

other players’ behavior. We also include two control conditions: RISK (the aim of which is to 

establish a behavioral benchmark for a pre-determined structure of uncertainty, where possible 

outcomes and associated probabilities are known) and AMBIGUITY (which captures behavior 

under uncertainty, where possible outcomes are known but associated probabilities are 

unknown).  

Each subject acts in all of the three decision-making environments in the following order: RISK, 

AMBIGUITY, and finally STRATEGICUNCERTAINTY. The STRATEGICUNCERTAINTY treatment is 

played for two distinct 2-player, 2-strategy settings: one with strategic complements, the stag-

hunt game (see Game 1 in Table 1 below), and one with strategic substitutes, the entry game 

(see Game 2 in Table 2 below). The order, in which subjects face the two games, varies. In half 

of the sessions, the STRATEGICUNCERTAINTY treatment starts with subjects facing Game 1 

before Game 2, and conversely in the other half of the sessions. The payoff structure in Tables 

1 and 2 is such that in each game each player decides between two “lotteries” (one lottery pays 

either 20€ or 15€, the other either 5€ or 25€) in which the outcome depends on the other player’s 

decision. We elicit the certainty equivalents for both of these “lotteries” along with subjective 

beliefs, and compare them with certainty equivalents of analogous binary lotteries with 

exogenously given probabilities.  

Table 1. Game 1 and associated payoffs. 

 

 

You 

 The other player 

 L R 

L 20€, 20€ 15€, 5€ 

R 5€, 15€ 25€, 25€ 

Table 2. Game 2 and associated payoffs.  

 

 

You 

 The other player 

 L R 

L 5€, 5€ 25€, 20€ 

R 20€, 25€ 15€, 15€ 

Prior to the RISK treatment, subjects take part in five unpaid lotteries under the same design as 

the RISK treatment. The goal of this training part is to accustom subjects with the basic 

mechanisms at play, and especially to let them gain experience with the Becker-DeGroot-

Marschak procedure (Becker et al., 1964). Unlike the main part of the experiment that follows, 

in this preliminary part subjects receive feedback after each lottery. 
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The three treatments are summarized in Section 3.1. The key feature of our experimental design 

is that it varies the source of uncertainty, keeping the remaining aspects of the decision-making 

process as identical as possible across treatments. This, in turn, allows for isolating and 

measuring the behavioral effect of strategic uncertainty as compared to other sources of 

uncertainty. The experimental procedure is outlined in Section 3.2. 

3.1. Treatments 

While the STRATEGICUNCERTAINTY is played last in our experiment, we present it first because 

it is our main treatment. We then present the two control treatments, which are played first. 

Main treatment: STRATEGICUNCERTAINTY  

This treatment consists of two consecutive parts, each involving a different game (either Game 

1 or Game 2). The order of games is balanced across sessions. Subjects are randomly and 

anonymously matched into pairs for each game. 

In each session there are 12 subjects. This allows us to consistently use frequency-based 

framing (“how many times out of 10”) when eliciting beliefs about others’ behavior. 

In the STRATEGICUNCERTAINTY treatment, each subject makes 4 decisions: 

- Decision 1: The choice between L and R in the game. 

- Decision 2: Subjective beliefs about the behavior of the other subjects. We ask the 

following question: Out of the 10 other participants (not including the own counterpart) 

in this session, how many would choose R? Beliefs are incentivized using a binarized 

quadratic scoring rule.7 

- Decision 3: The certainty equivalent (WTA) for not playing the game if Decision 1 is 

implemented. 

- Decision 4: The certainty equivalent (WTA) for not playing the game if the alternative 

of Decision 1 is implemented.  

We allow WTAs in Decisions 3 and 4 to be stated on [0, 30€]. This exceeds the range of 

potential payoffs so as to detect strong aversion against or strong preference for strategic 

uncertainty. Payoffs are determined as follows:  

                                                           
7 Note that quadratic scoring rules are incentive compatible only for expected-payoff maximizers. Biases may 

occur for non-risk-neutral subjects (Offerman et al., 2009). Schotter and Trevino (2014) provide a survey on 

experimental belief elicitation. The binarized quadratic scoring rule (Hossain and Okui, 2013) (BSR) incentivises 

truthful reporting of beliefs independently of risk-preferences and the (non-linear) form of probability weighting. 

Danz et al. (2020) have recently shown that in practice subjects misreport their beliefs even with the BSR. 

However, they also show that “false reporting and pull-to-center effects arise only when participants are informed 

of the BSR’s quantitative incentives” (Danz et al., 2020, p. 2). For this reason, we apply the binarized quadratic 

scoring rule, but in the instructions, we present the details only on demand and solely tell subjects the principle of 

this mechanism and that it is in their own interest to state their true beliefs. Alternatively, we could correct the 

stated beliefs from a standard quadratic scoring rule using the estimated relative risk aversion along the lines laid 

out in Offerman et al. (2009). However, this exercise also requires structural assumptions that, if mis-specified, 

may bias the findings even more than using the stated beliefs without correction. See the experimental instructions 

in Online Appendix A1 for implementation details of the BSR in our study. 
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A. With 1/3 probability, the game is played and payoffs are determined by both subjects’ 

Decision 1. 

B. With 1/3 probability, subjects are paid for their stated beliefs.  

C. With 1/3 probability, a subject’s own payoff depends on her own stated WTAs and on 

the other subject’s Decision 1. Here, each subject’s payoffs are determined as follows: 

1. One of two possible actions – either L or R – is drawn at random (with 50% chance 

for the own preferred action) and replaces the subject’s own Decision 1. 

2. For that action, the BDM procedure takes place. The computer draws a random 

integer from 1 to 30€. All integers are equally likely. If the drawn integer is larger 

than or equal to the stated WTA for that action, then the subject’s payoff equals the 

randomly drawn number.  

3. If the drawn integer is smaller than the stated WTA for that action, the subject’s 

payoffs are determined by that action and by Decision 1 of the other subject. 

With this design, a subject’s own Decision 1 is only payoff-relevant for her if the game is 

actually played (Situation A). Thus, each subject’s Decision 1 is not affected by her choice of 

WTAs. Hence, beliefs about the other’s Decision 1 are not affected by beliefs about the other’s 

WTA either. Thereby, we provide the highest incentive for subjects to activate their theory of 

mind as intended for Game 1 or Game 2. The decision on WTAs depends solely on beliefs 

about the Decision 1 of the other subject and it requires the same considerations. Our procedure 

elicits the WTAs for the action that the subject would have chosen herself and also for the 

counterfactual non-preferred decision. This allows us to identify two parameters of a model of 

strategic uncertainty that can be interpreted as uncertainty aversion and optimism (see Section 

4). Theoretically, the higher of the two stated WTAs is the WTA for the entire game.  

For comparability purposes, we design the two control treatments in a similar frame as the 

STRATEGICUNCERTAINTY treatment. These two treatments vary the source of uncertainty. In the 

RISK treatment, uncertainty is generated by a random process with known probabilities. In the 

AMBIGUITY treatment, the outcome is determined by an unknown probability distribution.  

Control treatment 1: RISK 

In this treatment, each subject is faced with 11 pairs of lotteries (lotteries 15€/20€ or 5€/25€ 

associated with 11 given probabilities 𝑝). Here, we only ask for 22 WTAs for the respective 22 

lotteries.  

A subject’s own payoff depends on her own stated WTAs and is determined as follows. The 

computer determines which of the 22 lotteries is carried out. Each lottery is equally likely to be 

selected. Then, the BDM procedure takes place. The computer draws a random amount from 0 

to 30€ with 2 decimals. If the drawn amount is larger than or equal to the stated WTA for the 

selected lottery, then the subject’s payoff is equal to the randomly drawn amount. Otherwise, 

the lottery is played. Altogether, each subject makes 22 decisions using a table of contingent 

choices similar to Table 3 below. 

The 11 lotteries on the left-hand side of the table pay either 15€ or 20€, the 11 lotteries on the 

right-hand side pay either 5€ or 25€. In any lottery, the computer determines randomly which 

of the two possible payments is made. Subjects receive information about which part of the 
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experiment and eventually which lottery is selected for payoffs only at the end of the experiment 

after all decisions are completed. 

Table 3. Decision table in the RISK treatment. 

Probability with 

which the 

computer selects 

the higher payoff 

WTA  

for lottery that 

pays either 15€ 

or 20€ 

WTA  

for lottery that 

pays either 5€ or 

25€ 

0%   

10%   

20%   

30%   

40%   

50%   

60%   

70%   

80%   

90%   

100%   

Control treatment 2: AMBIGUITY 

In this treatment, each subject is faced with one pair of lotteries that are presented in the same 

way as potential payoffs in the previous treatment, but this time, subjects are not told the 

likelihood that the higher payoff is chosen. Subjects are informed that the computer selects one 

of the 11 distributions from the RISK treatment before their own decision. We inform them that 

the 11 distributions are not equally likely to be selected.8 As in the RISK treatment, each subject 

states WTAs. Here, we ask for two WTAs, one for each lottery. In addition, each subject states 

her belief about the selected probability distribution. The computer randomly decides whether 

subjects get paid according to the BDM procedure, or according to their stated beliefs (with 1/2 

probability each). The computer selects the probability for the higher payoff and, if the BDM 

procedure is payoff-relevant, one of the lotteries (L/R) is selected with 50% chance. As a next 

step of the BDM procedure, the computer draws a random amount from 0 to 30€. If the random 

amount is larger than or equal to the stated WTA for that lottery, then the subject’s payoff is 

equal to the randomly drawn amount. Otherwise, the lottery is played with the probability 

distribution selected by the computer.  

 

                                                           
8 For the sake of implementation, the random process generating probability distributions in lotteries played under 

ambiguity is based on 2019 weather data from Berlin. 
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3.2. Implementation details 

The design of the experiment was approved by the local GATE-Lab (Lyon) ethic committee. 

We ran 19 sessions (including the pilot session) with 12 participants each (maximal capacity 

during the COVID pandemic) at the Experimental Economics Laboratory of the Technische 

Universität Berlin, Germany, between September and October 2021.9,10 Participants were 

recruited through ORSEE (Greiner, 2015) and 95% of them were students from various 

disciplines – engineering (41.7%), economics (8.8%), and business administration (6.6%) 

representing the largest groups. The experiment was programmed using z-Tree (Fischbacher, 

2007). 

Participants were randomly seated in front of PCs. Throughout the sessions, they were not 

allowed to communicate with one another and could not see each other’s screens. All questions 

were answered in private.  

Only one of the four parts (risk, ambiguity, stag-hunt game, entry game) was chosen for final 

payoffs. The probability was 0.25 for each part. Within the selected part, the payoff was 

determined as specified in Section 3.1. This means that only one decision of a player was payoff 

relevant, but each decision could be the one. This procedure rules out incentives for hedging 

and provides the highest incentive to consider the uncertainty of the outcome associated with 

each decision. The average payoff was about 21.80€ (minimum 6.60€, maximum 34.80€) 

including the fixed show-up fee of 5€. Sessions lasted for around 70 minutes on average. 

Examples of instructions, questionnaires, and screens are given in Appendices A.1, A.2 and 

A.5. 

 

4. Theoretical framework 

Let us start our theory considerations by observing that any choice in a simultaneous-move 

game may be interpreted as a choice between lotteries whose outcomes depend on the choices 

of other players. Our 2x2 games involve the choice between a lottery L with payoff 20€ or 15€ 

and lottery R with payoff 5€ or 25€. Note that the probability of receiving 15€ after choosing 

L is the same as the probability of receiving 25€ when choosing R. It is the probability that the 

other player chooses R. In the stag-hunt game (Game 1), a player gets the higher payoff of her 

chosen lottery, if her partner chooses the same lottery. In the entry game (Game 2), a player 

gets the higher payoff, if her partner chooses the other lottery. 

The value of a lottery k for a subject i can be written as  

𝑊𝑖
𝑘(�̅�|𝜋𝑖) = 𝐸(𝑢𝑖(𝑥)|𝜋𝑖) + Δ𝑖

𝑘(�̅�|𝜋𝑖), 

                                                           
9 In the pre-results reviewed report, we planned to run sessions with a minimum of 14 participants at the GATE-

Lab, Lyon, France. This initial plan could not be implemented due to the pandemic conditions. 
10 The minimal sample size determined by the power analysis is N = 208. Our power calculations (GPower 

software, version 3.1) are based on the nonparametric two-sided Wilcoxon signed rank test. We assume normal 

parent distribution. We apply the following criteria. First, a test attains the statistical power of at least 0.8 (which 

is a common-place reference value in the literature) with the conventional threshold for rejecting a null hypothesis 

of 5%. Second, the minimal effect size (as measured by Cohen’s d) a test can pick up on is small (d = 0.2). The 

resulting actual power equals 0.801. Given our initial sample of N = 228 (i.e., prior to applying both the pre-

registered and the ex post data selection criteria, as explained in Section 5.1) and d = 0.2, the resulting statistical 

power is even higher and equals 0.836 at the 5% significance level. Conversely, with a reference minimal power 

of 0.8 (the actual one being 0.801), this sample size is enough to pick up on a treatment effect of magnitude d = 

0.191. 
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where 𝑢𝑖(𝑥) is subject i’s utility function, �̅� is the vector of potential monetary payoffs and 𝜋𝑖 

is the subject’s probability distribution over outcomes. For an expected-utility maximizer, 

Δ𝑖
𝑘(𝑥|. ) = 0 for all 𝑥. If we assume that subjects evaluate lotteries with exogenously given 

probabilities by expected utility, the attitude towards or against ambiguity or strategic 

uncertainty can be written as a deviation of the evaluation from expected utility, denoted by 

Δ𝑖
𝑘(�̅�|𝜋𝑖). A theory of ambiguity attitudes specifies this deviation.  

We propose to model ambiguity attitudes for binary lotteries and strategic-uncertainty attitudes 

for a 2x2 game by two parameters 𝛼𝑖
𝑘 and 𝛿𝑖

𝑘 such that the utility value that subject 𝑖 attaches 

to the possible outcomes from her own choice is  

𝑊𝑖
𝑘(𝑥1, 𝑥2, 𝜋𝑖) = (𝜋𝑖 + 𝛼𝑖

𝑘) 𝑢𝑖(𝑥1) + (1 − 𝜋𝑖 − 𝛼𝑖
𝑘) 𝑢𝑖(𝑥2) − 𝛿𝑖

𝑘,                      (1) 

where 𝑥1 ≥ 𝑥2 are the potential monetary payoffs and 𝜋𝑖 is the subjective probability for 

receiving 𝑥1. The parameter 𝛿𝑖
𝑘 may be interpreted as an aversion against strategic uncertainty 

if it is positive, or as a preference for strategic uncertainty if it is negative. The higher 𝛿𝑖
𝑘, the 

lower is the value of the lottery, in line with the interpretation of an increasing aversion against 

uncertainty. The parameter 𝛿𝑖
𝑘  affects the value of a lottery independent of the perceived risk 

that is associated with it. The second parameter, 𝛼𝑖
𝑘, establishes the weight that the subject puts 

on the higher outcome given her own choice. If 𝛼𝑖
𝑘 > 0, the subject puts a weight on the higher 

payoff that exceeds her subjective probability for this outcome. If 𝛼𝑖
𝑘 < 0, the subject puts a 

weight on the lower payoff that exceeds her subjective probability for this outcome. We may 

interpret this parameter as optimism, where 𝛼𝑖
𝑘 = 0 is the unemotional Bayesian view on the 

lottery, while subjects with 𝛼𝑖
𝑘 > 0 may be called optimists and subjects with 𝛼𝑖

𝑘 < 0 

pessimists. Optimism [pessimism] may arise from the excitement [fear] about the prospect of 

getting the high [low] amount when it is determined by another human playing strategically 

(strategic uncertainty) or by an unknown process (ambiguity). Note that the value of the lottery 

rises with increasing optimism. Thereby, our model allows for a clear interpretation of both 

parameters.  

The value of an ambiguous lottery or a game may be higher [lower] than the value of the highest 

[lowest] possible realization under certainty. From the standard economic perspective, it may 

seem odd that the value of an uncertain situation could be higher than the highest possible 

payoff or lower than the lowest one. However, this may reflect particular attitudes towards 

strategic interactions with other human players: a person may be generally uncomfortable with 

depending on other humans, or may derive utility from playing a game with somebody else on 

top of the utility generated by the monetary payoffs in this game. 

In our experiment, we also elicit the certainty equivalent of participating in the game, if the 

player’s chosen action is replaced by the opposing action. If the subject is optimistic about 

getting 𝑥1=25€ in the game with his chosen action, she must be pessimistic about receiving 

�̅�1=20€ under the replaced choice. Thus, for this counterfactual choice, the value of the implied 

lottery is    

�̅�𝑖
𝑘(�̅�1, �̅�2, 1 − 𝜋𝑖) = (𝜋𝑖 + 𝛼𝑖

𝑘) 𝑢𝑖(�̅�2) + (1 − 𝜋𝑖 − 𝛼𝑖
𝑘) 𝑢𝑖(�̅�1) − 𝛿𝑖

𝑘,                      (2) 

where �̅�1 > �̅�2 are the payoffs implied by the counterfactual choice. 

An alternative theory of ambiguity attitudes is the Choquet-expected utility with neo-additive 

capacities that specifies a value function (cf. Chateauneuf et al., 2007) 
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𝑉𝑖(�̅�, 𝜋𝑖) = ∑(1 − 𝛿𝑖) 𝜋𝑖(𝑥) 𝑢𝑖(𝑥)

𝑥

+ 𝛿𝑖 [𝛼𝑖 𝑢𝑖(𝑥𝑚𝑎𝑥) + (1 − 𝛼𝑖) 𝑢𝑖(𝑥𝑚𝑖𝑛)]. 

For a lottery with only two possible outcomes 𝑥1 ≥ 𝑥2,  

𝑉𝑖(𝑥1, 𝑥2, 𝜋𝑖) = (𝜋𝑖 + 𝛿𝑖(𝛼𝑖 − 𝜋𝑖))𝑢𝑖(𝑥1) + ((1 − 𝜋𝑖) − 𝛿𝑖(𝛼𝑖 − 𝜋𝑖))𝑢𝑖(𝑥2). 

= 𝐸(𝑢𝑖(𝑥)|𝜋𝑖) + 𝛿𝑖(𝛼𝑖 − 𝜋𝑖)[𝑢𝑖(𝑥1) − 𝑢𝑖(𝑥2)]. 

The interpretation, given in the literature (see e.g., Greiner (2016)), is that 𝛿𝑖 is the ambiguity 

of a player (1 − 𝛿𝑖 is her trust in her own beliefs) and 𝛼𝑖 is optimism. By this interpretation, an 

increasing ambiguity may raise or lower the value of the lottery, depending on whether 

optimism exceeds or stays below the subjective probability for the higher payoff. The 

interpretation of 𝛼𝑖 may also cause a problem. For 𝛿𝑖 > 0, the evaluation rises in 𝛼𝑖, but for 

𝛿𝑖 < 0, increasing “optimism” reduces the value of the lottery. Restricting 𝛼𝑖 and 𝛿𝑖 to be in 

[0,1] avoids this, but may be inconsistent with large deviations of the value of a lottery from 

the expected utility that it implies. Finally, the parameters are not identified from the evaluations 

of the two lotteries that a subject can choose in a 2x2 game, if she assigns 𝜋𝑖 = 0.5 to the other 

player’s choices. For these reasons, we use the model described by Equations (1) and (2) for 

further analysis.  

4.1. Identification of uncertainty attitudes 

For identification, we assume that  𝛼𝑖
𝑘 and 𝛿𝑖

𝑘 are the same for all lotteries with the same source 

of uncertainty. With the data from our experiment, we compare these parameters for three 

sources of uncertainty: we denote 𝑘 = 𝐴 in the AMBIGUITY treatment, 𝑘 = 𝑆 in the stag-hunt 

game, and 𝑘 = 𝐸 in the entry game. 

Utility function and risk aversion 

In order to estimate uncertainty attitudes, we assume that subjects have CRRA utility functions, 

𝑢𝑖(𝑥) = 𝑥1−𝑟𝑖/(1 − 𝑟𝑖) for 𝑟𝑖 ≠ 1 and 𝑢𝑖(𝑥) = ln (𝑥) for 𝑟𝑖 = 1, where  𝑟𝑖 is the Arrow-Pratt 

measure of relative risk aversion (RRA). We use the 22 stated WTAs in the RISK treatment to 

estimate 𝑟𝑖 for each subject i. If all 22 WTAs are equal to the expected monetary payments of 

the respective lotteries, we set 𝑟𝑖 = 0. For further details, see Section 5.3. 

Identification of parameters 

Let 𝜋𝑖 be a subject i’s probability to receive 𝑥1 in a binary lottery k with payoffs 𝑥1 > 𝑥2. Then, 

the subject’s WTA for an ambiguous lottery or for the chosen lottery in a game is given by the 

value 𝑊𝑖
𝑘(𝑥1, 𝑥2, 𝜋𝑖).  

Our 2x2 games involve the choice between a lottery L with payoff 20€ or 15€ and lottery R 

with payoff 5€ or 25€. In the stag-hunt game (Game 1), a player gets the higher payoff of his 

chosen lottery, if her partner choses the same lottery. In the entry game (Game 2), a player gets 

the higher payoff, if her partner choses the other lottery. Thus, in both games, we observe the 

values of two lotteries where the probability 𝜋𝑖 to win the higher payoff in the chosen lottery 

equals the probability of getting the lower payoff in the counterfactual lottery. In the stag-hunt 

game, 𝜋𝑖 is the subject’s probability that her partner chooses the same action. In the entry game, 

𝜋𝑖 is the subject’s probability that her partner chooses the opposite action.  
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Setting the utility of the stated WTA for the chosen strategy in game k equal to 𝑊𝑖
𝑘(𝑥1, 𝑥2, 𝜋𝑖) 

and the utility of the stated WTA for the opposing strategy in game k equal to 

�̅�𝑖
𝑘(�̅�1, �̅�2, 1 − 𝜋𝑖), while assuming a CRRA utility function with RRA 𝑟𝑖 as estimated from 

decision in the RISK treatment, yields two equations that identify 𝛼𝑖
𝑘 and 𝛿𝑖

𝑘.  

As we assumed that subjects evaluate lotteries as expected-utility maximizers, the WTA for a 

lottery with payoffs 20€ or 15€ and a probability p for the higher payoff should yield a utility 

that equals 𝐸𝑢𝑖(20,15|𝑝).  

If a subject chooses the strategy that leads to potential payoffs (𝑥1, 𝑥2) in a game with 𝑥1 > 𝑥2, 

and for a subjective probability 𝜋𝑖 of getting 𝑥1, the value of this game is given by Equation 

(1). Using this,  

𝑊𝑖
𝑘(𝑥1, 𝑥2, 𝜋𝑖) = (𝛼𝑖

𝑘 + 𝜋𝑖) 𝑢𝑖(𝑥1) + (1 − 𝛼𝑖
𝑘 − 𝜋𝑖) 𝑢𝑖(𝑥2) − 𝛿𝑖

𝑘      

                    = 𝐸𝑢𝑖(𝑥1, 𝑥2|𝜋𝑖) + 𝛼𝑖
𝑘 (𝑢𝑖(𝑥1) − 𝑢𝑖(𝑥2)) − 𝛿𝑖

𝑘, 

and replacing expected utility by utility from stated WTA in the risky lottery (𝑊𝑇𝐴𝑖
𝑅), we get11  

(𝑊𝑇𝐴𝑖
𝑘(𝑥1, 𝑥2, 𝜋𝑖))

1−𝑟𝑖

− (𝑊𝑇𝐴𝑖
𝑅(𝑥1, 𝑥2, 𝑝 = 𝜋𝑖))

1−𝑟𝑖

1 − 𝑟𝑖
= 𝛼𝑖

𝑘[𝑢𝑖(𝑥1) − 𝑢𝑖(𝑥2)] − 𝛿𝑖
𝑘     

⟺ 𝛿𝑖
𝑘 =  

(𝑊𝑇𝐴𝑖
𝑅(𝑥1, 𝑥2, 𝑝 = 𝜋𝑖))

1−𝑟𝑖

− (𝑊𝑇𝐴𝑖
𝑘(𝑥1, 𝑥2, 𝜋𝑖))

1−𝑟𝑖

+ 𝛼𝑖
𝑘[𝑥1

1−𝑟𝑖 − 𝑥2
1−𝑟𝑖]

1 − 𝑟𝑖
.  (3) 

For the lottery with the alternative payoffs (�̅�1, �̅�2), the probability of achieving the higher 

payoff is 1 − 𝜋𝑖. Thus,   

�̅�𝑖
𝑘(�̅�1, �̅�2, 1 − 𝜋𝑖) = (1 − 𝜋𝑖 − 𝛼𝑖

𝑘) 𝑢𝑖(�̅�1) + (𝜋𝑖 + 𝛼𝑖
𝑘) 𝑢𝑖(�̅�2) − 𝛿𝑖

𝑘                       

                  = 𝐸𝑢𝑖(�̅�1, �̅�2|1 − 𝜋𝑖) − 𝛼𝑖
𝑘 (𝑢𝑖(�̅�1) − 𝑢𝑖(�̅�2)) − 𝛿𝑖

𝑘.    

Replacing the value of the lottery by the utility of the certainty equivalent, 𝑊𝑇𝐴𝑖
𝑘, and EU by 

WTA under risk, we get: 

(𝑊𝑇𝐴𝑖
𝑘(�̅�1, �̅�2, 1 − 𝜋𝑖))

1−𝑟𝑖

− (𝑊𝑇𝐴𝑖
𝑅(�̅�1, �̅�2, 𝑝 = 1 − 𝜋𝑖))

1−𝑟𝑖

1 − 𝑟𝑖
 

= −𝛼𝑖
𝑘 [𝑢𝑖(�̅�1) − 𝑢𝑖(�̅�2)] − 𝛿𝑖

𝑘  

⟺ 𝛿𝑖
𝑘 

=
(𝑊𝑇𝐴𝑖

𝑅(�̅�1, �̅�2, 1 − 𝜋𝑖))
1−𝑟𝑖

− (𝑊𝑇𝐴𝑖
𝑘(�̅�1, �̅�2, 1 −  𝜋𝑖))

1−𝑟𝑖

− 𝛼𝑖
𝑘[�̅�1

1−𝑟𝑖 − �̅�2
1−𝑟𝑖]

1 − 𝑟𝑖
.   (4) 

Setting (3) equal to (4) yields  

(𝑊𝑇𝐴𝑖
𝑅(𝑥1, 𝑥2, 𝑝 = 𝜋𝑖))

1−𝑟𝑖

− (𝑊𝑇𝐴𝑖
𝑘(𝑥1, 𝑥2, 𝜋𝑖))

1−𝑟𝑖

+ 𝛼𝑖
𝑘[𝑥1

1−𝑟𝑖 − 𝑥2
1−𝑟𝑖]   

                                                           
11 Note that, alternatively, we could calculate the expected utility of this lottery by inserting monetary payments 

in the estimated CRRA utility function. We prefer the more direct comparison between stated WTAs, because this 

is less affected by assumptions on the utility function. 
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= (𝑊𝑇𝐴𝑖
𝑅(�̅�1, �̅�2, 1 − 𝜋𝑖))

1−𝑟𝑖

− (𝑊𝑇𝐴𝑖
𝑘(�̅�1, �̅�2, 1 −  𝜋𝑖))

1−𝑟𝑖

− 𝛼𝑖
𝑘[�̅�1

1−𝑟𝑖 − �̅�2
1−𝑟𝑖]  

⇔ (𝑊𝑇𝐴𝑖
𝑅(𝑥1, 𝑥2, 𝑝 = 𝜋𝑖))

1−𝑟𝑖

− (𝑊𝑇𝐴𝑖
𝑅(�̅�1, �̅�2, 1 − 𝜋𝑖))

1−𝑟𝑖

+ (𝑊𝑇𝐴𝑖
𝑘(�̅�1, �̅�2, 1 −  𝜋𝑖))

1−𝑟𝑖

− (𝑊𝑇𝐴𝑖
𝑘(𝑥1, 𝑥2, 𝜋𝑖))

1−𝑟𝐼

 

= −𝛼𝑖
𝑘[𝑥1

1−𝑟𝑖 + �̅�1
1−𝑟𝑖 − 𝑥2

1−𝑟𝑖 − �̅�2
1−𝑟𝑖] 

⇔ 𝛼𝑖
𝑘 =

𝐴

𝐵
   for 𝑘 =  𝑆, 𝐸,                                                                      (5) 

with  

𝐴 = (𝑊𝑇𝐴𝑖
𝑅(𝑥1, 𝑥2, 𝜋𝑖))

1−𝑟𝑖

− (𝑊𝑇𝐴𝑖
𝑅(�̅�1, �̅�2, 1 − 𝜋𝑖))

1−𝑟𝑖

+ (𝑊𝑇𝐴𝑖
𝑘(�̅�1, �̅�2, 1 −  𝜋𝑖))

1−𝑟𝑖

− (𝑊𝑇𝐴𝑖
𝑘(𝑥1, 𝑥2, 𝜋𝑖))

1−𝑟𝑖

 

and  

𝐵 = −[𝑥1
1−𝑟𝑖 + �̅�1

1−𝑟𝑖 − 𝑥2
1−𝑟𝑖 − �̅�2

1−𝑟𝑖] < 0   for k = S, E. 

For subjects with 𝑟𝑖 = 1, 𝐴 = ln 𝑊𝑇𝐴𝑖
𝑅(𝑥1, 𝑥2, 𝜋𝑖) − ln 𝑊𝑇𝐴𝑖

𝑅(�̅�1, �̅�2, 1 −  𝜋𝑖) +

ln 𝑊𝑇𝐴𝑖
𝑘(�̅�1, �̅�2, 1 − 𝜋𝑖) − ln 𝑊𝑇𝐴𝑖

𝑘(𝑥1, 𝑥2, 𝜋𝑖), 𝐵 = −[𝑙𝑛 𝑥1 + 𝑙𝑛 �̅�1 − 𝑙𝑛 𝑥2 − 𝑙𝑛 �̅�2], and 

𝛿𝑖
𝑘 = ln (𝑊𝑇𝐴𝑖

𝑅(𝑥1, 𝑥2, 𝑝 = 𝜋𝑖)) − ln (𝑊𝑇𝐴𝑖
𝑘(𝑥1, 𝑥2, 𝜋𝑖)) + 𝛼𝑖

𝑘[ln (𝑥1) − ln (𝑥2)].  

Note that (𝑥1, 𝑥2) = (20,15) ⇔ (�̅�1, �̅�2) = (25,5) and (𝑥1, 𝑥2) = (25,5) ⇔ (�̅�1, �̅�2) =

(20,15). In both games, if (𝑥1, 𝑥2) = (25,5), 𝜋𝑖 is the probability that the other player chooses 

R. If (𝑥1, 𝑥2) = (20,15), 𝜋𝑖 is the probability that the other player chooses L.   

Under ambiguity (k = A), we elicit the WTAs for two lotteries with payoffs (25,5) and (20,15) 

along with a subjective probability 𝜋𝑖 for receiving the higher payoff in both of these lotteries. 

Setting utility of stated WTAs equal to 𝑊𝑖
𝐴(25,5, 𝜋𝑖) and 𝑊𝑖

𝐴(20,15, 𝜋𝑖), respectively, 

identifies parameters (𝛼𝑖
𝐴, 𝛿𝑖

𝐴). To see this, define (𝑥1, 𝑥2) = (20,15) in Equation (3) and use 

the same equation also for (𝑥′1, 𝑥′2) = (25,5). Then, by setting the right-hand sides of these 

equations equal to each other, we get  

(𝑊𝑇𝐴𝑖
𝑅(20,15, 𝑝 = 𝜋𝑖))

1−𝑟𝑖

− (𝑊𝑇𝐴𝑖
𝐴(20,15, 𝜋𝑖))

1−𝑟𝑖

+ 𝛼𝑖
𝑘 [201−𝑟𝑖 − 151−𝑟𝑖]

= (𝑊𝑇𝐴𝑖
𝑅(25,5, 𝑝 = 𝜋𝑖))

1−𝑟𝑖

− (𝑊𝑇𝐴𝑖
𝐴(25,5, 𝜋𝑖))

1−𝑟𝑖

+ 𝛼𝑖
𝑘 [251−𝑟𝑖 − 51−𝑟𝑖] 

⇔ 𝛼𝑖
𝐴 =

𝐴′

𝐵′
 ,                                                                      (6) 

with  

𝐴′ = (𝑊𝑇𝐴𝑖
𝑅(20,15, 𝜋𝑖))

1−𝑟𝑖

− (𝑊𝑇𝐴𝑖
𝑅(25,5, 𝜋𝑖))

1−𝑟𝑖

+ (𝑊𝑇𝐴𝑖
𝐴(25,5, 𝜋𝑖))

1−𝑟𝑖

− (𝑊𝑇𝐴𝑖
𝐴(20,15, 𝜋𝑖))

1−𝑟𝑖

 

and  

𝐵′ = 251−𝑟𝑖 − 201−𝑟𝑖 + 151−𝑟𝑖 − 51−𝑟𝑖 > 0. 

Plugging the result of Equation (6) into one of the Equations (3) also yields 𝛿𝑖
𝐴. 
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For subjects with 𝑟𝑖 = 1, 𝐴′ = ln 𝑊𝑇𝐴𝑖
𝑅(20,15, 𝜋𝑖) − ln 𝑊𝑇𝐴𝑖

𝑅(25,5, 𝜋𝑖) +

ln 𝑊𝑇𝐴𝑖
𝐴(25,5, 𝜋𝑖) − ln 𝑊𝑇𝐴𝑖

𝐴(20,15, 𝜋𝑖), 𝐵′ = 𝑙𝑛25 − 𝑙𝑛20 + 𝑙𝑛15 − 𝑙𝑛 52, and  𝛿𝑖
𝑘 =

ln (𝑊𝑇𝐴𝑖
𝑅(𝑥1, 𝑥2, 𝑝 = 𝜋𝑖)) − ln (𝑊𝑇𝐴𝑖

𝑘(𝑥1, 𝑥2, 𝜋𝑖)) + 𝛼𝑖
𝑘[ln (𝑥1) − ln (𝑥2)]. 

These calculations show that both parameters are identified through comparing WTAs between 

treatments. By calculating our parameters from differences between WTAs, we avoid the 

possibility that any systematic bias stemming from the BDM mechanism affects our parameter 

estimates.  

4.2. Hypotheses 

Our goal is to find out whether the source of uncertainty affects uncertainty attitudes. Based on 

the theoretical model, our numerical predictions for the model parameters are given by Bayesian 

behavior: 

Hypothesis 1: There are no systematic attitudes towards or against ambiguity or strategic 

uncertainty. Parameters 𝛼𝑖
𝑘 and 𝛿𝑖

𝑘 are distributed around 0. 

Here, we test for each condition 𝑘 ∈  {𝐴, 𝑆, 𝐸} whether the parameters 𝛼𝑖
𝑘 and 𝛿𝑖

𝑘 from different 

subjects i are distributed around zero. As the literature generally found average subjects to be 

ambiguity averse, we expect that Hypothesis 1 will be rejected.  

Subjects are likely to differ in their uncertainty attitudes and our experiment is designed to 

capture how individual attitudes are affected by the source of uncertainty being another 

human’s action and by the nature of strategic interaction. Here, we exploit the within-subject 

design and use as null hypothesis: 

Hypothesis 2: Subjects do not make any distinction between the sources of uncertainty and 

between the considered strategic situation (strategic complementarity versus substitutability): 

𝛼𝑖
𝐴 = 𝛼𝑖

𝑆 = 𝛼𝑖
𝐸 and 𝛿𝑖

𝐴 = 𝛿𝑖
𝑆 = 𝛿𝑖

𝐸 .  

A positive (negative) 𝛿𝑖
𝑘 is interpreted as a general aversion against (preference for) ambiguity 

or strategic uncertainty. A positive (negative) 𝛼𝑖
𝑘 is interpreted as optimism (pessimism) for 

receiving the higher payoff under ambiguity or strategic uncertainty. 

 

5. Results 

This section outlines the main empirical results based on the pre-registered procedures of 

sample selection and data analysis. They can be summarized as follows. Subjects react to the 

presence of uncertainty (notwithstanding Hypothesis 1), but also make a systematic distinction 

between the different sources of uncertainty (notwithstanding Hypothesis 2). Importantly, the 

magnitude of that last effect depends on the strategic context. Regarding the two parameters of 

our structural model, we find that the majority of subjects exhibits pessimism [optimism] in the 

stag-hunt [entry] game while the median subject has neither a preference for nor an aversion 

against strategic uncertainty. 

5.1. Data selection 

We begin by applying the data selection criteria to the initial sample of 228 subjects. The 

elicitation of both WTAs, for the preferred and the non-preferred action, provides us with a 

consistency measure since it should be that WTApreferred ≥ WTAnot preferred. If a participant 
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violates this criterion such that her WTA for participating with her preferred action is lower 

than the WTA for the not preferred action in at least one of the games, we exclude this 

participant from our main data analysis. The reason is that such a reversal indicates a systematic 

misunderstanding of the BDM procedure that could affect all stated WTAs and data from these 

subjects might just introduce noise. For the same reason, we exclude subjects whose stated 

WTA for a lottery that pays the higher payoff with probability 1 is lower than the stated WTA 

for an otherwise equal lottery that pays the higher payoff with probability 0. These criteria were 

pre-specified. We also pre-specified a robustness check using the full sample.  

In 45 [63] cases we observe a violation of choice consistency in the stag-hunt [entry] game: the 

stated WTA for the preferred action is lower than the WTA for the not preferred one.12 19 

subjects violate our rationality criterion in the lotteries: the stated WTA for a lottery that surely 

pays a high payoff is lower than the stated WTA for an otherwise equal lottery that never pays 

a high payoff. Jointly put, these criteria turn out to be stringent.13 In total, there are 102 subjects 

to whom at least one of these exclusion criteria applies. We call the remaining 126 subjects the 

restricted sample.  

Ex post, after conducting the experiments, we detected that certain combinations of choices 

lead to extreme values of estimated relative risk aversion (beyond +/-100) and thereby also to 

estimated values for α and δ in astronomical dimensions. In total, there are 15 subjects with an 

estimated RRA outside [−100, +100], 7 in the restricted sample. We exclude them from the 

parametric analysis. 5 other subjects (1 from the restricted sample) have an estimated RRA >

1, but stated a WTA of 0 for at least one of the games or lotteries needed to calculate uncertainty 

parameters. For these subjects, some or all pairs (𝛼𝑖
𝑘, 𝛿𝑖

𝑘), k=A,S,E, cannot be calculated. So, 

we exclude these subjects from all analyses of uncertainty parameters.   

5.2. Comparison of certainty equivalents 

In the experiment, we elicit the WTAs for two lotteries with outcomes depending on the strategy 

of another player or on ambiguity simultaneously with subjective probabilities for the possible 

outcomes. As an initial descriptive step of our analyses, we can directly compare the WTA of 

a lottery in a game (where the outcome is determined by another player’s action) with the WTA 

of a lottery that yields the same payoffs with exogenously given probabilities that match the 

subjective probabilities in the game. Similarly, the WTA for an ambiguous lottery with 

unknown probabilities can be compared to the WTA of a lottery yielding the same payoffs with 

given probabilities that match the subject’s stated probabilities for the ambiguous lottery. 

Note that in theory, the WTA for a game is the higher of the two WTAs for the two possible 

actions. As a first step in analyzing uncertainty attitudes, we count the number of subjects whose 

WTA for a game or for an ambiguous situation is higher than, equal to or lower than the WTA 

for the analogous lottery played under risk. This informs us about the average preference for, 

or aversion against, a given source of uncertainty. Note that the size of these deviations may 

depend on payoffs associated with the chosen strategy, but also on the subjective probabilities. 

                                                           
12 For 5 subjects, the selected action in one of the games was not recorded due to a minor software glitch. One of 

them failed to comply with the inclusion criterion for lottery choices, the remaining 4 are included in the restricted 

sample. 
13 While lack of understanding of the BDM mechanism may partially account for deviations from expected utility, 

we also note that the BDM performs not worse than the alternative elicitation methods for certainty equivalents in 

terms of bias and noise (Hey et al., 2009). 
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Table 4 presents the results of this comparison separately for the two lotteries under ambiguity, 

for the lottery implied by the actually chosen action in each game, but also for the counterfactual 

lottery implied by “replacing” the subject’s actual choice with the alternative action. 

Table 4. Comparison of certainty equivalents 

 Ambiguity: k=A Stag hunt: k = S Entry: k = E 

(𝑥1, 𝑥2) (20,15) (25,5) chosen replaced chosen replaced 

𝑊𝑇𝐴𝑖
𝑘(𝑥1, 𝑥2, 𝜋𝑖) > 𝑊𝑇𝐴𝑖

𝑅(𝑥1, 𝑥2, 𝜋𝑖) 43 49 45 60 80 30 

𝑊𝑇𝐴𝑖
𝑘(𝑥1, 𝑥2, 𝜋𝑖) = 𝑊𝑇𝐴𝑖

𝑅(𝑥1, 𝑥2, 𝜋𝑖) 26 29 29 23 12 23 

𝑊𝑇𝐴𝑖
𝑘(𝑥1, 𝑥2, 𝜋𝑖) < 𝑊𝑇𝐴𝑖

𝑅(𝑥1, 𝑥2, 𝜋𝑖) 57 48 52 43 34 73 

Note. In the stag-hunt [entry] game, 81 [101] out of 126 subjects choose the action R.  

The WTAs under ambiguity and for the stag-hunt game are not significantly different from the 

WTAs under risk. A Wilcoxon signed rank test yields p-values above 0.2. For the entry game, 

however, we find that subjects have a higher WTA for the lottery implied by their own choice 

in the game than for the respective lottery with exogenously given probability (p-value < 0.001). 

The opposite effect occurs once we look at the WTA for the lottery implied by replacing the 

actual choice with the opposite action: it is lower than the WTA for the respective lottery under 

risk (p-value < 0.001). This indicates that the median subject tends to be optimistic about the 

behavior of her partner in the entry game. The weight a player puts on the payoff corresponding 

to her partner choosing a different action than her own exceeds her stated probability of that 

outcome. 

Direct comparisons between WTAs of different games or between a strategic game and an 

ambiguous situation could only be possible if a subject stated the same probability for getting 

the higher payoff in both contexts. Unfortunately, restricting analysis to these observations 

would leave us with just a few matched pairs and possibly introduce a selection bias. Thus, for 

further econometric analysis, we use strategic-uncertainty attitudes as characterized by the 

parameters 𝛼𝑖
𝑘 and 𝛿𝑖

𝑘 of our structural model. In order to identify these parameters, we need to 

estimate a utility function for each subject. 

5.3. Main results 

Our identification strategy relies on a two-step procedure. As a first step, we use the individual 

certainty equivalents (WTA) elicited in 22 lotteries to estimate individual parameter 𝑟𝑖 of the 

CRRA utility function. We adopt a parametric procedure from Hey et al. (2009). For a given 

lottery (𝑥1, 𝑥2, 𝜋𝑖), the observed 𝑊𝑇𝐴𝑖(𝑥1, 𝑥2, 𝜋𝑖) corresponds to the latent expected value 

𝐸𝑢𝑖(𝑥1, 𝑥2, 𝜋𝑖), but is also subject to an i.i.d. error 𝑒𝑖~𝑁(0, 𝑠𝑖
2): 𝑊𝑇𝐴𝑖(𝑥1, 𝑥2, 𝜋𝑖) =

𝑢𝑖
−1(𝐸𝑢𝑖(𝑥1, 𝑥2, 𝜋𝑖)) + 𝑒𝑖. For each individual 𝑖, the pair of parameters (𝑟𝑖, 𝑠𝑖) is estimated 

through standard maximum likelihood (ML) estimation.14 As a second step, the estimated 

                                                           
14 For 14 subjects (among which 6 appear in the restricted sample) the ML procedure cannot converge since their 

parameter r is unbounded and takes extreme values: it either tends to plus infinity or to minus infinity. For the sake 

of nonparametric tests, these subjects are assigned extreme realizations of r going beyond values observed in the 

remainder of the sample: either 200 or -200, respectively. In parametric analyses, we only consider cases where 

the estimated r ∈[-100; 100], which requires removing all the subjects mentioned above as well as another one 
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coefficient 𝑟�̂� is used to compute two individual parameters (𝛼𝑖
𝑘, 𝛿𝑖

𝑘) for each context of 

uncertainty 𝑘 = 𝐴, 𝑆, 𝐸 following Equations (3), (5), and (6). 

Accordingly, the top part of Table 5 summarizes the first-step risk attitudes and the second-step 

uncertainty attitude parameters, as estimated in the restricted sample. Most subjects are found 

to be either risk seeking or risk averse, both types of preferences emerging in similar 

proportions. Moving to the domain of uncertainty, we find that, in our benchmark AMBIGUITY 

condition, most subjects are either pessimistic (αA < 0) or optimistic (αA > 0), both of which 

again happen in equal proportions. In a similar vein, most subjects are found to exhibit either 

aversion against (δA > 0) or preference for (δA < 0) ambiguity. In purely descriptive terms, the 

parameter of uncertainty aversion is not significantly different from zero in any of the 

conditions. However, we observe that the median subject is pessimistic about the behavior of 

the other player in the stag-hunt game (αS < 0) and optimistic in the entry game (αE > 0).15  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Statistical evidence provided in the last column in Table 5 does not corroborate Hypothesis 1 

stating that across all conditions, both parameters are located at zero. The nonparametric sign 

test strongly rejects the nullity of the median of α in both games; the nullity of the median 

cannot be rejected at the 5% level for any other parameter.  

                                                           
with the estimated r of -112; this subject appears in both the restricted and the unrestricted sample. The resulting 

range of estimated values of r is (-33, 4) in a sample of 207 observations. 
15 Wilcoxon signed rank tests also reject 𝛼𝑆 = 0 and 𝛼𝐸 = 0 at the 1% level and across samples. Since the 

distribution of these parameters is asymmetric, we prefer to report the outcomes of a more conservative sign test 

which does not require the symmetry assumption. 

 Table 5. Summary of estimated uncertainty attitudes 

  Parameters   Median #N>0 #N=0 #N<0 Sign test 

Restricted sample     

�̂�  0 60 11 54 - 

�̂� 2.356 108 11 - - 

𝛼𝐴 0 53 14 58 0.704 

𝛼𝑆 -0.065 41 11 73 0.003 

𝛼𝐸 0.214 92 7 26 <0.001 

𝛿𝐴 0 58 14 53 0.704 

𝛿𝑆 0 51 12 62 0.347 

𝛿𝐸 -0.073 51 4 70 0.101 

  Unrestricted 

sample 
 

   
 

�̂�  -0.191 88 16 119 - 

�̂� 2.535 193 16 - - 

𝛼𝐴 -0.005 89 20 114 0.092 

𝛼𝑆 -0.133 72 11 140 <0.001 

𝛼𝐸 0.104 131 10 82 0.001 

𝛿𝐴 0 103 21 99 0.833 

𝛿𝑆 0 92 16 115 0.126 

𝛿𝐸 -0.018 96   6 121 0.103 

Note. Columns 3-5 summarize the absolute frequencies of estimated 

parameter values (as listed in column 1) being positive, negative, or null, 

respectively. The last column provides p-values from a sign test of nullity 

of the median value of the respective parameter. Top (bottom) part of the 

table: N=125, restricted sample (N=223, unrestricted sample). 
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Next, we provide a complementary parametric analysis using a Seemingly Unrelated 

Regression (SUR) estimation. For the 𝑖th subject, parameters 𝛼𝑖
𝑘 and 𝛿𝑖

𝑘 are assumed to depend 

on the experimental condition 𝑘 ∈  {𝐴, 𝑆, 𝐸} in the following way: 

𝛼𝑖
𝑘 =  𝑎0  +  𝑎𝑆  ×  1[𝑘 =  𝑆] +  𝑎𝐸  ×  1[𝑘 =  𝐸] +  𝑢𝑖

𝑘,                    (7) 

𝛿𝑖
𝑘 =  𝑑0  +  𝑑𝑆  ×  1[𝑘 =  S] +  𝑑E  ×  1[𝑘 =  𝐸] +  𝑣𝑖

𝑘 ,                   (8) 

where 1[𝑘 =  𝑋]  =  1 if a decision is made in condition 𝑋, and 1[𝑘 =  𝑋] =  0 otherwise. The 

AMBIGUITY condition A is set as the reference condition. Hence, E(𝛼𝑖
𝐴) = 𝑎0, 𝐸(𝛼𝑖

𝑆)  =  𝑎0  +

 𝑎𝑆, 𝐸(𝛼𝑖
𝐸)  =  𝑎0  + 𝑎𝐸 , and 𝐸(𝛿𝑖

𝐴) =  𝑑0, 𝐸(𝛿𝑖
𝑆)  =  𝑑0  + 𝑑𝑆, 𝐸(𝛿𝑖

𝐸)  =  𝑑0  +  𝑑𝐸. In 

each of the two equations, errors are clustered at the individual level due to the within-subject 

implementation of the experimental conditions.  

The main virtue (and relative advantage with respect to the nonparametric methods) of this 

approach is that it provides a one-size-fits-all framework for fitting our experimental data that 

fully accounts for the within-subject treatment variation and the presence of two distinct 

preference parameters, 𝛼𝑖
𝑘 and 𝛿𝑖

𝑘, that simultaneously arise as dependent variables. 

Furthermore, it allows us to go beyond single-parameter tests, and instead test for the joint 

hypothesis that a group of parameters has zero mean through a standard Wald test. It also allows 

us to test for order effects.16 However, the challenge here is to account for the presence of 

outliers arising for two reasons. First, extreme risk preferences can drive the estimated 

uncertainty parameters to astronomical values. Second, due to the cardinality of the value 

function in Equation (1), the parameter 𝛿𝑖
𝑘 is expressed in units of subjective utility. For both 

reasons, 𝛿𝑖
𝑘 can take extreme values, whether positive or negative. We tackle this issue in two 

ways. First, as explained above, parametric analyses consider only subjects whose estimated 

RRA lies in [−100, 100]. For this sample, we apply the negative logarithm transformation to 

𝛿𝑖
𝑘, i.e. we replace 𝛿𝑖

𝑘 in Equation (8) by 𝑠𝑖𝑔𝑛(𝛿𝑖
𝑘) log(1 + |𝛿𝑖

𝑘|) in order to de-emphasize 

extreme realizations. Second, we estimate the SUR without logarithmic transformation, by only 

looking at individuals whose estimated RRA lies in [-3; +3], a range that should be considered 

reasonable in the light of existing literature (see Charness et al., 2020). Applied to the restricted 

and unrestricted samples in turn, this procedure delivers four regression specifications that are 

reported in Table 6. Table 7 further summarizes additional parametric mean tests based on the 

estimated coefficients.  

  

                                                           
16 Order effects may arise since the order of S and E treatments is random, yet balanced across sessions. To check 

for the possible order effects, regression models (7) and (8) can be extended by including an indicator variable for 

the order of the experimental conditions along with its interactions with both independent treatment indicator 

variables. This specification allows us to compare outcomes across treatments for a given order (in analogy to 

comparisons made in models (7) and (8)). It also allows for a formal statistical test of order effects in the data 

through Chow test that we run simultaneously for both extended regressions to check whether the order-related 

coefficients are jointly insignificant. This exercise points to the lack of order effects at the conventional 5% 

significance level, and hence does not raise any indication of order effects. See Table A1 in Online Appendix A3 

for details. 
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Table 6. Uncertainty attitudes across treatments: parametric estimates from seemingly unrelated 

regressions 

Dep. variable: 𝛼𝑖
𝑘 𝛿𝑖

𝑘 𝛼𝑖
𝑘 𝛿𝑖

𝑘 𝛼𝑖
𝑘 𝛿𝑖

𝑘 𝛼𝑖
𝑘 𝛿𝑖

𝑘 

Specification (1)  (2)  (3) (4)  

Indep. Variable �̂� �̂� �̂� �̂� �̂� �̂� �̂� �̂� 

1[𝑘 = 𝑆]  -0.038 -1.194 -0.123* 946.12** 0.027 -1.957 -0.090 214.61 

 (0.078) (1.429) (0.065) (413.71) (0.125) (2.048) (0.101) (216.37) 

1[𝑘 = 𝐸]  0.347** -1.557 0.232** 672.49* 0.575** -2.353 0.385** 154.93 

 (0.154) (1.434) (0.108) (345.11) (0.259) (2.114) (0.173) (123.52) 

Constant -0.120*** 0.364 -0.107*** -819.18* -0.103** 0.789 -0.093* -162.32 

 (0.040) (0.853) (0.041) (435.00) (0.047) (1.251) (0.048) (106.58) 

Observations 

(clusters) 

624 

(208) 

561 

(187) 

354 

(118) 

321 

(107) 

Note. Standard errors are clustered at the subject level and reported in parentheses. 1[𝑘 = 𝑇] is a binary variable set to 

1 for condition T, and to 0 otherwise. In all models, we exclude cases with indefinite 𝛿𝑖
𝑘 as well as those with estimated 

ri outside the range [-100,100]. Specifications (1) and (3) use neglog transformation of 𝛿𝑖
𝑘. In specifications (2) and (4), 

we consider only subjects with an estimated ri in the range [-3,3]. Specifications (1) and (2) use the unrestricted sample, 

(3) and (4) the restricted sample. Significance levels: * p<0.1 ** p<0.05 *** p<0.01.  

 

Table 7. Results of mean testing across specifications 

Tests (1) (2) (3) (4) 

𝐸(𝛼𝑖
𝐴) = 0 0.003 0.009 0.030 0.053 

𝐸(𝛼𝑖
𝑆) = 0 0.031 <0.001 0.536 0.067 

𝐸(𝛼𝑖
𝐸) = 0 0.111 0.204 0.054 0.077 

𝐸(𝛿𝑖
𝐴) = 0 0.670 0.060 0.528 0.128 

𝐸(𝛿𝑖
𝑆) = 0 0.345 0.551 0.366 0.763 

𝐸(𝛿𝑖
𝐸) = 0 0.176 0.389 0.242 0.949 

𝐸(𝛼𝑖
𝐴) = 𝐸(𝛼𝑖

𝐸) = 𝐸(𝛼𝑖
𝑆) 0.016 <0.001 0.055 0.001 

𝐸(𝛿𝑖
𝐴) = 𝐸(𝛿𝑖

𝐸) = 𝐸(𝛿𝑖
𝑆) 0.283 0.075 0.404 0.443 

𝐸(𝛼𝑖
𝐴) = 𝐸(𝛼𝑖

𝐸) = 𝐸(𝛼𝑖
𝑆) = 0 0.001 <0.001 0.045 0.001 

𝐸(𝛿𝑖
𝐴) = 𝐸(𝛿𝑖

𝐸) = 𝐸(𝛿𝑖
𝑆) = 0 0.401 0.151 0.580 0.375 

Nullity of all parameters  0.001 <0.001 0.026 0.003 

Note. p-values corresponding to the stated mean test in column 1 are based on the 

coefficient estimates from the four specifications reported in Table 6. Respective samples 

contain 208, 187, 118 and 107 subjects for specifications (1), (2), (3) and (4).  

Overall, results reported in Tables 5 (nonparametric median tests) and 7 (parametric mean tests) 

lead us to reject Hypothesis 1 on the absence of attitudes towards uncertainty.17 These attitudes 

                                                           
17 Strictly speaking, joint tests reported at the bottom of Table 7 constitute the target testbed for Hypothesis 1, 

although it should also be noted that they remain mute on the precise reasons (i.e., which parameters are non-null) 
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strongly vary across contexts. The nonparametric tests (Table 5) indicate that the median of 𝛼𝑖
𝑆 

is negative while the median of 𝛼𝑖
𝐸 is positive. The parametric tests (Table 7) indicate that the 

mean of 𝛼𝑖
𝐴 differs from zero, while we cannot reject (at p=5%) that the means of 𝛼𝑖

𝐸 and 𝛼𝑖
𝑆 

are zero. Note, however, that the estimated values of 𝛼𝑖
𝑘 and 𝛿𝑖

𝑘 are not normally distributed. 

The p-values from the Shapiro-Wilk W test are all below 0.001. Thus, the main empirical 

rationale for rejecting Hypothesis 1 comes from the rejection of the joint nullity of all 

parameters, from pessimism by the median subject in the stag-hunt game and optimism by the 

median subject in the entry game. The estimates for the AMBIGUITY condition alone would not 

be sufficient for rejecting Hypothesis 1, because the median of 𝛼𝑖
𝐴 equals zero (Table 5). The 

nullity of parameter 𝛿𝑖
𝑘, in turn, comes as a persistent empirical finding across all tests and all 

treatments.  

Result 1 – We document systematic attitudes toward uncertainty. Parameters 𝛼𝑖
𝑘 are not 

distributed around 0 under strategic uncertainty pointing to pessimism regarding the behavior 

of the other player under strategic complementarity, and to optimism under strategic 

substitutability. Beside this, we do not find a systematic preference for or aversion against 

strategic uncertainty.  

Building on this result, we now turn to the formal comparisons of α and δ between the three 

experimental conditions of uncertainty (ambiguity, stag-hunt, and entry game) and test 

Hypothesis 2. Table 8 summarizes pairwise median comparisons based on the Wilcoxon signed 

rank test, as estimated on either the restricted or the unrestricted sample. Once again, the general 

finding goes against our initial hypothesis: we observe more optimism in the entry game than 

in the stag-hunt game or in the benchmark AMBIGUITY condition.18 Figure 1 provides additional 

visual support of this result: the cumulative distribution function of α in the entry game first-

order stochastically dominates the remaining ones, while not such differences arise for δ. 

 Table 8. Nonparametric comparisons of uncertainty 

attitudes across treatments 

Sample: Restricted (N=125) Unrestricted (N=223) 

Comparison/Parameter 𝛼𝑖
𝑘 𝛿𝑖

𝑘 𝛼𝑖
𝑘 𝛿𝑖

𝑘 

Ambiguity - Stag hunt 0.226 0.478 0.021 0.571 

Ambiguity – Entry <0.001 0.407 <0.001 0.893 

Stag hunt – Entry <0.001 0.671 <0.001 0.410 

Note. Columns 2-5 provide p-values from two-sided Wilcoxon signed rank tests. 

  

                                                           
for the potential rejection. From this perspective, single-parameter tests reported in Table 5 and the first six lines 

of Table 7 provide complementary information. 
18 Echoing Footnote 14, one caveat here is that the symmetry assumption required by Wilcoxon signed rank test 

may not hold in our data. An alternative nonparametric sign test yields the same results with one exception: 𝛼𝑖
𝑘 is 

significantly different between the stag-hunt game and the AMBIGUITY condition (see Online Appendix A.3 for 

details). 
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Figure 1. Cumulative density functions of uncertainty attitude parameters across conditions 

 

Note. Data from the restricted sample trimmed to �̂� ∈ [−3,3] (N=107). The x axis in second graph contains neglog 

transformation of  𝛿𝑖
𝑘: 𝑠𝑖𝑔𝑛(𝛿𝑖

𝑘) log(1 + |𝛿𝑖
𝑘|) to account for a wide range of values taken by this variable. 

 

Parametric estimates presented in Table 6 point to similar conclusions: the entry game induces 

significantly stronger optimism as compared to both AMBIGUITY and the stag-hunt game (p < 

0.05 in all comparisons).19 A parametric comparison of δ across treatments does not yield 

significant results at the 5% level.  

Result 2 – Subjects distinguish between the different sources of uncertainty. Uncertainty coming 

from interaction under strategic substitutability gives rise to more optimism as compared to 

both ambiguity and interaction under strategic complementarity. Strategic complementarity 

does not induce significant changes in attitudes towards uncertainty as compared to ambiguity. 

We do not find significant and systematic differences across the three treatments in terms of 

preferences towards the source of uncertainty.  

In Online Appendix A4, we provide additional analyses on the individual underpinnings of 

attitudes towards uncertainty based on the individual characteristics described in our pre-results 

reviewed report. We do not find any systematic association of individual characteristics with 

the six parameters of interest. 

 

6. Conclusion 

We have developed a method for measuring strategic-uncertainty attitudes and distinguishing 

them from risk and ambiguity attitudes. We elicit certainty equivalents of participating in two 

strategic 2x2 games (stag-hunt and market-entry games) as well as certainty equivalents of 

related lotteries that yield the same possible payoffs with exogenously given probabilities (risk) 

and lotteries with unknown probabilities (ambiguity). We use this information to identify for 

each game and for the ambiguous environment two parameters of a structural model of 

uncertainty attitudes. The parameters of this model capture subject-specific uncertainty 

aversion and optimism regarding the subject’s subjective probability for the desired outcome. 

We then test whether there are significant differences in the distribution of uncertainty attitudes 

                                                           
19 These comparisons require testing for the equality of 𝐸(𝛼𝑖

𝐸) with 𝐸(𝛼𝑖
𝐴) and 𝐸(𝛼𝑖

𝑆). 
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between games with strategic complements, games with strategic substitutes, and ambiguous 

lotteries.  

We find systematic attitudes towards uncertainty that vary across contexts. While there is no 

evidence for a preference for, nor for an aversion against, ambiguity or strategic uncertainty (in 

the sense of a fixed effect of the source of uncertainty on utility), the median subject seems to 

be pessimistic about the behavior of the other player in the stag-hunt game, and optimistic in 

the entry game, where optimism/pessimism are proportional to the difference between the 

utility expressed by stated WTAs in a given game and the subjective expected utility derived 

from the stated probability for the other player’s choice.  

In the entry game, optimism means that the median subject’s evaluation of the game is shifted 

from her expected utility in direction of the higher payoff that arises if the other player chooses 

the action opposing her own. In the stag-hunt game, the median subject’s evaluation is shifted 

from her expected utility towards the lower payoff. In stag hunt, the lower payoff arises if both 

players choose opposing actions. Thus, the median subject evaluates both games with an extra 

weight on the other player choosing the action opposed to her own.  

Our results also show that the entry game stands out, because the distribution of optimism in 

the entry game stochastically dominates the distribution of optimism in stag-hunt and ambiguity 

treatments. This reflects the results by Nagel et al. (2018) that indicate a higher degree of 

strategic uncertainty and higher levels of reasoning in entry games than in stag-hunt games and 

lotteries.  

Stag-hunt and entry games differ in the reasoning process leading to a decision. If a player has 

an initial preference for one action, say L, and considers what she should do had the other player 

also chosen L, then her initial preference is confirmed in the stag-hunt game. If her partner 

reasons in the same way, it is optimal for both to choose L. In the entry game, however, if the 

other player thinks like her and chooses L, then she should choose action R instead; however, 

if the other player follows the same reasoning as her, then she should switch back to L. This 

inconclusive reasoning process may be the underlying reason for higher brain activity in Nagel 

et al. (2018) and for the deviation between the stated value (WTA) of a game and its subjective 

expected utility. Eventually, the extra weight associated with an opposing action expressed by 

optimism in entry and pessimism in stag-hunt games is a precaution against the other player 

applying a different reasoning process leading to a different action.  

Our findings further complement the literature on the choice/preference relationship in games. 

For instance, Clark and Chew (2015) compare choices in a coordination game with strategic 

complementarities when the opponent is another human or a die in presence of a safe opt-out 

option. Their findings indicate that the source of uncertainty does not significantly alter choices 

in this game.20 In another related experiment, Calford (2020) finds that uncertainty aversion 

measured with a game can account for choices in another game. Our results are consistent with 

the literature finding source-dependence in uncertainty attitudes (e.g., Abdellaoui et al., 2011; 

Clark and Chew, 2015). We add to this literature by developing a general method for identifying 

and comparing attitudes towards strategic uncertainty. We focus on attitude measurement in 

two prototypical games, but the method can be easily applied to other settings.   

                                                           
20 However, they find indicative evidence for the role of source of uncertainty in another game (i.e., matching 

pennies) relative to coordination game. Their accompanying evidence from neuroimaging data favor ambiguity 

attitudes over social preferences in explaining these results. 
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Finally, our empirical evidence highlights the general importance of individual probability 

distortion (rather than a domain-specific utility function) for understanding decision-making 

under uncertainty. This finding corroborates some of the previous research on modelling 

uncertainty in individual (i.e., non-strategic) choices (see, e.g., Abdellaoui et al., 2011; Attema 

et al. 2013) and further extends it by showing that the relative importance of probability 

weighting also applies to strategic contexts. 
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ONLINE APPENDIX: SUPPLEMENTARY MATERIAL 

A1. Instructions 

Whether Game 1 or 2 is played first is randomly chosen by the computer. Here we only present 

instructions where Game 1 is played first.  

Welcome! 

You are about to take part in an economic experiment. You are not allowed to talk to other 

participants during the experiment.  If you have a cell phone, please switch it off. If you have a 

question at any time, please raise your hand and someone will come to help you. Please do not 

ask your question aloud. If the question is relevant for all participants, we will repeat it and 

answer it aloud. If you violate these rules, we must exclude you from the experiment and from 

payment. 

All the information you provide, the decisions you make, as well as the amount of your gains 

from this experiment will remain strictly confidential and anonymous. 

Participation in this experiment will earn you money. Your earnings will depend on your 

decisions and may also be affected by the decisions made by others.  

The experiment consists of five parts. You will receive specific instructions for each part as 

the experiment goes on. At the end of the experiment, only one part out of Parts 1 to 4 will be 

chosen at random to determine your final payoff for the experiment, where each of these four 

parts has the same chance to be randomly drawn. Within each part, you make several decisions. 

If a part is randomly chosen for payment, one of those decisions will be drawn for payment by 

another random mechanism of the computer, where each decision has the same chance to be 

randomly drawn. Hence, only one of your decisions will affect your final payoff, but it could 

be anyone of your decisions. For showing up in time, you additionally obtain 5 Euros. 

The fifth part does not offer you the chance to earn money. 

Specific Instructions for Part 1 

In this part of the experiment, you will face 22 lotteries. 11 of them pay either 15 or 20 Euros. 

The others pay either 5 or 25 Euros. For both payoff types, the probability to get the higher of 

the two possible payoffs varies from 0 to 100% in steps of 10%.  

For each of the 22 lotteries, we ask you the following question: 

• Which amount (in Euro) would you prefer to receive with certainty instead of letting

the lottery determine your payoff?
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You need to enter your answers for these questions in the columns “Opt-out value for lottery 

that pays either 15 or 20 Euros” and “Opt-out value for lottery that pays either 5 or 25 Euros”, 

respectively. You can state any value from 0 to 30 Euros, with up to two decimals. Your 

answers to these questions will determine your candidate payoff for this part of the experiment 

with the following two-step procedure: 

If this part is selected for payoff, the computer will randomly select one of the 22 lotteries. 

Second, the computer will randomly draw an amount from 0.00 to 30.00 Euros with two 

decimals (each value in the interval is equally likely). 

- If the randomly drawn amount is larger than or equal to your stated “Opt-out value” for 

the selected lottery, your payoff is the amount drawn by the computer. 

- If the amount drawn by the computer is smaller than your stated “Opt-out value” for the 

selected lottery, your payoff will be determined by the rules of this lottery. This means, 

you will get the higher of the two possible payoffs with the probability p stated in the 

left column. You will get the lower of the two possible payoffs with the remaining 

probability 1 – p.  

 

Example: 

- Suppose that the computer selects the lottery that pays either 15 or 20 Euros with a 

probability of receiving the higher payoff p = 90%. Suppose that your stated “Opt-out 

value” for this lottery is equal to 17.50. 

If the amount drawn by the computer is at least 17.50, you will receive this amount. So, if 

the drawn amount is 26.09, you receive 26.09 Euros. 

If the number drawn by the computer is smaller than your opt-out-value, say 9.79, your 

payoff for this part is determined by the selected lottery. Here, you will receive 20 Euros 

with probability p = 90%. With probability 1 – p = 10%, you will receive 15 Euros. 

 

You will see those 22 lotteries listed on your screen as described in the Table below. Once you 

state both of your “Opt-out values” for each of the 22 lotteries given in the Table below, you 

need to confirm these answers by clicking on the “CONFIRM” button. You can change these 

“Opt-out values” as long as you have not confirmed them. 
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22 lotteries in Part 1 

Probability with 

which the 

computer selects 

the higher payoff 

Opt-out values  

for lottery that 

pays either 15 or 

20 Euros 

Opt-out values  

for lottery that 

pays either 5 or 25 

Euros 

0%   

10%   

20%   

30%   

40%   

50%   

60%   

70%   

80%   

90%   

100%   

 

Before beginning the actual Part 1, you will perform the same task with five different lotteries. 

This phase is for practice purposes and will not influence your payoff. You will also receive 

feedback about the random selections of the computer in this practice round and about the 

consequence of the two-step procedure using your stated opt-out values. Note that in the real 

experiment, you will not be informed about these outcomes before the end of the experiment. 

 

Specific Instructions for Part 2 

In this part of the experiment, you will face 2 lotteries. One of them pays either 15 or 20 Euros. 

The other pays either 5 or 25 Euros. Note that these are the same payoffs offered by the lotteries 

as in the previous part. But now, you will not be informed about the probability with which the 

computer chooses the higher payoff.  

The computer is programmed in such a way, that the probability with which the higher payoff 

is paid is one of the probabilities stated in Part 1, i.e.: 0, 10%, 20%, …, 100%. The computer 

selects this probability before you submit your decision for this part. Each of these 11 

probabilities might be the one applied to the lotteries in this part, but they are not equally likely. 

This means, some probabilities are more likely to be drawn than others. However, you will not 

receive any further information about the precise random mechanism. 
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For each of the two lotteries, we ask you the following question.  

• Which amount (in Euro) would you prefer to receive with certainty instead of letting 

the lottery determine your payoff? 

You need to enter your answers for these questions in the boxes “Opt-out value for lottery that 

pays either 15 or 20 Euros” and “Opt-out value for lottery that pays either 5 or 25 Euros”, 

respectively. You can state any value from 0.00 to 30.00 Euros, with up to two decimals. Your 

answers to these questions will determine your payoff for this part of the experiment with the 

following two-step procedure: 

If this part is selected for payoffs, the computer will randomly select one of the two lotteries. 

Second, the computer will randomly draw an amount from 0.00 to 30.00 (each amount in the 

interval is equally likely). 

- If the randomly drawn amount is larger than or equal to your stated “Opt-out value” for 

the selected lottery, your payoff is the amount drawn by the computer. 

- If the amount drawn by the computer is smaller than your stated “Opt-out value” for the 

selected lottery, your payoff will be determined by the rules of the chosen lottery. This 

means, you will get either of the two possible payoffs 15 or 20 Euros if the lottery that 

pays either 15 or 20 is selected and 5 or 25 Euros if the lottery that pays either 5 or 25 

is selected.  

Once you stated the two “Opt-out values”, we will ask you about your guess how likely it is 

that the computer selects the higher payoff. We are asking your guess for the following 

question:  

• Out of 10 draws, how many times does the computer select the higher payoff? 

If your guess exactly matches the true number of draws that the computer selects the higher 

payoff, your payoff from this decision will be 20 Euros. If your guess is not exactly accurate, 

then you may receive 20 or 10 Euros. The likelihood to receive the high payoff (20 €) is higher, 

the closer your guess is to the expected number of draws. This means the more accurate your 

guess is, the higher your payoff from this decision will be. You can look up the precise 

mechanism rewarding your stated beliefs by clicking on the button “more information.” The 

mechanism makes sure that it is in your best interest to state your true belief about the expected 

number of draws.21 

  

                                                           
21 The computer interface contains a button opening a pop-up window with specific description of this procedure: 

If this decision is selected for final payment, your gain will be determined according to the following procedure. 

First, the computer calculates DIFF: the difference between your answer and the correct answer, and then 

computes its square value: DIFF2=DIFF*DIFF.  Second, the computer randomly draws an integer number 

between 0 and 100 (each realization being equally likely). 

 

If the value of DIFF2 is below that random integer, your payoff equals 20 euros; otherwise, your payoff equals 10 

euros. 
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Summary and Payoff Procedure for Part 2: 

In this part of the experiment, you will first state your “Opt-out values” for the two lotteries. 

Second, you will state your guess about the likelihood that the computer selects the higher 

payoff.  

A random mechanism will decide how your candidate payoff for this part of the experiment 

will be determined. 2 out of 3 times, it will be determined based on the two-step procedure 

which uses your stated “Opt-out values” as described in Part 1. 1 out of 3 times, it will be 

determined based on the accuracy of your stated guess. 

 

 

A1.3. STRATEGICUNCERTAINTY treatment 

 

Specific Instructions for Part 3 

 

In this part, you are randomly matched with another participant in this session. We will never 

inform you about the identity of this other participant. You and this other participant will each 

choose between two Actions L and R. 

 

The payoffs (in Euro) for you and the other participant are presented in the Table below: in each 

cell, the first amount is your payoff, and the second amount is the other participant’s payoff. 

These payoffs can be summarized as follows: 

− If you and the participant you are matched with both choose L, you both receive 20 Euros; 

− If you choose L and the participant you are matched with chooses R, then you receive 15 

Euros and the other participant receives 5 Euros; 

− If you and the participant you are matched with both choose R, you both receive 25 Euros; 

− If you choose R and the participant you are matched with chooses L, then you receive 5 

Euros and the other participant receives 15 Euros. 

 

Decision situation in Part 3 and associated payoffs in Euro. 

 

 

Your 

decision 

 The other participant’s 

decision 

 L R 

L 20 €, 20 € 15 €, 5 € 

R 5 €, 15 € 25 €, 25 € 

First, you and the other participant will decide between Actions L and R. We call this 

“Decision 1”. 
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If this part is selected for payoffs, with 1/3 probability, your payoff as well as the other 

participant’s payoff are determined by your and the other participant’s Decision 1 as described 

above.  

Once you made your Decision 1 (and before payoffs are determined), we ask you to state two 

“Opt-out values” similar to the ones in Parts 1 and 2. The precise questions are the following:  

• If the computer replaces your decision with Action L, which amount (in Euro) would 

you prefer to receive with certainty instead of continuing with Action L? 

• If the computer replaces your decision with Action R, which amount (in Euro) would 

you prefer to receive with certainty instead of continuing with Action R? 

Just as in Parts 1 and 2, you need to state an amount from 0.00 to 30.00 Euros for both 

questions above. You need to enter your answers for these questions in the columns “Opt-out 

value for Action L” and “Opt-out value for Action R”, respectively. You can state any value 

from 0.00 to 30.00 Euros, up to two decimals. Your answers to these questions will determine 

your payoff for this part of the experiment with the following two-step procedure: If Part 3 is 

selected for payoffs, with 1/3 probability, your payoff will be determined based on the two-step 

procedure which uses your stated “Opt-out values”. In this case, the computer will randomly 

select one of the two actions L or R for you. Second, the computer will randomly draw an 

amount from 0.00 to 30.00 Euros (each amount in the interval is equally likely). 

- If the randomly drawn amount is larger than or equal to your stated “Opt-out value” for 

the action selected by the computer, your payoff is the amount drawn by the computer. 

- If the amount drawn by the computer is smaller than your stated “Opt-out value” for the 

action selected by the computer, your payoff will be determined by this action and the 

action chosen in “Decision 1” by the participant you are matched with.  

Example: Suppose the computer replaces your action by R and draws the amount 21.24. If your 

opt-out value for Action R is smaller than 21.24, you receive 21.24 Euros. If your opt-out value 

is larger, your payoff depends on the other participant’s Decision 1. If the other participant has 

chosen L, you receive 5 Euros. If the other participant has chosen R, you receive 25 Euros.  

 

Once you stated the two “Opt-out values”, we will ask you about your guess how likely it is 

that the other participants in this room choose Action R. We are asking your guess for the 

following question: 

 

• How many of the other 10 participants in this session choose Action R? 

 

The payoff for your guess will be determined in the same way as in Part 2.  

If your guess exactly matches the true number of choices for Action R, your payoff from this 

decision will be 20 Euros. If your guess is not exactly accurate, then you may receive 20 or 10 

Euros. The likelihood to receive the high payoff (20 €) is higher, the closer your guess is to the 

expected number of draws. This means the more accurate your guess is, the higher your payoff 

from this decision will be. You can look up the precise mechanism rewarding your stated beliefs 
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by clicking on the button “more information.” The mechanism makes sure that it is in your 

interest to state your true belief about the expected number of draws. 

 

Finally, you need to confirm your decisions by clicking on the “CONFIRM” button. You can 

change your decisions as long as you have not confirmed them. 

 

Summary and Payoff Procedure for Part 3: 

In this part of the experiment, you will answer four questions. First, you will state your 

preferred action (either L or R) for Decision 1. Second, you will state the two “Opt-out values” 

in case the computer replaces your decision by L or R. Third, you will state your guess on how 

many out of 10 randomly drawn other participants would choose Action R as their preferred 

action. 

 

Another random mechanism will decide how your candidate payoff for this part of the 

experiment will be determined. 1 out of 3 times, it will be determined based on yours and the 

other participant’s preferred action. 1 out of 3 times, it will be determined based on the two-

step procedure that uses your stated “Opt-out values”. 1 out of 3 times, it will be determined 

based on the accuracy of your stated guess. 

 

 

Specific Instructions for Part 4 

 

In Part 4, you will make exactly the same decisions as in Part 3. You are matched with another 

participant (possibly different from Part 3). The only difference compared to Part 3 is in the 

payoffs that you and the other participant receive depending on your choices between Action L 

and Action R. 

 

The payoffs (in Euro) for you and the other participant are presented in the table below: in each 

cell, the first amount is your payoff, and the second amount is the other participant’s payoff. 

These payoffs can be summarized as follows: 

− If you and the participant you are matched with both choose L, you both receive 5 Euros; 

− If you choose L and the participant you are matched with chooses R, then you receive 25 

Euros and the other participant receives 20 Euros; 

− If you and the participant you are matched with both choose R, you both receive 15 Euros; 

− If you choose R and the participant you are matched with chooses L, then you receive 20 

Euros and the other participant receives 25 Euros. 
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Decision situation in Part 4 and associated payoffs. 

 

 

Your 

decision 

 The other participant’s 

decision 

 L R 

L 5 €, 5 € 25 €, 20 € 

R 20 €, 25 € 15 €, 15 € 

 

Summary and Payoff Procedure: 

You will answer the same four questions as in Part 3 and your candidate payoff for this part of 

the experiment will be determined based on the same mechanism. 

 

A1.4. COMPLETION AND QUESTIONNAIRES 

You have completed the first four parts of the experiment. In each part, the payoff resulting 

from one of your decisions is chosen as the candidate payoff for that part of the experiment. 

One of these four candidate payoffs will be selected as your final payoff by a random 

mechanism (each candidate payoff is equally likely to be your final payoff). 

Before announcing your final payoff, we ask you to answer a series of questions (Part 5). You 

will answer these questions using the interface on your computer screen. Please follow the 

specific instructions on your screen to answer these questions. 
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A2. Example of Comprehension quiz for the STRATEGICUNCERTAINTY treatment 

(inserted on screens before Parts 3 and 4; information will be adapted to the games used in the 

respective parts) 

 

Before making your decisions for Part 3, please answer the following questions: 

 

1. You will interact with another, randomly matched, participant; 

- True 

- False 

Answer: True 

 

 

2. In the decision situation of Part 3, if you choose L and the other participant chooses R, 

your associated payoff is 

- 5 € 

- 15 € 

- 20 € 

- 25 € 

Answer (Game 1): 15 € 

Answer (Game 2): 25 € 

 

3. In the decision situation of Part 3, if you choose R and the other participant chooses L, 

your associated payoff is 

- 5 € 

- 15 € 

- 20 € 

- 25 € 

Answer (Game 1): 5 € 

Answer (Game 2): 20 € 
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A3. Additional tables and figures 

Table A1. Seemingly unrelated regressions with treatment order effects 

Dep. variable: 𝛼𝑖
𝑘 𝛿𝑖

𝑘 𝛼𝑖
𝑘 𝛿𝑖

𝑘 𝛼𝑖
𝑘 𝛿𝑖

𝑘 𝛼𝑖
𝑘 𝛿𝑖

𝑘 

Sample: (1)  (2)  (3) (4)  

Indep. Variable �̂� �̂� �̂� �̂� �̂� �̂� �̂� �̂� 
1[𝑘 = 𝑆] .031 -.661 -.087 880.34* .113 -2.089 -.048 88.012 

 (.099) (1.190) (.057) (531.73) (.146) (1.681) (.067) (79.483) 

1[𝑘 = 𝐸] .363** -.623 .349** 742.04 .539** -1.850 .541** 22.871 

 (.151) (1.190) (.147) (533.36) (.228) (1.707) (.218) (27.070) 

𝑆𝑡𝑎𝑔𝐹𝑖𝑟𝑠𝑡 -.014 .730 -.020 663.03 -.093 -.429 -.097 11.172 

 (.079) (1.861) (.082) (766.11) (.099) (2.892) (.100) (198.11)  
𝑆𝑡𝑎𝑔𝐹𝑖𝑟𝑠𝑡 ∗ 1[𝑘 = 𝑆] -.158 -1.216 -.086 147.57 -.211 .324 -.110 330.39 

 (.159) (3.120) (.148) (845.60) (.266) (4.707) (.250) (554.20) 

𝑆𝑡𝑎𝑔𝐹𝑖𝑟𝑠𝑡 ∗ 1[𝑘 = 𝐸] -.037 -2.136 -.284 -168.900 .089 -1.236 -.406 344.64 

 (.329) (3.129) (.215) (637.31) (.591) (4.871) (.354) (317.72) 

Constant -.114** .045 -.099* -1092.19 -.064 .964 -.056 -166.60 
 (.055) (.718) (.056) (710.73) (.057) (.984) (.059) (154.77) 

Observations  

(clusters) 
624 

(208) 

561 

(187) 

354 

(118) 

321 

(107) 

Chow test 0.702 0.448 0.466 0.232 0.552 0.483 0.317 0.493 

Joint Chow test 0.627 0.269 0.483 0.299 

Note. 𝑆𝑡𝑎𝑔𝐹𝑖𝑟𝑠𝑡 is a binary variable set to 1 if the stag-hunt game is played before the entry game, and to 0 otherwise. 

1[𝑘 = 𝑇] is a binary variable set to 1 for condition T, and to 0 otherwise. Standard errors are clustered at the subject level 

and reported in parentheses. In all models, we exclude cases with indefinite 𝛿𝑖
𝑘 as well as those with estimated ri outside 

the range (-100,100). Specifications (1) and (3) use neglog transformation of 𝛿𝑖
𝑘. In specifications (2) and (4), estimated ri 

is trimmed to the range [-3,3]. Specifications (1) and (2)/(3) and (4) use unrestricted/restricted sample. The last two rows 

provide the resulting p-values from Chow tests that is the joint insignificance of all the coefficients in front of the dummy 

𝑆𝑡𝑎𝑔𝐹𝑖𝑟𝑠𝑡 for the specific parameter and for the entire SUR model. Significance levels: * p<0.1 ** p<0.05 *** p<0.01. 

 
 

Table A2. Nonparametric comparisons of strategic uncertainty 

attitudes across treatments 

Sample: Restricted (N=125) Unrestricted (N=223) 

Comparison/Parameter 𝛼𝑖
𝑘 𝛿𝑖

𝑘 𝛼𝑖
𝑘 𝛿𝑖

𝑘 

Ambiguity - Stag hunt 0.005 0.275 <0.001 0.734 

Ambiguity – Entry <0.001 0.203 0.007 0.497 

Stag hunt – Entry <0.001 0.779 <0.001 0.441 

               Note. Columns 2-5 provide p-values from two-sided sign tests. 
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A4. Individual underpinnings of attitudes towards uncertainty 

In this online appendix, we explore individual underpinnings of attitudes towards uncertainty. 

We use a seemingly unrelated regression model to estimate six simultaneous equations. Each 

of the six individual preference parameters 𝑦𝑖  ∈  {𝛼𝑖
𝐴, 𝛼𝑖

𝑆, 𝛼𝑖
𝐸 , 𝛿𝑖

𝐴, 𝛿𝑖
𝑆, 𝛿𝑖

𝐸} is regressed on a set 

of individual characteristics: 

𝑦𝑖  =  𝑏𝑦,0  +  𝑏𝑦,1𝑠�̂�  +  𝑏𝑦,2𝑅𝑎𝑣𝑒𝑛_𝑆𝑐𝑜𝑟𝑒𝑖  +  𝑏𝑦,3𝑅𝑀𝐸𝑇_𝑆𝑐𝑜𝑟𝑒𝑖  +  𝑏𝑦,4𝑆𝑆𝑆_𝑆𝑐𝑜𝑟𝑒𝑖 + 

+∑𝑘 𝑐𝑦,𝑘𝑆𝑜𝑐𝐷𝑒𝑚𝐼𝑛𝑓𝑖
𝑘  +  𝑤𝑖,       

where: 

- 𝑠�̂�  is the individual noise parameter estimated by ML from the RISK treatment data; 

- 𝑅𝑎𝑣𝑒𝑛_𝑆𝑐𝑜𝑟𝑒𝑖 is the Raven test score;  

- 𝑅𝑀𝐸𝑇_𝑆𝑐𝑜𝑟𝑒𝑖 is the Reading the Mind in the Eyes Test score; 

- 𝑆𝑆𝑆_𝑆𝑐𝑜𝑟𝑒𝑖 is the total score on the Sensation Seeking Scale (SSS);  

- 𝑆𝑜𝑐𝐷𝑒𝑚𝐼𝑛𝑓𝑖
𝑘 is a set of k basic socio-demographic variables: age, gender (Female is an 

indicator variable that takes the value one for female subjects) and major (Econ_Buss and 

Engineer are also indicator variables that take the value one when subjects’ major is economics 

or business and engineering, respectively); 

- and 𝑤𝑖 is the residual. 

 

Table A3 reports the estimated results. Although there is no systematic association between any 

of the explanatory variables and the six parameters of interest, we do reject a joint hypothesis 

of coefficient nullity across the three α regressions with p < 0.001; we do not so, however, for 

the three δ regressions. This suggests that the heterogeneity in pessimism (α) observed in our 

(restricted) experimental sample is partially transmitted by individual differences which, 

however, cannot account for the heterogeneity in the general preferences towards uncertainty 

(δ). However, we also note that this result should be handled with care, since it is not entirely 

confirmed in unrestricted sample estimations. Estimates provided in Table A4 point to a weak 

statistical link between our set of explanatory variables and the six parameters of interest. 
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Table A3. Seemingly unrelated regressions with individual characteristics: restricted 

sample 

 𝛼𝑖
𝐴 𝛼𝑖

𝑆 𝛼𝑖
𝐸 𝛿𝑖

𝐴 𝛿𝑖
𝑆 𝛿𝑖

𝐸 

𝜎�̂� -.031  -.147  -.068  .630  -.028  -.202  

 (.029)  (.127)  (.168)  (.589)  (.640)  (.669)  

Raven_Score -.019  -.123  -.068  -.332  .214  .219  

 (.015)  (.086)  (.063)  (.744)  (.739)  (.762)  

RMET_Score .005  -.003  -.020  -.453  .724  .820  

 (.016)  (.016)  (.023)  (.517)  (.513)  (.546) 

SSS_total .015  .035  -.010  .505*  -.292  -.324  

 (.010)  (.031)  (.059)  (.277)  (.284)  (.286)  

Female -.163*  .418  .704*  -.202  -2.595  -2.604  

 (.098)  (.314)  (.419)  (2.283)  (2.322)  (2.362)  

Age .002  -.006  -.015  .001  -.062  -.081  

 (.005)  (.014)  (.018)  (.192)  (.191)  (.199)  

Econ_Buss -.030  -.032  .757  -.636  -3.485  -4.612  

 (.146)  (.172)  (1.174)  (4.264)  (4.568)  (4.478)  

Engineer .097  .202  -.323  1.726  -4.353**  -4.614**  

 (.090)  (.274)  (.406)  (2.181)  (2.215)  (2.286)  

Constant -.284  1.037  2.307*  1.668  -8.631  -9.287  

 (.294)  (.941)  (1.339)  (7.534)  (7.870)  (8.216)  

Joint 

insignificance 

(p-value): 

0.336 0.716 0.005 0.359 0.690 0.672 

Note. Standard errors are clustered at the subject level and reported in parentheses. Data correspond to 

specification (3) in Table 6 (N=118). Parameter 𝛿𝑖
𝑘 is neglog-transformed. Significance levels: * p<0.1, ** 

p<0.05, *** p<0.01. Joint insignificance of coefficients for the three α (δ) regressions: p<0.001 (p=0.707). 

Joint insignificance of coefficients across the six models: p<0.001. 
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Table A4. Seemingly unrelated regressions with individual characteristics: unrestricted 

sample 

 𝛼𝑖
𝐴 𝛼𝑖

𝑆 𝛼𝑖
𝐸 𝛿𝑖

𝐴 𝛿𝑖
𝑆 𝛿𝑖

𝐸 

𝜎�̂� -.035* -.057 -.049 -.078 -.178 -.229 

 (.021) (.065) (.083) (.465) (.477) (.476) 

Raven_Score -.021 -.051 -.016 -.160 -.109 -.080 

 (.013) (.049) (.037) (.477) (.477) (.474) 

RMET_Score .010 -.008 -.025* -.174 .456 .543 

 (.013) (.012) (.015) (.346) (.334) (.351) 

SSS_total .014* .023 -.019 .138 .044 .008 

 (.007) (.020) (.036) (.217) (.225) (.214) 

Female -.091 .257 .454* -1.250 -1.668 -1.663 

 (.082) (.194) (.266) (1.824) (1.867) (1.822) 

Age .000 .002 -.009 .022 -.099 -.127 

 (.005) (.010) (.013) (.166) (.163) (.170) 

Econ_Buss .070 .014 .386 -1.533 -2.293 -3.399 

 (.110) (.137) (.679) (2.790) (2.875) (2.861) 

Engineer .112 .039 -.297 -.438 -1.100 -2.335 

 (.083) (.177) (.249) (1.622) (1.639) (1.636) 

Constant -.350 .088 1.667* 3.591 -6.278 -6.582 

 (.298) (.590) (.901) (6.233) (6.369) (6.248) 

Joint 

insignificance 

(p-value): 

0.087 0.001 0.023 0.729 0.870 0.839 

Note. Standard errors are clustered at the subject level and reported in parentheses. Data correspond to 

specification (1) in Table 6 (N=208). Parameter 𝛿𝑖
𝑘 is neglog-transformed. Significance levels: * p<0.1, ** 

p<0.05, *** p<0.01. Joint insignificance of coefficients for the three α (δ) regressions: p<0.001 (p=0.606). 

Joint insignificance of coefficients across the six models: p<0.001. 
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A5. Screenshots 

Figure A4. Screen used in RISK treatment 

 

 

Figure A5. Screen used in STRATEGICUNCERTAINTY treatment (stag-hunt game) 
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