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0Abstract

We investigate models for incremental binary classi�cation, an example for
supervised online learning. Our starting point is a model for human and machine
learning suggested by E. M. Gold, [Gol67].

In the �rst part, we consider incremental learning algorithms that use all of the
available binary labeled training data in order to compute the current hypothesis.
For this model, we observe that the algorithm can be assumed to always terminate
and that the distribution of the training data does not in�uence learnability. This
is still true if we pose additional delayable requirements that remain valid despite
a hypothesis output delayed in time [KP16]. Additionally, we consider the non-
delayable requirement of consistent learning. Our corresponding results underpin
the claim for delayability being a suitable structural property to describe and
collectively investigate a major part of learning success criteria.

Our �rst theorem states the pairwise implications or incomparabilities between
an established collection of delayable learning success criteria, the so-called
complete map. Especially, the learning algorithm can be assumed to only change
its last hypothesis in case it is inconsistent with the current training data. Such
a learning behaviour is called conservative [Ang80].

By referring to learning functions, we obtain a hierarchy [Bār74], [CS83] of
approximative learning success criteria. Hereby we allow an increasing �nite
number of errors of the hypothesized concept by the learning algorithm compared
with the concept to be learned.

Moreover, we observe a duality depending on whether vacillations between
in�nitely many di�erent correct hypotheses are still considered a successful
learning behaviour. This contrasts the vacillatory hierarchy for learning from
solely positive information [Cas99].

We also consider a hypothesis space located between the two most common
hypothesis space types in the nearby relevant literature and provide the complete
map.

In the second part, we model more e�cient learning algorithms. These update
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their hypothesis referring to the current datum and without direct regress to
past training data. We focus on iterative (hypothesis based) [R W76] and BMS
(state based) [Car+07] learning algorithms.

Iterative learning algorithms use the last hypothesis and the current datum
in order to infer the new hypothesis. Past research analyzed, for example, the
above mentioned pairwise relations between delayable learning success criteria
when learning from purely positive training data, see [LZ91], [CM08a], [CK10],
[Jai+16].

We compare delayable learning success criteria with respect to iterative learn-
ing algorithms, as well as learning from either exclusively positive or binary
labeled data. The existence of concept classes that can be learned by an iterative
learning algorithm but not in a conservative way had already been observed
[JLZ07a], showing that conservativeness is restrictive. An additional require-
ment arising from cognitive science research is U-shapedness [SS82], stating that
the learning algorithm does diverge from a correct hypothesis. We show that
forbidding U-shapes also restricts iterative learners from binary labeled data.

In order to compute the next hypothesis, BMS learning algorithms refer to
the currently observed datum and the actual state of the learning algorithm. For
learning algorithms equipped with an in�nite amount of states, we provide the
complete map.

A learning success criterion is semantic if it still holds, when the learning
algorithm outputs other parameters standing for the same classi�er. Syntac-
tic (non-semantic) learning success criteria, for example conservativeness and
syntactic non-U-shapedness, restrict BMS learning algorithms. For proving the
equivalence of the syntactic requirements, we refer to witness-based learning
processes [KS16]. In these, every change of the hypothesis is justi�ed by a
later on correctly classi�ed witness from the training data. Moreover, for every
semantic delayable learning requirement, iterative and BMS learning algorithms
are equivalent. In case the considered learning success criterion incorporates
syntactic non-U-shapedness, BMS learning algorithms can learn more concept
classes than iterative learning algorithms.

The proofs are combinatorial, inspired by investigating formal languages or
employ results from computability theory, such as in�nite recursion theorems
(�xed point theorems) [Köt09].
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0Zusammenfassung

Wir untersuchen Modelle für inkrementelle binäre Klassi�kation, ein Beispiel für
überwachtes online Lernen. Den Ausgangspunkt bildet ein Modell für menschli-
ches und maschinelles Lernen von E. M. Gold, [Gol67].

Im ersten Teil untersuchen wir inkrementelle Lernalgorithmen, welche zur
Berechnung der Hypothesen jeweils die gesamten binär gelabelten Trainings-
daten heranziehen. Bezogen auf dieses Modell können wir annehmen, dass
der Lernalgorithmus stets terminiert und die Verteilung der Trainingsdaten die
grundsätzliche Lernbarkeit nicht beein�usst. Dies bleibt bestehen, wenn wir
zusätzliche Anforderungen an einen erfolgreichen Lernprozess stellen, die bei
einer zeitlich verzögerten Ausgabe von Hypothesen weiterhin zutre�en, [KP16].

Weitherin untersuchen wir nicht verzögerbare konsistente Lernprozesse. Un-
sere Ergebnisse bekräftigen die Behauptung, dass Verzögerbarkeit eine geeignete
strukturelle Eigenschaft ist, um einen Großteil der Lernerfolgskriterien zu be-
schreiben und gesammelt zu untersuchen.

Unser erstes Theorem klärt für dieses Modell die paarweisen Implikationen
oder Unvergleichbarkeiten innerhalb einer etablierten Auswahl verzögerbarer
Lernerfolgskriterien auf. Insbesondere können wir annehmen, dass der inkremen-
telle Lernalgorithmus seine Hypothese nur dann verändert, wenn die aktuellen
Trainingsdaten der letzten Hypothese widersprechen. Ein solches Lernverhalten
wird als konservativ, [Ang80], bezeichnet.

Ausgehend von Resultaten über Funktionenlernen erhalten wir eine strikte
Hierarchie von approximativen Lernerfolgskriterien [BP73].

Weiterhin ergibt sich eine Dualität abhängig davon, ob das Oszillieren zwi-
schen korrekten Hypothesen als erfolgreiches Lernen angesehen wird. Dies
steht im Gegensatz zur oszillierenden Hierarchie, wenn der Lernalgorithmus
von ausschließlich positiven Daten lernt, [Cas99].

Auch betrachten wir einen Hypothesenraum, der einen Kompromiss zwischen
den beiden am häu�gsten in der naheliegenden Literatur vertretenen Arten von
Hypothesenräumen darstellt.
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Im zweiten Teil modellieren wir e�zientere Lernalgorithmen. Diese aktuali-
sieren ihre Hypothese ausgehend vom aktuellen Datum, jedoch ohne Zugri� auf
die zurückliegenden Trainingsdaten. Wir konzentrieren uns auf iterative (hypo-
thesenbasierte) [R W76] and BMS (zustandsbasierte) [Car+07] Lernalgorithmen.
Iterative Lernalgorithmen nutzen ihre letzte Hypothese und das aktuelle Da-

tum, um die neue Hypothese zu berechnen. Die bisherige Forschung klärt bei-
spielsweise die oben erwähnten paarweisen Vergleiche zwischen den verzöger-
baren Lernerfolgskriterien, wenn von ausschließlich positiven Trainingsdaten
gelernt wird, siehe [LZ91], [CM08a], [CK10], [Jai+16].

Wir vergleichen verzögerbare Lernerfolgskriterien bezogen auf iterative Ler-
nalgorithmen, sowie das Lernen von aussschließlich positiver oder binär gela-
belten Daten. Bereits bekannt war die Existenz von Konzeptklassen, die von
einem iterativen Lernalgorithmus gelernt werden können, jedoch nicht auf eine
konservative Weise, [JLZ07a]. U-shapedness [SS82] ist ein in den Kognitionswis-
senschaften beobachtetes Phänomen, demzufolge der Lerner im Lernprozess
von einer bereits korrekten Hypothese divergiert. Wir zeigen, dass iterative
Lernalgorithmen auch durch das Verbieten von U-Shapes eingeschränkt werden.

Zur Berechnung der nächsten Hypothese nutzen BMS-Lernalgorithmen er-
gänzend zum aktuellen Datum den aktuellen Zustand des Lernalgorithmus. Für
Lernalgorithmen, die über unendlich viele mögliche Zustände verfügen, leiten
wir alle paarweisen Implikationen oder Unvergleichbarkeiten innerhalb der
etablierten Auswahl verzögerbarer Lernerfolgskriterien her.

Ein Lernerfolgskriterium ist semantisch, wenn es weiterhin gilt, falls im
Lernprozess andere Parameter ausgegeben werden, die jeweils für die gleichen
Klassi�katoren stehen. Syntaktische (nicht-semantische) Lernerfolgskriterien,
beispielsweise Konservativität und syntaktische Non-U-Shapedness, schrän-
ken BMS-Lernalgorithmen ein. Um die Äquivalenz der syntaktischen Lerner-
folgskriterien zu zeigen, betrachten wir witness-based Lernprozesse, [KS16]. In
diesen wird jeder Hypothesenwechsel durch einen später korrekt klassi�zier-
ten Zeugen in den Trainingsdaten gerechtfertig. Weiterhin sind iterative und
BMS-Lernalgorithmen für die semantischen verzögerbaren Lernerfolgskriterien
jeweils äquivalent. Ist syntaktische Non-U-Shapedness Teil des Lernerfolgskrite-
riums, sind BMS-Lernalgorithmen mächtiger als iterative Lernalgorithmen.

Die Beweise sind kombinatorisch, angelehnt an Untersuchungen zu formalen
Sprachen oder nutzen Resultate aus dem Gebiet der Berechenbarkeitstheorie,
beispielsweise unendliche Rekursionstheoreme (Fixpunktsätze) [Köt09].
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1 Introduction

Humans, other life forms and in an rapidly growing amount also machines utilize
prior knowledge, in order to generalize to and succeed in unseen situations. In the
current era of machine learning, heuristics play a crucial role in order to design
and improve algorithms that employ the growing amount of available data as
well as impressive computing abilities. The engineering practices massively used
in the technologies that are interweaved with society are far from understood.
Research in computational learning theory discusses concrete initial mathematical
models and algorithms for this complex subject, [Wig19].

We investigate models for binary classi�cation, a special case of supervised
machine learning, [GBC16]. As an illustrating example, let us assume we want to
verify formally whether there is a learning algorithm for the collection of email
spam �lters. Here we are not concerned with the de�nition of spam as discussed
elsewhere, for example [Cor08]. Many di�erent machine learning algorithms
have been applied to the challenging problem of designing spam �lters, see
[Dad+19] for a recent publication. The details of the algorithms used by email
providers and companies focusing on spam �ltering are not publicly available. We
aim to explain our abstract terminology with this sample application. However,
our models also suit this example well as they can take into account that in
email spam �ltering false positive and false negative predictions are not treated
equally.

Let us for the start leave a lot of challenging details aside. A suitable online
learning algorithm successively experiences more and more emails labeled to
be spam or not spam by higher-order knowledge and the speci�c user. We call
this sequence of emails the training data. Every time the learning algorithm
observes a new labeled email, it outputs a classi�er that also predicts whether
future emails are spam or not. The learner is successful, if after some time the
hypothesized classi�er generalizes well with respect to the user’s taste. Hence,
we seek a learning algorithm that for every user succeeds on the following task:
When comprising more and more data into the hypotheses, the sequence of
suggested classi�ers converges to an optimal one for this user. As we are not in
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Chapter 1 Introduction

control of the user’s taste, the evolution of higher-order knowledge or the order
in which the emails arrive, the algorithm has to succeed for all possible email
�lters and for every distribution of the data.

We can think of an email as a sequence of characteristics, for example symbols,
words or collections of the latter and other more sophisticated features. (Note
that a reasonable feature extraction is at the core of machine learning.) Encoding
transforms the target features into numeric values or vectors. Hence, for each
email we obtain a sequence of the encoded features. Essentially, this numerical
feature array or tensor is the input for the machine learning algorithm. This
approach also covers the emerging �eld of Graph Neural Networks by addition-
ally providing the corresponding graph structure, [Sca+08]. The edges represent
interactions or similarities between the feature tensors, [Bro+17].

For our purposes, we encode the feature array and possibly more structural
information associated to an email into a single number. This number represents
the underlying email. The above encoding procedure is not speci�c to email
classi�cation but applies to several machine learning applications with their
respective inputs, for example pattern recognition, [Bis06]. The actual encoding
techniques in electronic devices di�er.

In inductive inference the classi�er is often given by an algorithm recursively
enumerating all numbers representing spam emails, [Odi92]. With this mind-set,
one can think of some email spam detector to be given by a set of rules such that
every email derived by them is classi�ed as spam.

On the other hand for real-world machine learning scenarios, one could de�ne
the hard classi�er to be a computable function mapping numbers representing
spam emails to one and all other emails to zero. A classi�er of the second kind
can easily be transformed into a classi�er of the �rst kind. The second de�nition
is more restrictive and hence, if not stated di�erently, we stick to recursively
enumerable sets.

Following the terminology in [SB14], our concept class to be learned is the
collection of all email spam detectors. Due to the connections of inductive
inference to grammatical inference, we stay closer to the terminology in [Jai+99],
where a concept class is referred to as a language class. With respect to our
running example a concept or language corresponds to a spam �lter for one
speci�c user. Due to the ambiguity of some terminology when referring to
applied machine learning, we stick to concepts in the introduction. However, all
eligible classi�ers output by the learning algorithm are required to be elements
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Introduction Chapter 1

of the so-called hypothesis space. The general hypothesis space of recursively
enumerable sets is called , -hypothesis space, [RC94]. In our example each
classi�er is given by a computer program corresponding to an enumeration
of all the spam emails. The, -hypothesis space comprises all other common
hypothesis spaces.

As noted above, for a �nite amount of data the learner produces a hypothesis
that corresponds to a classi�er. In the limit the hypothesized classi�ers are
supposed to minimize the error with respect to the concept to be learned. There
are di�erent formalizations of this requirement. Successful PAC-learning requires
that for enough available data with high probability the error becomes small,
[Val84]. The sample complexity associated to a given probability and error has
been settled, [Han16].

We build on the model suggested by E. M. Gold, [Gol67], following which
the learner is successful if it eventually settles on a correct classi�er. For our
running example a correct classi�er is an email spam �lter that perfectly re�ects
the users taste. In Section 3.3 we study versions of Gold’s model, that consider
approximations, [Cas99]. In addition also ideas from probability theory play an
important role and have been incorporated into Gold’s model by L. Pitt, [Pit84],
and G. Barmpalias and F. Stephan, [BS17]. These are interesting directions to
pursue further, especially in the context of learning algorithms not relying on
all data available.

Fundamental machine learning algorithms for supervised binary classi�cation
like the perceptron [Ros58] and support vector machines [BGV92] use linear
classi�ers as hypothesis space. With a �xed computable kernel function even
more learning tasks can be reduced to classifying with half-spaces. This is one
of many examples for more uniform hypothesis spaces of classi�ers, [LZZ08]. If
we restrict ourselves to linear classi�ers, we might ask whether the concept class
of spam �lters is learnable with the uniform hypothesis space of half-spaces.

The learnability of linear predictors has been investigated with respect to
other learning models and respective research questions, see for example [SB14],
[Sha15] and [Gao+17]. The concept class of linear classi�ers forms a uniform
hypothesis space, because a computer can enumerate the parameters correspond-
ing to a linear inequality. In the spirit of Occams Razor, we obtain a successful
learning algorithm when unbiasedly outputting the �rst enumerated half-space
consistent with all of the training data.
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Chapter 1 Introduction
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Figure 1.1: Example Learning Process when the hypotheses correspond to half-spaces.

This successful learning strategy is referred to as learning by enumeration,
[Gol67]. If we pose a realizability assumption, [SB14], we obtain the learnability
of the sub concept class of email spam �lters. The learning by enumeration
strategy works for every concept class assumed to be a subset of a uniform
hypothesis space. Questions regarding e�ciency are not considered here. We
refer the interested reader to [Köt09].

A classical perceptron or support vector machine computes the current hy-
pothesis by using all of the available data. We refer to learning algorithms with
this property as full-information or full-batch learners and analyze them in Part I.
Our results can also be found in [AKS18].

In Chapter 2 we follow [Gol67] and start with formalizing binary classi�cation
with full-batch learning algorithms by referring to Turing machines, one of
the most fundamental mathematical models for computer algorithms, [Odi92].
As most computer programs rely on recursion, we do not require the learning
algorithm to produce an output on every possible input. In the respective
Section 2.2, the formalized notions include the data stream, learning algorithm,
learning success criteria and a corresponding notation that allows to state how
di�erent models relate to each other, [Köt09]. We also give the de�nitions of an
established collection of additional requirements that can be incorporated into
the learning success criterion, [KP14], [KS16] and [Jai+16].

Thereafter, in Section 2.3, we observe that every learnable concept class
can be learned by a total learner, namely a learning algorithm that terminates
its computation on every input. Moreover, the underlying distribution of the
data does not matter as we can provably assume that the data is presented in
some canonical order. These observations hold for all learning success criteria
invariant with respect to a time delayed output of the hypothesis. For example,
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Introduction Chapter 1

the learning algorithm will still converge to the optimal classi�er if the hypothesis
is output 2 time units later due to some technical issues. Such learning success
criteria are called delayable, [KP16]. We prove that the above observations about
the totality of the learning algorithm and a canonical presentation of the data
hold for all delayable learning success criteria. In contrast, we show that these
observations are no longer true when we require the output hypothesis of the
learning algorithm to be consistent with the respective input. Consistency is
not delayable, see for example the learning by enumeration strategy mentioned
earlier.

In Section 2.4 we derive all 45 pairwise equivalences, proper implications or
incomparabilities between the introduced delayable learning success criteria. By
de�nition and previous results about one third of the 90 relevant implications
have been known, see Section 2.2, [OSW86] and [LZK96]. In particular, we
show that any learning algorithm can be assumed to only change its previously
hypothesized classi�er if the latter is inconsistent with the available training data.
This so-called conservative learning behaviour, [Ang80], can be accomplished
with our insights from Section 2.2 and a regularity property. The proof gives a
deeper understanding of the, -hypothesis space and additionally covers other
requirements. For example, conservativeness implies that the learning algorithm
does not diverge from a correct hypothesis.

The following Chapter 3 is concerned with other models of successful learning
in Inductive Inference.

In Section 3.2 we sharpen the comparison of learning from exclusively positive
data with learning from labeled data in [LZ93] by posing the most restrictive
additional requirements.

Thereafter, in Section 3.3, we consider approximations by allowing a �nite
number of errors of the concept hypothesized by the learning algorithm compared
with the classi�er to be learned. With appropriate representations as a total
function or recursively enumerable set, we provide an equivalence between
learning total classi�ers from either exclusively positive or binary labeled data.
This allows us to transfer the approximative hierarchy in [Bār74] and [CS83] to
our setting of full-information learning from binary labeled data. Concretely, we
show that increasing the number of allowed errors makes strictly more concept
classes learnable. Furthermore, for a �xed error parameter, we provide a duality
depending on whether vacillating between in�nitely many di�erent correct
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Chapter 1 Introduction

hypotheses is still considered successful learning. This contrasts the hierarchies
when learning from solely positive information, [Cas99].

In Section 3.4 we consider a hypothesis space between uniform hypothesis
spaces of symmetric classi�ers and the, -hypothesis space. Di�erent varia-
tions of this approach are investigated for learning from solely positive data in
[Ber+20a] and [Ber+20b]. For learning from binary labeled data, we immediately
observe that the pairwise equivalences, proper implications and incomparabili-
ties between the established collection of delayable learning success criteria are
the same as for the, -hypothesis space considered in Section 2.4.

In contrast to classical machine learning algorithms, there is a growing interest
in incremental implementations that do not access all training data to infer the
new hypothesized classi�er. For example, when training binary classi�ers from
standard libraries for one epoch, a parameter to be adjusted is the so-called batch
size, specifying how many training examples are used for the computation of
the next hypothesis. In Part II we consider models for these memory-e�cient
algorithms.

In Chapter 4 we focus on iterative algorithms, that compute the next hypothesis
based on the current labeled datum and the last hypothesized classi�er, [R W76].
With an easy locking sequence argument, [BB75], one can show that these
iterative learners have strictly less learning power than the full-information
variant. It has also been observed that the learning capability is not improved if
the last : > 1 data are used in the computation of the next hypothesis from the
previous one, [OSW86]. Our results can also be found in [KKS20]. This reference
in addition includes a constructive iterative algorithm proving the learnability of
the uniform concept class of half-spaces from labeled data. Assuming realizability,
also the sub concept class of all spam �lters is learnable by an iterative algorithm.

The essential terminology is recapitulated in Section 4.2. Thereafter, in Sec-
tion 4.3, we provide a procedure to obtain concept classes learnable by a full-
information algorithm from solely positive data but not by an iterative learning
algorithm from positive and negative information. Hence, we observe that the
aforementioned two settings are incomparable with respect to their learning
capabilities.

In the next two Sections, we investigate the pairwise relations between the
delayable learning success criteria for iterative learners. For learning from solely
positive information these have been clari�ed in [LZ91], [CM08a], [CK10] and
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[Jai+16]. For learning from binary labeled data, it was observed in [JLZ07a] that
consistency and conservativeness are restrictive. A further additional require-
ment arising from cognitive science research is U-shapedness [SS82], stating that
the learning algorithm does deviate from an optimal classi�er. We already men-
tioned that conservativeness forbids U-shapes and hence naturally the question
arises whether non-U-shapedness is also restrictive. We di�erentiate a semantic
and a syntactic formalization of this phenomenon, where a learning success
criterion is semantic, if it does still hold, when the learning algorithm outputs
other parameters standing for the same classi�er. On the one hand, in Section 4.4,
we provide a lemma that might be helpful to settle the learning power of the
semantic version. On the other hand, in Section 4.5, we show that forbidding
non-semantic U-shapes also restricts iterative learning algorithms on binary
labeled data.

In Chapter 5 we investigate the learning abilities of BMS learning algorithms
that do refer to the currently observed datum and the actual state of the algorithm
in order to compute the next hypothesis, [Car+07]. For successful learning the
algorithm must stop using new states eventually. We provide the complete map of
implications or incomparabilities between the established collection of delayable
learning success criteria when learning from positive data.

In Section 5.2 we �x the notation that is also inspired by automata theory.
Building on this, in Section 5.3 we prove that BMS and iterative learning

algorithms are equally powerful for all semantic delayable learning success
criteria. This is also true for learning from binary labeled data.

In Section 5.4 we show the equivalence of syntactic (non-semantic) learning
success criteria, for example conservativeness and syntactic non-U-shapedness.
For this, we refer to witness-based learning processes, [KS16], in which every
change of the hypothesis is justi�ed by a later on correctly classi�ed witness from
the training data. Moreover, we observe that syntactic non-U-shapedness re-
stricts BMS learning algorithms from positive data. Finally, we observe that with
respect to learning success criteria incorporating syntactic non-U-shapedness,
BMS learning algorithms can learn more concept classes than iterative learning
algorithms.

Our insights have a strong mathematical �avor. We rely on results from
Computability Theory, which round o� the contributions towards a better under-
standing of Machine Learning by Linear Algebra, Calculus, Probability Theory,

7
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Di�erential Geometry, Statistics and other areas of mathematics. Most notably,
we employ in�nite �xed-point-theorems, like a one-to-one version of Case’s
Operator Recursion Theorem, [Köt09].
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Part I

Full-Batch Learning from Informant





2 Map of Delayable
Learning Success Criteria

Learning from positive and negative information, so-called informant, being
one of the models for human and machine learning introduced by E. M. Gold is
investigated. Particularly, naturally arising questions about this learning setting,
originating in results on learning from solely positive information, are answered.

By a carefully arranged argument learners can be assumed to only change
their hypothesis in case it is inconsistent with the data (such a learning behavior
is called conservative). The deduced main theorem states the relations between
the most important delayable learning success criteria, being the ones not ruined
by a delayed in time hypothesis output.

Additionally, our investigations concerning the non-delayable requirement of
consistent learning underpin the claim for delayability being the right structural
property to gain a deeper understanding concerning the nature of learning
success criteria.

2.1 Introduction

Research in the area of inductive inference aims at investigating the learning
of formal languages and has connections to computability theory, complexity
theory, cognitive science, machine learning, and more generally arti�cial intelli-
gence. Setting up a classi�cation program for deciding whether a given word
belongs to a certain language can be seen as a problem in supervised machine
learning, where the machine experiences labeled data about the target language.
The label is 1 if the datum is contained in the language and 0 otherwise. The
machine’s task is to infer some rule in order to generate words in the language
of interest and thereby generalize from the training samples. This so-called
learning from informant was introduced in [Gol67] and further investigated in
several publications, including [BB75], [OSW86] and [LZK96].

According to [Gol67] the learner is modelled by a computable function, suc-
cessively receiving sequences incorporating more and more data. The source of
labeled data is called an informant, which is supposed to be complete in the limit,
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Chapter 2 Map of Delayable Learning Success Criteria

i.e., every word in the language must occur at least once. Thereby, the learner
possibly updates the current description of the target language (its hypothesis).
Learning is considered successful, if after some �nite time the learner settles
on exactly one correct hypothesis, which precisely captures the words in the
language to be learned. As a single language can easily be learned, the interest-
ing question is whether there is a learner successful on all languages in a �xed
collection of languages.
Example. Consider L = {N \ - | - ⊆ N �nite }, the collection of all co-�nite
sets of natural numbers. Clearly, there is a computable function ? mapping �nite
subsets - ⊆ N to ? (- ), such that ? (- ) encodes a program which stops if and
only if the input is not in - . We call ? (- ) an index for N \ - . The learner is
successful if for every �nite - ⊆ N it infers ? (- ) from a possibly very large but
�nite number of samples labeled according toN \ - .

Regarding this example, let us assume the �rst two samples are (60, 1) and
(2, 0). The �rst datum still leaves all options with 60 ∉ - . As the second datum
tells us that 2 ∈ - , we may make the learner guess ? ({2}) until possibly more
negative data is available. Thus, the collection of all co-�nite sets of natural
numbers is Ex-learnable from informant, simply by making the learner guess
the complement of all negative information obtained so far. Since after �nitely
many steps all elements of the �nite complement of the target language have
been observed, the learner will be correct from that point onward.

It is well-known that this collection of languages cannot be learned from purely
positive information. Intuitively, at any time the learner cannot distinguish the
whole set of natural numbers from all other co-�nite sets which contain all
natural numbers presented to the learner until this point.

Learning from solely positive information, so-called text, has been studied
extensively, including many learning success criteria and other variations. Some
results are summed up in [Jai+99] and [Cas16]. We address the naturally arising
question what di�erence it makes to learn from positive and negative informa-
tion.

For learning from text there are entire maps displaying the pairwise relations
of di�erent well-known learning success criteria, see [KP14], [KS16] and [Jai+16].
We give an equally informative map for Ex-learning from informant.

The most important requirements on the learning process when learning
from informant are conservativeness (Conv), where only inconsistent hypotheses
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are allowed to be changed; strong decisiveness (SDec), forbidding to ever return
semantically to a withdrawn hypothesis; strong monotonicity (SMon), requiring
that in every step the hypothesis incorporates the former one; monotonicity
(Mon), ful�lled if in every step the set of correctly inferred words incorporates
the formerly correctly guessed; cautiousness (Caut), for which never a strict
subset of earlier conjectures is guessed. In [LZK96] it was observed that requiring
monotonicity is restrictive and that under the assumption of strong monotonicity
even fewer collections of languages can be learned from informant. We complete
the picture by answering the following questions regarding Ex-learning from
informant positively:

1. Is every learnable collection of languages also learnable in a conservative
and strongly decisive way?

2. Are monotonic and cautious learning incomparable?

The above mentioned observations in [LZK96] follow from positively answer-
ing the second question.

A diagram incorporating the resulting map is depicted in Figure 2.1. The
complete map can be found in Figure 2.2.

Answering the �rst question builds on providing the two normal forms of (1)
requiring learning success only on the information presented in the canonical
order and (2) assuming the learner to be de�ned on all input sequences. Further,
a regularity property borrowed from text learning plays a crucial role in the
proof.

Requiring all of the learners guesses to be consistent with the positive and the
negative information being presented to it so far makes learning harder. Next
to this we also observe that the above normal forms cannot be assumed when
the learner is required to act consistently. On the one hand, it is easier to �nd a
learner for a collection of languages that consistently learns each of them only
from the canonical presentation than �nding one consistently learning them
from arbitrary informant. On the other hand �nding a total learner consistently
Ex-learning a collection of languages is harder than �nding a partial one.

We further transfer the concept of a learning success criterion to be invariant
under time-delayed outputs of the hypotheses, introduced for learning from text
in [KP16] and generalized in [KSS17], to the setting of learning from informant.
Consistency is not delayable since a hypothesis which is consistent now might
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Chapter 2 Map of Delayable Learning Success Criteria

be inconsistent later due to new data. As this is the only requirement not being
delayable, the results mentioned in the last paragraph justify the conjecture of
delayability being the right property to proof more results that at once apply to
all learning success criteria but consistency.

While in [LZ94] variously restricted learning of collections of recursive lan-
guages with a uniform decision procedure are considered, the above mentioned
results also apply to arbitrary collections of recursively enumerable sets. Further,
our results are as strong as possible, meaning that negative results are stated for
indexable families, if possible, and positive results for all collections of languages.

InfEx

SdInfEx

T NU SNU
WMon Dec SDec Conv

CautMon

SMon

Figure 2.1: Relations between delayable learning restrictions in Ex-learning from infor-
mants. Implications are represented as black lines from bottom to top. Two learning
settings are equivalent if and only if they lie in the same grey outlined zone.

In contrast to our observations, it has been shown in [Ang80] that requiring a
conservative learning process is a restriction when learning from text. Further,
this is equivalent to cautious learning as shown in [KP16]. That monotonic
learning is restrictive and incomparable to both of them in the text learning
setting follows from [LZK96], [KS95], [JS98] and [KP16]. Further, when learning
from text, strong monotonicity is again the most restrictive assumption by
[LZK96]. Strong decisiveness is restrictive, see [Bal+08], and further is restricted
by cautiousness/conservativeness on the one hand and monotonicity on the
other hand by [KP16]. In the latter visualizations and a detailed discussion are
provided.
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When the learner does not have access to the order of presentation but knows
the number of samples, the map remains the same as observed in [KS16].

In case the learner makes its decisions only based on the set of presented
samples and ignores any information about the way it is presented, it is called set-
driven (Sd). For such set-driven learners, when learning from text, conservative,
strongly decisive and cautious learning are no longer restrictive and the situation
with monotonic and strong monotonic learning remains unchanged by [KS95]
and [KP16].

We observe that for delayable informant learning all three kinds of learners
yield the same map. Thus, our results imply that negative information compen-
sates for the lack of information set-driven learners have to deal with.

[Gol67] was already interested in the above mentioned normal forms and
proved that they can be assumed without loss of generality in the basic setting
of pure Ex-learning, whereas our results apply to all delayable learning success
criteria.

The name “delayability” refers to tricks in order to delay mind changes of the
learner which were used to obtain polynomial computation times for the learners
hypothesis updates as discussed in [Pit89] and [CK09]. Moreover, it should not
be confused with the notion of X-delay, [AZ08], which allows satisfaction of the
considered learning restriction X steps later than in the un-X-delayed version.

In [OSW86] several restrictions for learning from informant are analyzed and
mentioned that cautious learning is a restriction to learning power; we extend
this statement with our Proposition 2.22 in which we give one half of the answer
to the second question above by providing a family of languages not cautiously
but monotonically Ex-learnable from informant.

Furthermore, [OSW86] consider a version of conservativeness where mind
changes are only allowed if there is positive data contradicting the current
hypothesis, which they claim to restrict learning power. In this thesis, we stick
to the more common de�nition in [BB75] and [Bār77], according to which mind
changes are allowed also when there is negative data contradicting the current
hypothesis.

In Section 2.2 the setting of learning from informant is formally introduced
by transferring fundamental de�nitions and —as far as possible— observations
from the setting of learning from text. In Section 2.3 in order to derive the
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entire map of pairwise relations between delayable Ex-learning success criteria,
normal forms and a regularity property for such learning from informant are
provided. Further, consistent learning is being investigated. In Section 2.4 we
answer the questions above and present all pairwise relations of learning criteria
in Theorem 2.24.

All sections build on Section 2.2. Additionally, Section 2.4 builds on Sec-
tion 2.3.

2.2 Informant Learning

We formally introduce the notion of an informant and transfer concepts and
fundamental results from the setting of learning from text to learning from
informant. This includes the learner itself, convergence criteria, locking se-
quences, learning restrictions and success criteria as well as a compact notation
for comparing di�erent learning settings. In the last subsection delayability
as the central property of learning restrictions and learning success criteria is
formally introduced.

As far as possible, notation and terminology on the learning theoretic side
follow [Jai+99], whereas on the computability theoretic side we refer to [Odi99].

We letN denote the natural numbers including 0 and write∞ for an in�nite
cardinality. Moreover, for a function 5 we write dom(5 ) for its domain and
ran(5 ) for its range. If we deal with (a subset of) a cartesian product, we are
going to refer to the projection functions to the �rst or second coordinate by pr1
and pr2, respectively. For sets-,. and 0 ∈ Nwe write- =0 . , if- equals. with
0 anomalies, i.e., | (- \. ) ∪ (. \- ) | ≤ 0, where |.| denotes the cardinality function.
In this spirit we write - =∗ . , if there exists some 0 ∈ N such that - =0 . .
Further, -<l denotes the �nite sequences over- and-l stands for the countably
in�nite sequences over - . Additionally, - ≤l := -<l ∪ -l denotes the set of
all countably �nite or in�nite sequences over - . For every 5 ∈ - ≤l and C ∈ N,
we let 5 [C] := {(B, 5 (B)) | B < C} denote the restriction of 5 to C . For sequences
f, g ∈ -<l their concatenation is denoted by fag and we write f E g , if f is
an initial segment of g , i.e., there is some C ∈ N such that f = g [C]. Finally, we
write last(f) for the last element of f , f ( |f | − 1), and f− for the initial segment
of f without last(f), i.e. f [|f | − 1]. Clearly, f = f−alast(f). In our setting, we
typically have - = N × {0, 1}. Without demanding computability, we denote
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by P and ℜ the set of all partial functions 5 : dom(5 ) ⊆ N×{0, 1}<l → N and
total functions 5 : N×{0, 1}<l → N, respectively.

Let ! ⊆ N. If ! is recursively enumerable, we call ! a language. In case its
characteristic function is computable, we say it is a recursive language. Moreover,
we call L ⊆ Pow(N) a collection of (recursive) languages, if every ! ∈ L is a
(recursive) language. In case there exists an enumeration {!b | b ∈ M} of L,
where M ⊆ N is recursive and a computable function 5 with ran(5 ) ⊆ {0, 1}
such that G ∈ !b ⇔ 5 (G, b) = 1 for all b ∈ M and G ∈ N, we say L is an indexable
family of recursive languages. By de�nition indexable families are collections of
recursive languages with a uniform decision procedure.

Further, we �x a programming system i as introduced in [RC94]. Brie�y, in
the i-system, for a natural number ? , we denote by i? the partial computable
function with program code ? . We call ? an index for,? := dom(i?). For a
�nite set - ⊆ N we denote by ind(- ) a canonical index for - . In reference to a
Blum complexity measure, for all ?, C ∈ N, we denote by, C

? ⊆,? the recursive
set of all natural numbers less or equal to C , on which the machine executing ?
halts in at most C steps. Moreover, by s-m-n we refer to a well-known recursion
theoretic observation, which gives �nite and in�nite recursion theorems, like
Case’s Operator Recursion Theorem ORT, [Cas74]. Inuitively, it states that for
every recursive operator there is a computable function that is a �xed point of
the action of the operator on the i-system. Formally, a 1-1 version of this result
reads as follows.

1-1 Operator Recursion Theorem ([Köt09]). Let K : P → P be a computable
operator, namely a function mapping partial computable functions to partial
computable functions. Then there is a 1-1 computable function ℎ ∈ P such that
∀=, G

(
iℎ (=) (G) = K (ℎ) (=, G)

)
.

For our purposes the operatorK will always be implicit. The �rst application
of ORT is in Proposition 2.18 and it occurs in many di�erent variants in other
proofs. For further intuitions see for example [Cas94].

Finally, we let � = { ? ∈ N | i? (?)↓ } denote the halting problem.

2.2.1 Informant and Learners

Intuitively, for any natural number G an informant for a language ! answers
the question whether G ∈ ! in �nite time. More precisely, for every natural
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number G the informant � has either (G, 1) or (G, 0) in its range, where the �rst
is interpreted as G ∈ ! and the second as G ∉ !, respectively.

De�nition 2.1. (i) Let 5 ∈ (N×{0, 1})≤l . We denote by

pos(5 ) := {~ ∈ N | ∃G ∈ N : pr1(5 (G)) = ~ ∧ pr2(5 (G)) = 1},
neg(5 ) := {~ ∈ N | ∃G ∈ N : pr1(5 (G)) = ~ ∧ pr2(5 (G)) = 0}

the sets of all natural numbers, about which 5 gives some positive or negative
information, respectively.

(ii) Let ! be a language. We call every function � : N → N×{0, 1} such that
pos(� ) ∪ neg(� ) = N and pos(� ) ∩ neg(� ) = ∅ an informant. Further, we
denote by Inf the set of all informant and the set of all informant for the
language ! is de�ned as

Inf (!) := {� ∈ Inf | pos(� ) = !}.

(iii) Let � be an informant. If for every time C ∈ N the informant � reveals
information about C itself, for short pr1(� (C)) = C , we call � a canonical
informant.

It is immediate, that neg(� ) = N\! for every � ∈ Inf (!). In [Gol67] a canonical
informant is referred to as methodical informant.

We employ Turings model for human computers which is the foundation of
all modern computers to model the processes in human and machine learning.

De�nition 2.2. A learner is a (partial) computable function

" : dom(") ⊆ (N×{0, 1})<l → N.

The set of all partial computable functions" : dom(") ⊆ (N×{0, 1})<l → N

and total computable functions " : (N×{0, 1})<l → N are denoted by P and
R, respectively.

2.2.2 Convergence Criteria and Locking Sequences

Convergence criteria tell us what quality of the approximation and syntactic
accuracy of the learners’ eventual hypotheses are necessary to call learning
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successful. Further, we prove that learning success implies the existence of
sequences on which the learner is locked in a way corresponding to the con-
vergence criterion. We will use locking sequences to show that a collection of
languages cannot be learned in a certain way.

De�nition 2.3. Let" be a learner and L a collection of languages. Further, let
0 ∈ N ∪ {∗} and 1 ∈ N>0 ∪ {∗,∞}.

(i) Let ! ∈ L be a language and � ∈ Inf (!) an informant for ! presented to" .

a) We call ℎ = (ℎC )C ∈N ∈ Nl , where ℎC := " (� [C]) for all C ∈ N, the
learning sequence of " on � .

b) " learns ! from � with 0 anomalies and vacillation number 1 in the
limit, for short" Ex0

1
-learns ! from � or Ex0

1
(", � ), if there is a time

C0 ∈ N such that | {ℎC | C ≥ C0 } | ≤ 1 and for all C ≥ C0 we have
,ℎC =

0 !.

(ii) " learns L with 0 anomalies and vacillation number 1 in the limit, for
short" Ex0

1
-learns L, if Ex0

1
(", � ) for every ! ∈ L and every � ∈ Inf (!).

The intuition behind (i)(b) is that, sensing � , " eventually only vacillates
between at most 1-many hypotheses, where the case 1 = ∗ stands for eventually
�nitely many di�erent hypotheses. In accordance with the literature, we omit
the superscript 0 and the subscript 1.
Ex-learning, also known as explanatory learning, is the most common de�ni-

tion for successful learning and corresponds to the notion of identi�ability in the
limit by [Gol67], where the learner eventually decides on one correct hypothesis.
On the other end of the hierarchy of convergence criteria is behaviorally correct
learning, for short Bc- or Ex∞-learning, which only requires the learner to be
eventually correct, but allows in�nitely many syntactically di�erent hypotheses
in the limit. Behaviorally correct learning was introduced in [OW82]. The
general de�nition of Ex0

1
-learning for 0 ∈ N ∪ {∗} and 1 ∈ N>0 ∪ {∗} was �rst

mentioned in [Cas99].
In our setting, we also allow 1 = ∞ and subsume all Ex0

1
under the notion of a

convergence criterion, since they determine in which semi-topological sense the
learning sequence needs to have ! as its limit, in order to succeed in learning !.

In the following we transfer an often employed observation in [BB75] to the
setting of learning from informant and generalize it to all convergence criteria
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introduced in De�nition 2.3. For this we �rst recall the notion of consistency of
a sequence with a set according to [BB75] and [Bār77].

De�nition 2.4. Let 5 ∈ (N×{0, 1})≤l and � ⊆ N. We de�ne

Cons(5 , �) :⇔ pos(5 ) ⊆ � ∧ neg(5 ) ⊆ N \�

and say 5 is consistent with �.

De�nition 2.5. Let " be a learner, ! a language and 0 ∈ N ∪ {∗} as well as
1 ∈ N>0 ∪ {∗,∞}. We call f ∈ (N×{0, 1})<l a Ex0

1
-locking sequence for " on

!, if Cons(f, !) and

∃� ⊆ N ( |� | ≤ 1 ∧ ∀g ∈ (N×{0, 1})<l(
Cons(g, !) ⇒

(
" (fag)↓ ∧," (fag) =

0 ! ∧" (fag) ∈ �
) ) )

Further, a locking sequence for " on ! is a Ex-locking sequence for" on !.

Intuitively, the learner " is locked by the sequence f onto the language !
in the sense that no presentation consistent with ! can circumvent " guessing
admissible approximations to ! and additionally all guesses based on an extension
of f are captured by a �nite set of size at most 1.

Note that the de�nition implies " (f)↓,," (f) =
0 ! and " (f) ∈ � .

Lemma 2.6. Let" be a learner, 0 ∈ N∪ {∗}, 1 ∈ N>0∪ {∗,∞} and ! a language
Ex0

1
-identi�ed by" . Then there is a Ex0

1
-locking sequence for" on !.

Proof. This is a contradictory argument. Without loss of generality " is de�ned
on ∅. Assume towards a contradiction for every f with Cons(f, !), " (f)↓ and
," (f) =

0 ! and for every �nite � ⊆ N with at most 1 elements there exists a
sequence g�f ∈ (N×{0, 1})<l with

Cons(g�f , !) ∧
(
" (fag�f )↑ ∨¬," (fag�f ) =

0 ! ∨" (fag�f ) ∉ �
)
.

Let �! denote the canonical informant for !. We obtain an informant for ! on
which " does not Ex0

1
-converge by letting

� :=
⋃
=∈N

f=, with
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f0 := �! [1],
f=+1 := f=ag�=f=

a�! (= + 1)

for all = ∈ N, where in �= := {" (f−8 ) | max{0, = − 1 + 1} ≤ 8 ≤ = } we collect
"’s at most 1-many last relevant hypotheses. Since � is an informant for ! by
having interlaced the canonical informant for !, the learner " Ex0

1
-converges

on � . Therefore, let =0 be such that for all C with f−=0 E � [C] we have ℎC↓ and
,ℎC =

0 !. Then certainly {" (f−8 ) | =0 ≤ 8 ≤ =0 + 1 } has cardinality 1 + 1, a
contradiction. �

Obviously, an appropriate version also holds when learning from text is
considered.

2.2.3 Learning Success Criteria

We list the most common requirements that combined with a convergence
criterion de�ne when a learning process is considered successful.

The choice of additional requirements in the following de�nition is justi�ed
by prior investigations of the corresponding criteria, when learning from text,
see [KP16], [KS16] and [Jai+16].

De�nition 2.7. Let" be a learner, � ∈ Inf an informant and ℎ = (ℎC )C ∈N ∈ Nl
the learning sequence of" on � . We write

(i) Cons(", � ) ([Ang80]), if" is consistent on � , i.e., for all C

Cons(� [C],,ℎC ) .

(ii) Conv(", � ) ([Ang80]), if" is conservative on � , i.e., for all B, C with B ≤ C

Cons(� [C],,ℎB ) ⇒ ℎB = ℎC .

(iii) Dec(", � ) ([OSW82]), if" is decisive on � , i.e., for all A, B, C with A ≤ B ≤ C

,ℎA =,ℎC ⇒ ,ℎA =,ℎB .

(iv) Caut(", � ) ([OSW86]), if" is cautious on � , i.e., for all B, C with B ≤ C

¬,ℎC (,ℎB .
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(v) WMon(", � ) ([Jan91],[Wie91]), if" is weakly monotonic on � , i.e., for all
B, C with B ≤ C

Cons(� [C],,ℎB ) ⇒ ,ℎB ⊆,ℎC .

(vi) Mon(", � ) ([Jan91],[Wie91]), if " is monotonic on � , i.e., for all B, C with
B ≤ C

,ℎB ∩ pos(� ) ⊆,ℎC ∩ pos(� ) .

(vii) SMon(", � ) ([Jan91],[Wie91]), if" is strongly monotonic on � , i.e., for all
B, C with B ≤ C

,ℎB ⊆,ℎC .

(viii) NU(", � ) ([Bal+08]), if " is non-U-shaped on � , i.e., for all A, B, C with
A ≤ B ≤ C

,ℎA =,ℎC = pos(� ) ⇒ ,ℎA =,ℎB .

(ix) SNU(", � ) ([CM11]), if" is strongly non-U-shaped on � , i.e., for all A, B, C
with A ≤ B ≤ C

,ℎA =,ℎC = pos(� ) ⇒ ℎA = ℎB .

(x) SDec(", � ) ([KP16]), if " is strongly decisive on � , i.e., for all A, B, C with
A ≤ B ≤ C

,ℎA =,ℎC ⇒ ℎA = ℎB .

The following lemma states the implications between almost all of the above
de�ned learning restrictions, which form the foundation of our research. Fig-
ure 2.2 includes the resulting backbone, which is slightly di�erent from the one
for learning from text, since WMon does not necessarily imply NU in the context
of learning from informant.

Lemma 2.8. Let" be a learner and � ∈ Inf an informant. Then

(i) Conv(", � ) implies SNU(", � ) andWMon(", � ).

(ii) SDec(", � ) implies Dec(", � ) and SNU(", � ).

(iii) SMon(", � ) implies Caut(", � ),Dec(", � ),Mon(", � ) and WMon(", � ).

(iv) Dec(", � ) and SNU(", � ) each imply NU(", � ).
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(v) WMon(", � ) does not imply NU(", � ) in general.

Proof. Verifying the claimed implications is straightforward. In order to verify
(v), consider ! = 2N. Fix ?, @ ∈ N such that,? = 2N ∪ {1} and,@ = 2N and
de�ne the learner " for all f ∈ N×{0, 1}<l by

" (f) =
{
?, if 1 ∈ neg(f) ∧ 2 ∉ pos(f);
@, otherwise.

In order to prove WMon(", � ) for every � ∈ Inf (!), let � be an informant for
! and s� (G) := min{C ∈ N | pr1(� (C)) = G}, i.e., s� (1) and s� (2) denote the �rst
occurance of (1, 0) and (2, 1) in ran(� ), respectively. Then we have for all C ∈ N

,ℎC =

{
2N ∪ {1}, if s� (1) < C ≤ s� (2);
2N, otherwise.

We have,ℎB = ," (� [B ]) = 2N ∪ {1} as well as 1 ∈ neg(� [C]) for all B, C ∈ N
with s� (1) < B ≤ s� (2) and C > s� (2). Therefore, ¬Cons(� [C],,ℎB ) because
of neg(� [C]) * N \,ℎB . We obtain WMon(", � ) since whenever B ≤ C in N
are such that Cons(� [C],,ℎB ), we know that,ℎB = 2N ∪ {1} can only hold if
likewise s� (1) < C ≤ s� (2) and hence,ℎC = 2N ∪ {1}, which yields,ℎB ⊆,ℎC .
Furthermore, if,ℎB = 2N all options for,ℎC satisfy,ℎB ⊆ ,ℎC . Otherwise,
in case " observes the canonical informant � for !, we have,ℎ0 =,ℎ1 = 2N,
,ℎ2 = 2N ∪ {1} and,ℎC = 2N for all C > 2, which shows ¬NU(", � ). �

By the next de�nition, in order to characterize what successful learning means,
we choose a convergence criterion from De�nition 2.3 and may pose additional
learning restrictions from De�nition 2.7.

De�nition 2.9. Let T := P× Inf denote the whole set of pairs of possible learners
and informant. We denote by

J := {Caut,Cons,Conv,Dec, SDec,
WMon,Mon, SMon,NU, SNU,T }

the set of admissible learning restrictions and by

� := { Ex0
1
| 0 ∈ N ∪ {∗} ∧ 1 ∈ N>0 ∪ {∗,∞} }

23



Chapter 2 Map of Delayable Learning Success Criteria

the set of convergence criteria. Further, if

V ∈ {
=⋂
8=0

X8 ∩ W | = ∈ N,∀8 ≤ = (X8 ∈ J) and W ∈ � } ⊆ P × Inf,

we say that V is a learning success criterion.

Note that every convergence criterion is indeed a learning success criterion
by letting = = 0 and X0 = T, where the latter stands for no restriction. In the
literature convergence criteria are also called identi�caton criteria and then
denoted by � or �� .

We refer to all X ∈ {Caut,Cons,Dec,Mon, SMon,WMon,NU,T} also as se-
mantic learning restrictions, as they allow for proper semantic convergence.

2.2.4 Comparing the Learning Power of Learning Se�ings

In order to state observations about how two ways of de�ning learning success
relate to each other, the learning power of the di�erent settings is encapsulated
in notions [UInfV] de�ned as follows.

De�nition 2.10. Let U ⊆ P be a property of partial computable functions from the
set (N×{0, 1})<l to N and V a learning success criterion. We denote by [UInfV]
the set of all collections of languages that are V-learnable from informant by a
learner" with the property U .

In case the learner only needs to succeed on canonical informant, we denote the
corresponding set of collections of languages by [UInfcanV].

In the learning success criterion at position V , the learning restrictions to meet
are denoted in alphabetic order, followed by a convergence criterion.

At position U , we restrict the set of admissible learners by requiring for
example totality. The properties stated at position U are independent of learning
success.

For example, a collection of languages L lies in [RInfcanConvSDecEx] if and
only if there is a total learner " conservatively, strongly decisively Ex-learning
every ! ∈ L from canonical informant. The latter means that for every canonical
informant � for some ! ∈ L we have Conv(", � ), SDec(", � ) and Ex(", � ).

Note that it is also conventional to require " ’s hypothesis sequence to ful�ll
certain learning restrictions, not asking for the success of the learning process.
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For instance, we are going to show that there is a collection of languages L such
that:

• there is a learner which behaves consistently on all ! ∈ L and Ex-learns
all of them, for short L ∈ [InfConsEx].

• there is no learner which Ex-learns every ! ∈ L and behaves consistently
on all languages, for short L ∉ [ConsInfEx].

The existence of L is implicit when writing [ConsInfEx] ( [InfConsEx].

This notation makes it also possible to distinguish the mode of information
presentation. If the learner observes the language as solely positive information,
we write [UTxtV] for the collections of languages V-learnable by a learner with
property U from text. Of course for U and V the original de�nitions for the setting
of learning from text have to be used. All formal de�nitions for learning from
text can be found in [KP14].

2.3 Delayability versus Consistency

In order to facilitate smooth proofs later on, we discuss normal forms for learning
from informant. First, we consider the notion of set-drivenness. In Lemma 2.14
we show for delayable learning success criteria, that every collection of languages
that is learnable from canonical informant is also learnable by a set-driven learner
from arbitrary informant. By Proposition 2.15 this does not hold for consistent
Ex-learning. This also implies that consistency is a restriction when learning
from informant. Moreover, in Lemma 2.17 we observe that only considering
total learners does not alter the learnability of a collection of languages in case
of a delayable learning success criterion. This does not hold for consistent
Ex-learning by Proposition 2.18.

2.3.1 Delayability

We now introduce a property of learning restrictions and learning success criteria,
which allows general observations, not bound to the setting of Ex-learning, since
it applies to all of the learning restrictions introduced in De�nition 2.7 except
consistency.
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De�nition 2.11. Denote the set of all unbounded and non-decreasing functions
byS, i.e.,S := { s : N→ N | ∀G ∈ N∃C ∈ N : s(C) ≥ G and ∀C ∈ N : s(C + 1) ≥
s(C) }. Then every s ∈ S is a so called admissible simulating function.

A predicate V ⊆ P × I is delayable, if for all s ∈ S, all � , � ′ ∈ I and all
partial functions"," ′ ∈ P holds: Whenever we have pos(� ′[C]) ⊇ pos(� [s(C)]),
neg(� ′[C]) ⊇ neg(� [s(C)]) and " ′(� ′[C]) = " (� [s(C)]) for all C ∈ N, from
V (", � ) we can conclude V (" ′, � ′).

The unboundedness of the simulating function guarantees pos(� ) = pos(� ′)
and neg(� ) = neg(� ′).

In order to give an intuition for delayability, think of V as a learning restriction
or learning success criterion and imagine" to be a learner. Then V is delayable if
and only if it carries over from" together with an informant � to all learners" ′
and informant � ′ representing a delayed version of " on � . More concretely, as
long as the learner " ′ conjectures ℎs (C ) = " (� [s(C)]) at time C and has, in form
of � ′[C], at least as much data available as was used by " for this hypothesis, " ′
with � ′ is considered a delayed version of " with � .

The next result guarantees that arguing with the just de�ned properties covers
all of the considered learning restrictions but consistency.

Lemma 2.12. (i) Let X ∈ J be a learning restriction. Then X is delayable if
and only if X ≠ Cons.

(ii) Every convergence criterion W ∈ � is delayable.

(iii) The intersection of �nitely many delayable predicates on P × I is again
delayable. Especially, every learning success criterion V =

⋂=
8=0 X8 ∩ W with

X8 ∈ J \ {Cons} for all 8 ≤ = and W ∈ � , V is delayable.

Proof. We approach (8) by showing, thatCons is not delayable. To do so, consider
s ∈ S with s(C) := b C2c, � , �

′ ∈ I de�ned by � (G) := (b G2 c, 12N(b
G
2 c)) and

� ′(G) := (G, 12N(G)), where 12N stands for the characteristic function of all
even natural numbers. By s-m-n there are learners " and " ′ such that for all
f ∈ (N×{0, 1})<l

," (f) = {G ∈ N | (G even ∧ G ≤ b |f |2 c) ∨ (G odd ∧ G > b |f |2 c)}
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,"′ (f) = {G ∈ N | (G even ∧ G ≤ b |f |4 c) ∨ (G odd ∧ G > b |f |4 c)}.

Further, Cons(", � ) is easily veri�ed since for all C ∈ N

pos(� [C]) = {G ∈ N | G even ∧ G ≤ b C − 12 c} ⊆," (� [C ])

neg(� [C]) = {G ∈ N | G odd ∧ G ≤ b C − 12 c)} ⊆ N \," (� [C ])

but on the other hand ¬Cons(" ′, � ′) since for all C > 2

pos(� ′[C]) = {G ∈ N | G even ∧ G < C}

* {G ∈ N | (G even ∧ G ≤ b C4c) ∨ (G odd ∧ G > b C4c)} =,"′ (� ′ [C ]) .

The remaining proofs for (8) and (88) are straightforward. Basically, for Dec,
SDec, SMon and Caut, the simulating function s being non-decreasing and
" ′(� ′[C]) = " (� [s(C)]) for all C ∈ N would su�ce, while for NU, SNU and Mon
one further needs that the informant � and � ′ satisfy pos(� ) = pos(� ′). The
proof for WMon and Conv to be delayable, requires all assumptions, but s’s
unboundedness. Last but not least, in order to prove that every convergence
criterion W = Ex0

1
, for some 0 ∈ N ∪ {∗} and 1 ∈ N>0 ∪ {∗,∞}, carries over to

delayed variants, one essentially needs both characterizing properties of s and
of course " ′(� ′[C]) = " (� [s(C)]). Finally, (888) is obvious. �

2.3.2 Set-driven Learners and Canonical Informant

We start by formally capturing the intuition for a learner being set-driven, given
in the introduction.

De�nition 2.13 ([WC80]). A learner" is set-driven, for short Sd("), if for all
f, g ∈ N×{0, 1}<l

( pos(f) = pos(g) ∧ neg(f) = neg(g) ) ⇒ " (f) = " (g).

[Sch84] and [Ful85] showed that set-drivenness is a restriction when learn-
ing only from positive information and also the relation between the learning
restrictions di�er as observed in [KP16].
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In the next Lemma we observe that, by contrast, set-drivenness is not a
restriction in the setting of learning from informant. Concurrently, we generalize
[Gol67]’s observation, stating that considering solely canonical informant to
determine learning success does not give more learning power, to arbitrary
delayable learning success criteria.

Lemma 2.14. Let V be a delayable learning success criterion. Then

[InfcanV] = [SdInfV] .

Proof. Clearly, we have [InfcanV] ⊇ [SdInfV]. For the other inclusion, let L be
V-learnable by a learner " from canonical informant. We proceed by formally
showing that rearranging the input on the initial segment ofN, we already have
complete information about at that time, is an admissible simulation in the sense
of De�nition 2.11. Let ! ∈ L and � ′ ∈ I(!). For every 5 ∈ (N×{0, 1})≤l , thus
especially for � ′ and all its initial segments, we de�ne s5 ∈ S for all C for which
5 [C] is de�ned, by

s5 (C) = sup{G ∈ N | ∀| < G : | ∈ pos(5 [C]) ∪ neg(5 [C])},

i.e., the largest natural number G such that for all | < G we know, whether
| ∈ pos(5 ). In the following 5 will either be � ′ or one of its initial segments,
which in any case ensures pos(5 [C]) ⊆ ! for all appropriate C . By construction, s5
is non-decreasing and if we consider an informant � , since pos(� )∪neg(� ) = N, s�
is also unbounded. In order to employ the delayability of V , we de�ne an operator
Meth : (N×{0, 1})≤l → (N×{0, 1})≤l such that for every 5 ∈ (N×{0, 1})≤l
in form of Meth(5 ) we obtain a canonically sound version of 5 . Meth(5 ) is
de�ned on all C < s5 ( |5 |) in case 5 is �nite and on every C ∈ N otherwise by

Meth(5 ) (C) :=
{
(C, 0), if (C, 0) ∈ ran(5 );
(C, 1), otherwise.

Intuitively, in Meth(5 ) we sortedly and without repetitions sum up all informa-
tion contained in 5 up to the largest initial segment ofN, 5 without interruption
informs us about. For a �nite sequence f the canonical version O (f) has length
sf ( |f |). Now consider the learner " ′ de�ned by

" ′(f) = " (Meth(f)) .
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Since � := Meth(� ′) is a canonical informant for !, we have V (", � ). Moreover,
for all C ∈ N holds pos(� [s� ′ (C)]) ⊆ pos(� ′[C]) and neg(� [s� ′ (C)]) ⊆ neg(� ′[C])
by the de�nitions of s� ′ and of � using Meth. Finally,

" ′(� ′[C]) = " (Meth(� ′[C])) = " (Meth(� ′) [s� ′ (C)]) = " (� [s� ′ (C)])

and the delayability of V yields V (" ′, � ′). �

Therefore, while considering delayable learning from informant, looking only
at canonical informant already yields the full picture also for set-driven learners.
Clearly, the picture is also the same for so-called partially set-driven learners that
base their hypotheses only on the set and the number of samples.

The next proposition answers the arising question, whether Lemma 2.14 also
holds, when requiring the non-delayable learning restriction of consistency,
negatively. � denotes the halting problem.

Proposition 2.15. For L := {2� ∪ 2(� ∪ {G}) + 1 | G ∈ N} holds

L ∈ [RInfcanConsConvSDecSMonEx] \ [InfConsEx] .

Particularly, [InfConsEx] ( [InfcanConsEx].

Proof. Let ? : N→ N be computable such that,? (G) = 2� ∪ 2(� ∪ {G}) + 1 for
every G ∈ N and let ℎ be an index for 2� ∪ 2� + 1. Consider the total learner "
de�ned by

" (f) =
{
? (G), if G with 2G ∈ neg(f) and 2G + 1 ∈ pos(f) exists;
ℎ, otherwise

for every f ∈ (N×{0, 1})<l . Clearly, " conservatively, strongly decisively and
strongly monotonically Ex-learns L from informant and on canonical informant
for languages in L it is consistent.

Now, assume there is a learner" such thatL ∈ InfConsEx("). By Lemma 2.6
there is a locking sequence f for 2� ∪ 2� + 1. By s-m-n there is a computable
function

j (G) =
{
1, if " (f) = " (fa(2G + 1, 1));
0, otherwise.
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By the consistency of" on L, we immediately obtain that j is the characteristic
function for � , a contradiction. �

Note, that there must not be an indexable family witnessing the di�erence
stated in the previous proposition, since every indexable family is consistently
and conservatively Ex-learnable by enumeration.

Further, request informant for" and ! are introduced in [Gol67]. As the name
already suggests, there is an interaction between the learner and the informant
in the sense that the learner decides, about which natural number the informant
should inform it next. His observation [InfEx] = [InfcanEx] = [Inf reqEx] seems
to hold true when facing arbitrary delayable learning success criteria, but fails
in the context of the non-delayable learning restriction of consistency.

Since L in Proposition 2.15 lies in [InfcanEx], which by Lemma 2.14 equals
[InfEx], we gain that for learning from informant consistent Ex-learning is
weaker than Ex-learning, i.e., [InfConsEx] ( [InfEx] .

We now show that, as observed for learning from text in [Jai+99], a consis-
tent behavior regardless learning success cannot be assumed in general, when
learning from informant.

Proposition 2.16. For L := {N, � } holds

L ∈ [RInfConsConvSDecEx] \ [ConsInfEx] .

In particular, [ConsInfEx] ( [InfConsEx].

Proof. Fix an index ℎ for � and an index ? forN. The total learner " with

" (f) =
{
?, if neg(f) = ∅;
ℎ, otherwise

for every f ∈ (N×{0, 1})<l clearly consistently, conservatively and strongly
decisively Ex-learns L.

Aiming at the claimed proper inclusion, assume there is a consistent learner
" for L from informant. Since " learns � , by Lemma 2.6, we gain a locking
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sequence f ∈ (N×{0, 1})<l for " on � , which means Cons(f, � ),," (f) = �
and for all g ∈ (N×{0, 1})<l with Cons(g, � ) holds" (fag)↓= " (f). By letting

j (G) :=
{
1, if " (fa(G, 1)) = " (f);
0, otherwise

for allG ∈ N, we can decide� by the global consistency of" , a contradiction. �

2.3.3 Total Learners

Similar to full-information learning from text we show that for delayable learning
restrictions totality is not a restrictive assumption. Basically, the total learner
simulates the original learner on the longest initial segment of the input, on
which the convergence of the original learner is already visible.

Lemma 2.17. Let V be a delayable learning success criterion. Then

[InfV] = [RInfV] .

Proof. Let L ∈ [InfV] and " be a learner witnessing this. Without loss of
generality we may assume that ∅ ∈ dom("). We de�ne the total learner " ′ by
letting s" : (N×{0, 1})<l → N,

f ↦→ sup{B ∈ N | B ≤ |f | and " halts on f [B] after at most |f | steps}

and
" ′(f) := " (f [s" (f)]).

The convention sup(∅) = 0 yields that s" is total and it is computable, since for
" only the �rst |f |-many steps have to be evaluated on f ’s �nitely many initial
segments. One could also employ a Blum complexity measure here. Hence, " ′
is a total computable function.

In order to observe that" ′ InfV-learns L, let ! ∈ L and � be an informant for
!. By letting s(C) := s" (� [C]), we clearly obtain an unbounded non-decreasing
function, hence s ∈ S. Moreover, for all C ∈ N from s(C) ≤ C immediately
follows

pos(� [s(C)]) ⊆ pos(� [C]), neg(� [s(C)]) ⊆ neg(� [C]) as well as
" ′(� [C]) = " (� [s" (� [C])]) = " (� [s(C)]).
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By the delayability of V and with � ′ = � , we �nally obtain V (" ′, � ). �

By the next proposition also for learning from informant requiring the learner
to be total is a restrictive assumption for the non-delayable learning restriction of
consistency. For learning from text this was observed in [WZ95] and generalized
to X-delayed consistent learning from text in [AZ08].

Proposition 2.18. There is a collection of decidable languages witnessing

[RInfConsEx] ( [InfConsEx] .

Proof. Let > be an index for ∅ and de�ne for all f ∈ (N×{0, 1})<l the learner
" by

" (f) :=
{
>, if pos(f) = ∅;
imax(pos(f)) (〈f〉), otherwise.

We argue that L := { ! ⊆ N | ! is decidable and ! ∈ InfConsEx(") } is not
consistently learnable by a total learner from informant. Assume towards a
contradiction " ′ is such a learner. For a sequence f of natural numbers we
denote by f the corresponding canonical �nite informant sequence, ending with
the highest value f takes. Further, for a natural number G we denote by seq(G)
the unique element of (N×{0, 1})<l with 〈seq(G)〉 = G . Then by 1-1 ORT there
are 4, I ∈ N and functions 0, 1 : N<l → N, such that

∀f, g ∈ N<l ( f C g ⇒ max{0(f), 1 (f)} < min{0(g), 1 (g)} ), (2.1)

with the property that for all f ∈ N<l and all 8 ∈ N

f0 = ∅;

f8+1 = f8
a

{
0(f8), if " ′(f8 a0(f8)) ≠ " ′(f8);
1 (f8), otherwise;

(2.2)

,4 =
⋃
8∈N

pos(f8);

iI (~) =
{
1, if ~ ∈ pos(f~);
0, otherwise;
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i0 (f) (G) =


4, if " ′(fa0(f)) ≠ " ′(f) and

∀~ ∈ pos(seq(G)) iI (~) = 1 ∧
∀~ ∈ neg(seq(G)) iI (~) = 0;

ind(pos(seq(G))), otherwise;

i1 (f) (G) =


4, if ∀~ ∈ pos(seq(G)) iI (~) = 1 ∧

∀~ ∈ neg(seq(G)) iI (~) = 0;
ind(pos(seq(G))), otherwise;

The operator K as stated in 1-1 ORT on page 17 is implicit in the equalities.
Further, ℎ is also implicitly given by ℎ(0) = 4 , ℎ(1) = I and 0, 1 de�ned on
all remaining even and odd numbers, respectively. To be formally correct, the
functions 0 and 1 rely on a computable encoding function with computable
inverse mapping sequences f ∈ N<l to natural numbers and vice versa.

Let us now observe why the existence of such 4, I, 0, 1 is contradictory. Note
that iI witnesses ,4 ’s decidability by (2.1) and with this whether i0 (f) and
i1 (f) output 4 or stick to ? depends on Cons(seq(G),,4). Clearly, we have
,4 ∈ L and thus " ′ also InfConsEx-learns,4 . By the Ex-convergence there
are 4 ′, 9 ∈ N, where 9 is minimal, such that,4′ =,4 and for all 8 ≥ 9 we have
" ′(f8) = 4 ′ and hence " ′(f8 a0(f8)) = " ′(f8) by (2.2).

We now argue that ! := pos(f 9 ) ∪ {0(f 9 )} ∈ L. Let � be an informant for !
and C ∈ N. By (4.1) we observe that " is consistent on � as

" (� [C]) = imax(pos(� [C ])) (〈� [C]〉) =
{
4, if Cons(� [C],,4);
ind(pos(� [C])), otherwise.

Further, by the choice of 9 as well as (2.1) and (2.2) we have

0(f 9 ) ∉,4 =,4′, (2.3)

and with this," (� [C ]) = !, if pos(� [C]) = !.

On the other hand " ′ does not consistently learn ! as by the choice of 9
we obtain " ′(f 9a0(f 9 )) = " ′(f 9 ) = 4 ′ and ¬Cons(f 9a0(f 9 ),,4′) by (2.3), a
contradiction. �
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2.4 Relations between Delayable Learning Success
Criteria

In order to reveal the relations between the delayable learning restrictions in
Ex-learning from informant, we provide a regularity property of learners, called
syntactic decisiveness, for Ex-learning in Lemma 2.20.

Most importantly, in Proposition 2.21 we acquire that conservativeness and
strongly decisiveness do not restrict informant learning. After this, Proposi-
tions 2.23 and 2.22 provide that cautious and monotonic learning are incompara-
ble, implying that both these learning settings are strictly stronger than strongly
monotonic learning and strictly weaker than unrestricted learning. The overall
picture is summarized in Figure 2.2 and stated in Theorem 2.24.

2.4.1 Syntactically Decisive Learning

A further bene�cial property, requiring a learner never to syntactically return to
an abandoned hypothesis, is supplied.

De�nition 2.19 ([KP16]). Let" be a learner, ! a language and � an informant
for !. We write

SynDec(", � ), if" is syntactically decisive on � , i.e.,

∀A, B, C : (A ≤ B ≤ C ∧ ℎA = ℎC ) ⇒ ℎA = ℎB .

The following easy observation shows that this variant of decisiveness can
always be assumed in the setting ofEx-learning from informant. This is employed
in the proof of our essential Proposition 2.21, showing that conservativeness
and strong decisiveness do not restrict Ex-learning from informant.

Lemma 2.20. We have [InfEx] = [SynDecInfEx].

Proof. Since obviously [SynDecInfEx] ⊆ [InfEx], it su�ces to show that every
InfEx-learnable collection of languages is also SynDecEx-learnable from infor-
mant. For, let L ∈ [InfEx] and" witnessing this. In the de�nition of the learner
" ′, we make use of a one-one computable padding function pad : N×N→ N

such that,? = dom(i?) = dom(ipad(?,G) ) = ,pad(?,G) for all ?, G ∈ N. Now,
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consider " ′ de�ned by

" ′(f) :=
{
pad(" (f), |f |), if " (f−) ≠ " (f);
" ′(f), otherwise.

" ′ behaves almost like" with the crucial di�erence, that whenever" performs
a mind change, " ′ semantically guesses the same language as " did, but syntac-
tically its hypothesis is di�erent from all former ones. The padding function’s
de�ning property and the assumption that " InfEx-learns L immediately yield
the SynDecInfEx-learnability of L by " ′. �

Note that SDec implies SynDec, which is again a delayable learning restriction.
Thus by Lemma 2.14, in the proof of Lemma 2.20 we could have also restricted
our attention to canonical informant. It is further easy to see that Lemma 2.20
also holds for all other convergence criteria introduced and the simulation does
not destroy any of the learning restrictions introduced in De�nition 2.7.

2.4.2 Conservative and Strongly Decisive Learning

The following proof for ConvSDecEx-learning being equivalent to Ex-learning
from informant builds on the normal forms of canonical presentations and
totality provided in Section 2.3 as well as the regularity property introduced in
the last subsection.

Proposition 2.21. We have [InfEx] = [InfConvSDecEx].

Proof. Obviously [InfEx] ⊇ [InfConvSDecEx] and by the Lemmas 2.14, 2.17
and 2.20 it su�ces to show [RSynDecInfEx] ⊆ [InfcanConvSDecEx].

In the following for every set - and C ∈ N, let - [C] denote the canonical
informant sequence of the �rst C elements ofN.

Now, let L ∈ [RSynDecInfEx] and " a learner witnessing this. In particular,
" is total and on informant for languages in L we have that " never returns
to a withdrawn hypothesis. We want to de�ne a learner " ′ which mimics
the behavior of " , but modi�ed such that, if f is a locking sequence, then the
hypothesis of " ′ codes the same language as the guess of " . However, if f is
not a locking sequence, then the language guessed by " ′ should not include
data that " changes its mind on in the future. Thus, carefully in form of a
recursively de�ned ⊆-increasing sequence (�Cf )C ∈N in the guess of " ′ we only
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include the elements of the hypothesis of " that do not cause a mind change of
" when looking more and more computation steps ahead. The following formal
de�nitions make sure, this can be done in a computable way.

For every f ∈ (N×{0, 1})<l , C ∈ N with C ≥ |f | and � ⊆, C
" (f) , we let

rCf (�) = min
{
|f | ≤ A ≤ C

��� � ⊆, A
" (f)

}
.

Moreover, we de�ne1

XCf (�) = {- ⊆, C
" (f) | max(- ) < inf (, C

" (f) \ - ), � ( - and
" (f) = " (, C

" (f) [ r
C
f (- ) + 1 ] ) }.

In the following we abbreviate - ⊆ , C
" (f) and max(- ) < inf (, C

" (f) \ - ) by
- E, C

" (f) and say that - is an initial subset of, C
" (f) .

Aiming at providing suitable hypotheses ? (f) for the conservative strongly
decisive learner " ′, given f , we carefully enumerate more and more elements
included in," (f) . We are going to start with the positive information provided
by f . Having obtained �Cf with XCf (�Cf ) we have a set at hand that contains
all initial subsets - of, C

" (f) strictly incorporating �Cf , for which " does not
di�erentiate between f and the appropriate initial segment, C

" (f) [ r
C
f (- ) +1 ] of

the canonical informant of " ’s guess on f . Thus XCf (�Cf ) contains our candidate
sets for extending �Cf . The length rCf (- ) + 1 of the initial segment is minimal
such that - is a subset of, rCf (- )

" (f) and at least |f | to assure Ex-convergence of
the new learner.

For an arbitrary f ∈ (N×{0, 1})<l this reads as follows

�0
f = pos(f);

∀C ∈ ℕ : �C+1f =


, C
" (f) , if neg(f) ∩�Cf ≠ ∅;

max⊆ XCf (�Cf ), else if XCf (�Cf ) ≠ ∅;
�Cf , otherwise.

Furthermore, using s-m-n, we de�ne ? : (N×{0, 1})<l → N as a one-one

1 We suppose inf (∅) = ∞ for convenience.
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function, such that for all f ∈ (N×{0, 1})<l

,? (f) =
⋃
C ∈ℕ

�Cf . (2.4)

In the following, for all g ∈ (N×{0, 1})<l we denote by g ′ the largest initial
segment of g for which " ′(g ′) = " ′(g), i.e., the last time " ′ performed a mind
change. Finally, we de�ne our new learner " ′ by

" ′(f) =


? (f), if |f | = 0;
? (f), else if " ((f−) ′) ≠ " (f) ∧ ¬Cons(f,� |f |(f−)′);
" ′(f−), otherwise.

That is," ′ follows the mind changes of" once a suitably inconsistent hypothesis
has been seen. All hypotheses of " are poisoned in a way to ensure that we can
decide inconsistency.

Let us �rst observe that " ′ Ex-learns every ! ∈ InfEx(") from informant.
For, let C0 be minimal such that, for all C ≥ C0, " (![C]) = " (![C0]). Thus,
4 := " (![C0]) is a correct hypothesis for !.

If " ′ does not make a mind change in or after C0, then " ′ converged already
before that mind change of " . Thus, let B0 < C0 be minimal such that for all
C ≥ B0, 4 ′ := " ′(![B0]) = " ′(![C]). As ? is one-one and " learns syntactically
decisive, we have " (![B0]) ≠ " (![C]) for all C ≥ C0. From (![C − 1]) ′ = ![B0]
and the de�nition of " ′ we get Cons(![C], �C

! [B0 ]) for all C ≥ C0. Thus,,4′ = !,
because the �nal hypothesis,4′ of " ′ contains all elements of ! and no other
by Equation (2.4).

In case " ′ makes a mind change in or after C0, let C1 ≥ C0 be the time of that
mind change. As " does not perform mind changes after C0, the learner " ′
cannot make further mind changes and therefore converges to 4 ′ := ? (![C1]).
By construction we have �C

! [C1 ] ⊆,4 = ! for all C ∈ N and with it,4′ ⊆ ! by
Equation 2.4. Towards a contradiction, suppose,4′ ( ! and let G ∈ ! \,4′

be minimal. By letting B0 such that pos(![G]) ⊆ �
B0
! [C1 ] and G ∈ , B0

4 , every
initial subset of, B0

4 extending �B0
! [C1 ] would necessarily contain G . Therefore

we have �B
! [C1 ] = �

B0
! [C1 ] and XB

! [C1 ] (�
B0
! [C1 ]) = ∅ for all B ≥ B0. We obtain the

Ex-convergence of " ′ by constructing B2 ≥ B0 with XB2
! [C1 ] (�

B0
! [C1 ]) ≠ ∅. For this,

let ~ := max(�B0
! [C1 ] ∪ {G}) which implies �B0

! [C1 ] ( pos(![~ + 1]). Moreover,
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let B1 ≥ C1 be large enough such that ![~ + 1] = , B1
4 [~ + 1]. Thus, by letting

A := r
B1
! [C1 ] (pos(![~ + 1])) + 1 we gain A = rB

! [C1 ] (pos(![~ + 1])) + 1 for all B ≥ B1,
where the latter denotes the time window considered in the third requirement
for pos(![~ + 1]) ∈ XB

! [C1 ] (�
B0
! [C1 ]). Furthermore, let B2 ≥ B1 with ![A ] =, B2

4 [A ].
By the de�nition of A we have A > C1 ≥ C0 and gain

pos(![~ + 1]) E, B2
4 , �

B2
! [C1 ] = �

B0
! [C1 ] ( pos(![~ + 1]) and

" (![C1]) = 4 = " (![A ]) = " (, B2
4 [A ] ),

for short pos(![~ + 1]) ∈ XB2
! [C1 ] (�

B0
! [C1 ]), implying XB2

! [C1 ] (�
B0
! [C1 ]) ≠ ∅.

Now we come to prove that " ′ is conservative on every ! ∈ InfEx(").
For, let C be such that " ′(![C]) ≠ " ′(![C + 1]). Let 4 ′ := " ′(![C]) and let
C ′ ≤ C be minimal such that " ′(![C ′]) = 4 ′. From the mind change of " ′ we
get ¬Cons(![C + 1], �C+1

! [C ′]). In case it holds neg(![C + 1]) ∩ �C+1
! [C ′] ≠ ∅, since

�C+1
! [C ′] ⊆,4′ , we would immediately observe ¬Cons(![C + 1],,4′). Therefore,

we may assume pos(![C +1]) \�C+1
! [C ′] ≠ ∅. Suppose, by way of contradiction,,4′

is consistent with ![C + 1], i.e., pos(![C + 1]) ⊆,4′ and neg(![C + 1]) ∩,4′ = ∅.
Then we have neg(![C +1]) ∩�B

! [C ′] = ∅ for all B ∈ N. Since pos(![C +1]) ⊆,4′ ,
there is C0 minimal such that

![C + 1] = �C0+1
! [C ′] [C + 1] . (2.5)

We have neg(![C ′]) ∩�C0
! [C ′] = ∅ as otherwise ¬Cons(![C + 1],,4′). Because C0

was minimal, we have �C0
! [C ′] ( �

C0+1
! [C ′] and with this �C0+1

! [C ′] ∈ X
C0
! [C ′] (�

C0
! [C ′]) by

the de�nition of �C0+1
! [C ′] . In particular, this tells us

�
C0+1
! [C ′] E,

C0
" (! [C ′]) and (2.6)

" (![C ′]) = " (, C0
" (! [C ′]) [ r

C0
! [C ′] (�

C0+1
! [C ′]) + 1 ] ). (2.7)

and therefore with

![C ′] E ![C + 1]
(2.5)
E �

C0+1
! [C ′]

(2.6)
E ,

C0
" (! [C ′]) [ r

C0
! [C ′] (�

C0+1
! [C ′]) + 1 ]

by Equation (2.7) and " ’s syntactic decisivenes we get " (![C ′]) = " (![C + 1]).
Therefore, " ′ did not make a mind change in C + 1, a contradiction. �
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2.4.3 Completing the Picture of Delayable Learning

The next two propositions show that monotonic and cautious Ex-learning are
incomparable on the level of indexable families. With Proposition 2.21 this
yields all relations between delayable Ex-learning success criteria as stated in
Theorem 2.24.

We extend the observation of [OSW86] for cautious learning to restrict learn-
ing power with the following result. The positive part has already been discussed
in the example in the introduction.

Proposition 2.22. For the indexable family L := {N \ - | - ⊆ N �nite} holds

L ∈ [InfMonEx] \ [InfCautBc] .

Particularly, [InfCautEx] ( [InfEx].

Proof. In order to approach L ∉ [InfCautBc], let " be a InfBc-learner for L
and �0 the canonical informant forN. Moreover, let C0 be such that," (�0 [C0 ]) = N.
Let �1 be the canonical informant for !1 := N \ {C0}. Since " learns !1, there
is C1 > C0 such that," (�1 [C1 ]) = !1. We have �1 [C0] = �0 [C0] and hence " is not
cautiously learning !1 from �1.

We now show the MonEx-learnability. By s-m-n there is a computable func-
tion ? : N→ N such that for all �nite sets - holds,? ( 〈- 〉) = N \- , where 〈- 〉
denotes a canonical code for - as already employed in the proof of Proposition
2.23. We de�ne the learner " by letting for all f ∈ N×{0, 1}<l

" (f) = ? (〈neg(f)〉) .

The corresponding intuition is that " includes every natural number in its
guess, not explicitly excluded by f . Clearly, " learns L and behaves monotoni-
cally on L, since for every - ⊆ N �nite, every informant � forN \ - and every
C ∈ N, we have," (� [C ]) ⊇ N \ - and therefore," (� [C ]) ∩N \ - = N \ - . �

This reproves [InfSMonEx] ( [InfMonEx] observed in [LZK96] also on the
level of indexable families.

In the next proposition the learner can even be assumed cautious on languages
it does not identify. Thus, according to De�nition 2.10 we write this success
independent property of the learner on the left side of the mode of presentation.
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Proposition 2.23. For the indexable family

L := {2- ∪ (2(N \ - ) + 1) | - ⊆ N �nite or - = N}

holds L ∈ [CautInfEx] \ [InfMonBc].
Particularly, [InfMonEx] ( [InfEx].

Proof. We �rst show L ∉ [InfMonBc]. Let " be a InfBc-learner for L. Further,
let �0 be the canonical informant for !0 := 2N ∈ L. Then there exists C0 such
that," (�0 [2C0 ]) = 2N. Moreover, consider the canonical informant �1 for

!1 := 2{0, . . . , C0} ∪ (2(N \ {0, . . . , C0}) + 1) ∈ L

and let C1 > C0 such that," (�1 [2C1 ]) = !1. Similarly, we let �2 be the canonical
informant for

!2 := 2{0, . . . , C0, C1 + 1} ∪ (2(N \ {0, . . . , C0, C1 + 1}) + 1) ∈ L

and choose C2 > C1 with," (�2 [2C2 ]) = !2. Since 2(C1 + 1) ∈ (!0 ∩ !2) \ !1 and by
construction �2 [2C0] = �0 [2C0] as well as �2 [2C1] = �1 [2C1], we obtain

2(C1 + 1) ∈," (�2 [2C0 ]) ∩ !2 and 2(C1 + 1) ∉," (�2 [2C1 ]) ∩ !2

and therefore " does not learn !2 monotonically from �2.

Let us now adressL ∈ [CautInfEx]. Fix ? ∈ N such that,? = 2N. Further, by
s-m-n there is a computable function @ : N→ Nwith,@ ( 〈- 〉) = - ∪(2N\- ) +1,
where 〈- 〉 stands for a canonical code of the �nite set - . We de�ne the learner
" for all f ∈ N×{0, 1}<l by

" (f) =
{
?, if pos(f) ⊆ 2N;
@(〈pos(f) ∩ 2N〉), otherwise.

Intuitively, " guesses 2N as long as no odd number is known to be in the
language ! to be learned. If for sure ! ≠ 2N, then " assumes that all even
numbers known to be in ! so far are the only even numbers therein.

It is easy to verify that " is computable and by construction it learns L. For
establishing the cautiousness, let ! be any language, � an informant for ! and
B ≤ C . Furthermore, assume," (� [B ]) ≠ ," (� [C ]) . In case pos(� [B]) * 2N, we
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have G ∈ (pos(� [C]) ∩ 2N) with G ∉ (pos(� [B]) ∩ 2N) and therefore as desired
," (� [C ]) \," (� [B ]) ≠ ∅. Then pos(� [B]) ⊆ 2N implies," (� [B ]) = 2N and thus
again," (� [C ]) \," (� [B ]) ≠ ∅. �

We sum up the preceding results in the next theorem and also represent them
in Figure 2.2.

InfEx

SdInfEx

T

NU

Dec

SMon

Mon

WMon

Caut

SDec

SNU

Conv

Figure 2.2: Relations between delayable learning restrictions in full-information (ex-
planatory) Ex-learning of languages from informant. The implications according to
Lemma 2.8 are represented as arrows from bottom to top. Two learning settings are
equivalent if and only if they lie in the same grey outlined zone as stated in Theorem 2.24.

Theorem 2.24. We have

(i) ∀X ∈ {Conv,Dec, SDec,WMon,NU, SNU} :

[InfXEx] = [InfEx] .
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(ii) [InfMonEx] ⊥ [InfCautEx].

Proof. The �rst part is an immediate consequence of Proposition 2.21 and so is
the second part of the Propositions 2.22 and 2.23. �

2.5 Further Research

According to [OSW86] requiring the learner to base its hypothesis only on
the previous one and the current datum, makes Ex-learning harder. While
the relations between the delayable learning restrictions for these so called
iterative learners in the presentation mode of solely positive information has
been investigated in [Jai+16], so far this has not been done when learning
from informant. For indexable families, this was already of interest to [ST92],
[LG03] and [JLZ07b]. Moreover, Conv restricts iterative learning from informant,
[JLZ07b], and in Chapter 4 we show that also SNU does. Memory-restricted
learning, as investigated in Part II, is of special interest as it models the behavior
of neural networks and other machine learning paradigms.

Further improvements to the model would be more problem speci�c hypothe-
sis spaces, a probabilistic presentation of the data and other convergence criteria.
We address some of these issues in Chapter 3.
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3 Approximations, Vacillations
and another Hypothesis Space

We continue our investigations of learning from informant, a model for human
and machine learning introduced by E. M. Gold. We answer naturally aris-
ing questions originating in results on learning functions and learning formal
languages from solely positive information.

More concretely, we show that a highly restricted form of learning formal
languages from informant does not imply the learnability from solely positive
information.

We also obtain an anomalous hierarchy when allowing for an increasing �nite
number of anomalies of the hypothesized language by the learner compared
with the language to be learned.

In contrast to the vacillatory hierarchy for learning from solely positive infor-
mation, we observe a duality depending on whether in�nitely many vacillations
between di�erent (almost) correct hypotheses are still considered a successful
learning behavior.

Finally, we suggest a hypothesis space more suitable for symmetric classi-
�cation tasks and observe the relations between the corresponding delayable
learning success criteria.

3.1 Introduction

We are doing research in the area of inductive inference and investigate the
learnability of formal languages. This branch of algorithmic learning theory
has connections to computability theory, complexity theory, cognitive science,
machine learning, and more generally arti�cial intelligence. The task is to
generalize from labeled training samples by providing a classi�er for deciding
whether a given word belongs to a certain concept. Learning from informant was
introduced in [Gol67] and further investigated in several publications, including
[BB75], [Bār77], [Höl+17] and [Gao+19].

Following [Gol67] the learner is modelled by a computable function. It suc-
cessively receives sequences incorporating more and more data and outputs a
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hypothesis every time. This source of labeled data is called an informant, which
is supposed to be complete in the limit. Learning is considered successful, if after
some �nite time the learners’ hypotheses yield good enough approximations to
the target language. The original and most common learning success criterion is
called Ex-learning and additionally requires that the learner eventually settles
on exactly one correct hypothesis, which precisely captures the words in the
language to be learned. We also consider approximations. As a single language
can be learned by a constant learner, we wonder whether there is a learner
successful on all languages in a �xed concept class.

For example, the concept class L = {N \- | - ⊆ N �nite } is learnable from
informant but not from purely positive information.

Learning from exclusively positive information, so-called text, plays a promi-
nent role in Inductive Inference and a lot of references are given in Section 2.1.

We add to a careful investigation on how informant and text learning relate
to each other in [LZ93]. We show that even for the most restrictive delayable
learning success criterion when Ex-learning from informant there is a collection
of recursive languages learnable in this setting that is not learnable from text.

Regarding approximations, admitting for �nitely many anomalies 0, i.e. ele-
ments of the symmetric di�erence of the hypothesized and the target concept,
yields the anomalous hierarchy for learning from text in [CL82]. We provide
an equivalence between learning collections of functions from enumerations of
their graphs to learning the languages encoding their graphs from informant.
This allows us to transfer the anomalous hierarchy when learning functions
in [Bār74] and [CS83] to the setting of learning from informant and therefore
obtain a hierarchy

[InfEx] ( . . . ( [InfEx0] ( [InfEx0+1] ( . . . .

[Cas99] observed the vacillatory hierarchy for learning from text. Thereby in
the limit a vacillation between 1 many (almost) correct descriptions is allowed,
where 1 ∈ N>0 ∪ {∞}. In contrast we observe a duality by showing that, when
learning from informant, requiring the learner to eventually output exactly one
correct enumeration procedure is as powerful as allowing any �nite number of
correct descriptions in the limit. Furthermore, 1 = ∞, known as behaviorally
correct (Bc) learning, gives us strictly more learning power. In particular, we
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obtain for all 1 ∈ N>0

[InfEx] = . . . = [InfEx1] = [InfEx1+1] = . . . ( [InfBc] .

We also compare learning settings in which both 0 and 1 do not take their
standard values 0 and 1, respectively.

While most research in inductive inference regarding learning formal lan-
guages focuses on the, -hypothesis space we argue that the hypothesis space
of total computable functions might be more suitable for symmetric machine
learning tasks. We derive the complete map with respect to this setting. It equals
the one observed for the, -hypothesis space derived in Section 2.4.

In Section 3.2 we generalize the above mentioned result in [Gol67], namely
Ex-learning from text to be harder than Ex-learning from informant by further
restricting learning from informant. In Section 3.3 we provide the aforemen-
tioned anomalous hierarchy and vacillatory duality. Section 3.4 contains the
relations between the delayable learning success criteria for the more symmetric
hypothesis space of recursive languages.

We kept every section as self-contained as possible. Unavoidably, all sections
build on Section 2.2 in Chapter 2.

3.2 Outperforming Learning from Text

Already in [Gol67] it was observed that [TxtEx] ( [InfEx]. Later on in [LZ93]
the interdependencies when considering the di�erent monotonicity learning
restrictions were investigated. For instance, they showed that there exists an
indexable family L ∈ [InfMonEx] \ [TxtEx] and in contrast that for indexable
families InfSMonEx-learnability implies TxtEx-learnability. We show that this
inclusion fails on the level of families of recursive languages even with all
learning restrictions at hand.

Proposition 3.1. For the class of recursive languages

L := {2(! ∪ {G}) ∪ 2! + 1 | ! is recursive ∧,min(!) = ! ∧ G ≥ min(!)}

holds L ∈ [InfConvSDecSMonEx] \ [TxtEx] .

Proof. Let ?< denote an index for 2,< ∪ 2,< + 1 and ?<,G an index for 2(,< ∪
{G}) ∪ 2,< + 1. The learner " will look for the minimum of the presented set
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and moreover try to detect the exception G , in case it exists. Thus, it checks
for all < such that 2< ∈ pos(f) or 2< + 1 ∈ pos(f) whether for all : < <

holds 2: ∈ neg(f) or 2: + 1 ∈ neg(f). In case< has this property relative to
f , we write min! (<,f) as< might be the minimum of the language presented.
Further, " tries to �nd G such that 2G ∈ pos(f) and 2G + 1 ∈ neg(f) and we
abbreviate by exc! (G, f) that G is such an exception. Consider the learner " for
all f ∈ (N×{0, 1})<l de�ned by

" (f) =


ind(∅), if there is no< with min! (<,f);
?<, if min! (<,f) and there is no G with exc! (G, f);
?<,G , if min! (<,f) and G is minimal with exc! (G, f).

Clearly, " conservatively, strongly decisively and strongly monotonically Ex-
learns L.

To observe L ∉ [TxtEx], assume there exists " such that L ∈ TxtEx("). By
ORT there exists 4 ∈ N such that for all 8 ∈ N

�f (8) = { : ∈ N | " (f) ≠ " (fa(24 + 48): ) };
�f (8) = { : ∈ N | " (f) ≠ " (fa(24 + 48 + 2): ) };

f0 = (24, 24 + 1);

f8+1 =



f8 , if �f8 (8) = �f8 (8) = ∅
or 8 > 0 ∧ f8−1 = f8 ;

f8
a(24 + 48)inf (�f8 (8))a(24 + 48 + 1), if �f8 (8) ≠ ∅

∧ inf (�f8 (8)) ≤
inf (�f8 (8)));

f8
a(24 + 48 + 2)inf (�f8 (8))a(24 + 48 + 3), if �f8 (8) ≠ ∅

∧ inf (�f8 (8)) <
inf (�f8 (8));

,4 =
⋃
8∈N
{= | 2= + 1 ∈ ran(f8)}.

Intuitively, the program on input = successively computes f8 until it �nds the
minimal G ≥ 2= + 1 in its range; it halts if and only if G is found and G = 2= + 1.
,4 is recursive, because we can decide it along the construction of the f8 .
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Thus, 2,4 ∪2,4 +1 ∈ L. If for some index 8 holds f8+1 = f8 , then" fails to learn
2(,4 ∪ {4 + 28}) ∪ 2,4 + 1 or 2(,4 ∪ {4 + 28 + 1}) ∪ 2,4 + 1. On the other hand,
if there is no such 8 , by letting ) :=

⋃
8∈N f8 we obtain a text for 2,4 ∪ 2,4 + 1,

on which " performs in�nitely many mindchanges. �

3.3 Anomalous Hierarchy and Vacillatory Duality

We compare the convergence criteria Ex0
1

from De�nition 2.3 for di�erent pa-
rameters 0 ∈ N ∪ {∗} and 1 ∈ N>0 ∪ {∗,∞}. The duality depending on whether
1 = ∞ for �xed 0 follow from the Propositions 3.4 and 3.5.

3.3.1 Anomalous Hierarchy

Bene�cial for analyzing the anomalous hierarchy for informant learning are
results from function learning. When learning collections of recursive functions,
a text for the graph of the respective function 5 is presented to the learner and
it wants to infer a program code ? such that i? is a good enough approximation
to 5 . More formally, 5 =0 i? if and only if |{ G | 5 (G) ≠ i? (G) }| ≤ 0. We denote
the associated learning criteria in the form [FnEx0

1
].

By the next lemma, collections of functions separating two convergence
criteria in the associated setting yield a separating collection for the respective
convergence criteria, when learning languages from informant.

In the following we make use of a computable bijection 〈. , .〉 : N ×N→ N

with its computable inverses c1, c2 : N→ N such that G = 〈c1(G), c2(G)〉 for all
G ∈ N.

Lemma 3.2. For 5 ∈ R let !5 := { 〈G, 5 (G)〉 | G ∈ N } denote the language
encoding its graph. Let 0 ∈ N∪ {∗} and 1 ∈ N>0 ∪ {∗,∞}. Then for every F ⊆ R
we de�ne LF = { !5 | 5 ∈ F } and obtain

F ∈ [FnEx0
1
] ⇔ LF ∈ [InfEx01] .

Proof. Let 0, 1 and F be as stated. First, assume there is a learner " on function
sequences such that F ∈ FnEx0

1
("). In order to de�ne the learner " ′ acting

on informant sequences and returning , -indices, we employ the following
procedure for obtaining a, -code � (?) for !i? , when given a i-code ?:
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Given input =, interpreted as 〈G,~〉, let the program encoded by
? run on G = c1(=). If it halts and returns ~ = c2(=), then halt;
otherwise loop.

The learner " ′ acts on f ∈ (N×{0, 1})<l by

" ′(f) := � (" (decode(pos(f)))),

where decode(pos(f)) denotes the from f uniformly computable sequence g
with g (8) = (c1(=8), c2(=8)) for all 8 < |pos(f) | = |g |, where (=8)8< |pos(f) | denotes
the enumeration of pos(f) according to f . By construction, LF ∈ InfEx01 ("

′)
as � preserves the number of anomalies.

For the other claimed direction let" be a learner on informant sequences with
LF ∈ InfEx0

1
("). As above we employ a computable function that for every

5 ∈ R transforms a, -index ? for !5 into a i-index � (?) such that i� (?) = 5 .
Thereby, we interpret each natural number 8 as 〈〈D, {〉, C〉 and check whether i?
halts on 〈D, {〉 in at most C steps of computation. If so, we check whether D is
the argument G we want to compute 5 (G) for and in case the answer is yes, we
return {.

Given input G , for 8 = 0 till∞ do the following: IfQ? (c1(8)) ≤ c2(8)
and c1(c1(8)) = G , then return c2(c1(8)); otherwise increment 8 .

Before de�ning " ′, we argue that � preserves the number of anomalies. Let
G, ? ∈ N be such that 5 (G) ≠ i� (?) (G). Then 〈G, i� (?) (G)〉 ∉ !5 . On the
other hand, by the de�nition of � we have Q? (〈G, i� (?) (G)〉)↓ and therefore
〈G, i� (?) (G)〉 ∈,? \ !5 .

We de�ne the learner " ′ on f ∈ (N×N)<l by

" ′(f) := � (" (f̂)),

where we transform f = ((G0, 5 (G0)), . . . , (G |f |−1, 5 (G |f |−1))) into an informant
sequence f̂ of length |̂f | := max{ 9 | ∀8 < 9 c1(8) < |f |} by letting

f̂ (8) :=
{
(〈Gc1 (8) , c2(8)〉, 1) if f (c1(8)) = (Gc1 (8) , c2(8))
(〈Gc1 (8) , c2(8)〉, 0) otherwise

for all 8 < |̂f |. Note that for every 5 ∈ R and every ) ∈ Txt(5 ) by letting
�) :=

⋃
9 ∈N )̂ [ 9], we obtain an informant for !5 . We show (〈G, 5 (G)〉, 1) ∈ �) for
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every G ∈ N and leave the other details to the reader. Let G ∈ N and 8 minimal,
such that (G, 5 (G)) ∈ ran() [8]), i.e., G8−1 = G . Further, let 9 be such that 8 ≤ ẑ.
Then clearly

�) (〈8 − 1, 5 (G)〉) = )̂ [ 9] (〈8 − 1, 5 (G)〉) = (〈G, 5 (G)〉, 1).

In a nutshell, F ∈ FnEx0
1
(" ′) as � preserves the number of anomalies. �

With this we obtain a hierarchy of learning restrictions.

Proposition 3.3. Let 1 ∈ {1,∞}. Then
(i) for all 0 ∈ N holds [InfEx0

1
] ( [InfEx0+1

1
],

(ii)
⋃
0∈N [InfEx01] ( [InfEx

∗
1
],

(iii) [InfEx∗] ( [InfBc].

Proof. By Lemma 3.2 this results transfer from the corresponding observations
for function learning in [Bār74] and [CS83]. �

In particular, we have

[InfEx] ( . . . ( [InfEx0] ( [InfEx0+1] ( . . .
(

⋃
0∈N
[InfEx0] ( [InfEx∗]

( [InfBc] ( . . . ( [InfBc0] ( [InfBc0+1] ( . . .
(

⋃
0∈N
[InfBc0] ( [InfEx∗∞] .

Lemma 3.2 obviously also holds when considering TxtEx0
1
-learning languages,

where the construction of the text sequence from the informant sequence is
folklore. This reproves the results in [CL82].

3.3.2 Duality of the Vacillatory Hierarchy

In Proposition 3.3 we already observed a hierarchy, when varying the number
of anomalies and will now show that allowing the learner to vacillate between
�nitely many correct hypothesis in the limit does not give more learning power.
On the contrary, only requiring semantic convergence, i.e., allowing in�nitely
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many correct hypotheses in the limit, does allow to learn more collections of
languages even with an arbitrary semantic learning restriction at hand. This
contrasts the results in language learning from text in [Cas99], observing for
every 0 ∈ N ∪ {∗} a hierarchy

[TxtEx0] ( . . . ( [TxtEx0
1
] ( [TxtEx0

1+1] ( . . .
(

⋃
1∈N>0

[TxtEx0
1
] ( [TxtEx0∗] ⊆ [TxtBc0] .

We separate InfEx- and InfBc-learning at the level of families of recursive
languages. As every indexable family of recursive languages is Ex-learnable
from informant by enumeration, the result is optimal.

Proposition 3.4. For the collection of recursive languages

L = {! ∪ {G} | ! ⊆ N is recursive ∧,min(!) = ! ∧ G ≥ min(!)}

holds L ∈ [InfSMonBc] \ [InfEx] .

Proof. By Lemma 2.14 it su�ces to show

L ∈ [InfcanSMonBc] \ [InfcanEx] .

By s-m-n there are ? : N×{0, 1}<l ×N→ N and a learner " such that for all
f ∈ N×{0, 1}<l and G ∈ N

,? (f,G) =,min(pos(f)) ∪ {G} and

" (f) =


>, if pos(f) = ∅;
min(pos(f)), else if pos(f) \, |f |

min(pos(f)) = ∅;
? (f, G), else if G = min(pos(f) \, |f |

min(pos(f)) );
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where > refers to the canonical index for the empty set. Let !∪{G} ∈ L with ! ⊆
N recursive,,min(!) = ! and G ≥ min(!) and let � be the canonical informant for
! ∪ {G}. Then for all C > min(!) we have,min(pos(� [C ])) =,min(!) = !. Further,
let< be minimal such that {~ ∈ ! | ~ < G} ⊆ ,<

min(!) . Since G ≥ min(!) the
construction yields for all C ∈ N

,ℎC =


∅, if C ≤ min(!);
!, else if min(!) ≤ C < max{G + 1,<};
! ∪ {G}, otherwise.

This can be easily veri�ed, since in case~ ∈ ! we have ! = !∪{~} and establishes
the InfcanSMonBc-learnability of L by " .

In order to approach L ∉ [InfcanEx], assume to the contrary that there is a
learner " that InfcanEx-learns L. By Lemma 2.17 " can be assumed total. We
�rst de�ne a recursive language ! with,min(!) = ! helpful for showing that
not all of L is InfcanEx-learned by " . In order to do so, for every canonical
f ∈ N×{0, 1}<l we de�ne sets �0

f , �
1
f ⊆ N. For this let � 0f stand for the

canonical informant of pos(f), whereas � 1f denotes the canonical informant
of pos(f) ∪ {|f |}. In �0

f we collect all C > |f | for which " ’s hypothesis on � 0f [C]
is di�erent from " (f). Similarly, in �1

f we capture all C > |f | such that " on
� 1f [C] makes a guess di�erent from " (f). Formally, this reads as follows

�0
f := { C ∈ N | C > |f | ∧" (� 0f [C]) ≠ " (f) },

�1
f := { C ∈ N | C > |f | ∧" (� 1f [C]) ≠ " (f) }.

As f is canonical, for every C > |f |

� 0f [C] = fa( ( |f |, 0), ( |f |+1, 0), . . . , (C − 1, 0) ),
� 1f [C] = fa( ( |f |, 1), ( |f |+1, 0), . . . , (C − 1, 0) ).

By ORT there exists ? ∈ N such that2

f0 = ( (0, 0), . . . , (? − 1, 0), (?, 1) ),

∀8 ∈ N : f8+1 =


f8 , if �0

f8
= �1

f8
= ∅;

� 0f8 [min(�0
f8
)], if inf (�0

f8
) ≤ inf (�1

f8
);

� 1f8 [min(�1
f8
)], otherwise;

51



Chapter 3 Approximations, Vacillations and another Hypothesis Space

,? =
⋃
8∈N

pos(f8) .

Intuitively, the program ? on input G halts if G = ? or in the successive con-
struction of the sequence (f8)8∈N there is 9 with |f 9 | > G and f 9 (G) = (G, 1).
Hence, ? = min(,?) and,? is recursive, which immediately yields ! :=,? ∈ L.
Further, for every 8 ∈ N from f8 ≠ f8+1 follows " (f8) ≠ " (f8+1). Aiming at a
contradiction, let � be the canonical informant for !, which implies

⋃
8∈N f8 E � .

Since " Ex-learns ! and thus does not make in�nitely many mind changes on
� , there exists 80 ∈ N such that for all 8 ≥ 80 we have f8 = f80 . But then for all
C > |f80 | holds

" (� 0f80 [C]) = " (f80) = " (�
1
f80
[C]),

thus " does not learn at least one of ! = pos(f80) and ! ∪ {|f80 |} from their
canonical informant. On the other hand both of them lie in L and therefore, "
had not existed in the beginning. �

Since allowing in�nitely many di�erent correct hypotheses in the limit gives
more learning power, the question arises, whether �nitely many hypotheses
already allow to learn more collections of languages. The following proposition
shows that, as observed in [BP73] and [CS83] for function learning, the hierarchy
of vacillatory learning collapses when learning languages from informant.

Proposition 3.5. Let 0 ∈ N ∪ {∗}. Then [InfEx0] = [InfEx0∗].

Proof. Clearly, [InfEx0] ⊆ [InfEx0∗]. For the other inclusion letL be in [InfEx0∗]
and " a learner witnessing this. By Lemma 2.17 we assume that " is total.
In the construction of the Ex0-learner " ′, we employ the recursive function
M : (N×{0, 1})<l × N → N, which given f ∈ (N×{0, 1})<l and ? ∈ N
alters ? such that, |f |

M (f,?) ∩ neg(f) = ∅ and moreover, if f E g are such that
,
|f |
? ∩neg(f) =,

|g |
? ∩neg(g), thenM (f, ?) = M (g, ?). One way to do this is by

letting M (f, ?) denote the unique program, which given G successively checks,
whether G = ~8 , where (~8)8< |neg(f) | is the increasing enumeration of neg(f).
As soon as the answer is positive, the program goes into a loop. Otherwise it

2 Again we use the convention inf (∅) = ∞.
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executes the program encoded in ? on G , which yields

iM (f,?) (G) =
{
↑, if G ∈ neg(f);
i? (G), otherwise.

Now, " ′ works as follows:
I. Compute ?8 := " (f [8]) for all 8 ≤ |f |.

II. Withdraw all ?8 with the property |neg(f) ∩, |f |
?8
| > 0.

III. De�ne" ′(f) to be a code for the program coresponding to the union vote
of all M (f, ?8), for which ?8 was not withdrawn in the previous step:

Given input G , for = from 0 till ∞ do the following: If 8 :=
c1(=) ≤ |f |, |neg(f) ∩, |f |

?8
| ≤ 0 and QM (f,?8 ) (G) ≤ c2(=),

then return 0; otherwise increment =.

This guarantees

i"′ (f) (G) =
{
0, if ∃ 8 ≤ |f | ( |neg(f) ∩, |f |

?8
| ≤ 0 ∧ iM (f,?8 ) (G)↓ );

↑, otherwise.

Intuitively, " ′(f) eliminates all membership errors in guesses of " on initial
segments of f , not immediately violating the allowed number of anomalies, and
then asks whether one of them converges on the input, which implies

,"′ (f) =
⋃

8≤ |f |, |neg(f)∩, |f |
?8
| ≤0

,M (f," (f [8 ])) .

In order to show L ∈ InfEx0 (" ′), let ! ∈ L and � ∈ Inf (!). As L ∈ Ex0∗ ("),
there is C0 such that all of" ’s hypotheses on � are in {ℎB | B ≤ C0} and additionally
|, C0

ℎB
∩N\! | > 0 for all B ≤ C0 with |,ℎB ∩N\! | > 0. Moreover, we can assume

that for all B ≤ C0 with |,ℎB ∩ N \ ! | ≤ 0 we have observed all commission
errors in at most C0 steps, which formally reads as,ℎB ∩N \ ! =,

C0
ℎB
∩N \ !.

Then for all C ≥ C0 we obtain the same set of indices

� := {M (� [C], ?8) | 8 ≤ C ∧ |neg(� [C]) ∩, C
?8
| ≤ 0 }
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and therefore " ′ will return syntactically the same hypothesis, namely, ℎ′C0 .
It remains to argue for,ℎ′C0

=0 !. By construction and the choice of C0 there
are no commission errors, i.e.,,ℎ′C0

∩N \ ! = ∅. Further, since iℎ′C0 (G) exists
in case there is at least one ? ∈ � such that i? (G) exists, there are at most 0
arguments, on which iℎ′C0 is unde�ned. �

For learning from informant we gain for every 0 ∈ N ∪ {∗} a duality

[InfEx0] = . . . = [InfEx0
1
] = [InfEx0

1+1] = . . .
=

⋃
1∈N>0

[InfEx0
1
] = [InfEx0∗] ( [InfBc0] .

3.4 Learning Characteristic Functions of Collections
of Recursive Languages

We now turn to the setting in which we want to learn a set of Boolean classi�ers.
In Machine Learning the input is usually considered a labeled element of ℝ3 .
It is reasonable to consider only the countably many 3-tuples G of computable
reals ℝ3comp. By �xing a (non-computable) enumeration ℝ3comp = 〈G8 | 8 < N〉,
we might as a �rst attempt identify 8 with G8 . Then our hypothesis space is the
set of all Boolean functions. We will later restrict ourselves to total computable
Boolean functions.

De�nitions 2.1 for informant and 2.2 for the learner are independent of the
interpretation of the hypothesis. The De�nition 2.3 of convergence criteria has
to be slightly modi�ed as follows.

De�nition 3.6. Let " be a learner and L a collection of recursive languages.
Further, let 0 ∈ N ∪ {∗} and 1 ∈ N>0 ∪ {∗,∞}.

(i) Let ! ∈ L be a language and � ∈ Inf (!) an informant for ! presented to" .

a) We call ℎ = (ℎC )C ∈N ∈ (N ∪ {?})l , where ℎC := " (� [C]) for all C ∈ N,
the learning sequence of " on � .

b) " learns ! from � with 0 anomalies and vacillation number 1 in the
limit, for short " Ex�01-learns ! from � or Ex�01 (", � ), if there is a
time C0 ∈ N such that | {ℎC | C ≥ C0 } | ≤ 1 and for all C ≥ C0 we have
Di�! (ℎC ) = {G ∈ N | iℎC (G) ≠ j! (G)} has at most size 0.
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(ii) " learns L with 0 anomalies and vacillation number 1 in the limit, for
short" Ex�01-learns L, if Ex�

0
1
(", � ) for every ! ∈ L and every � ∈ Inf (!).

This is also equivalent to learning the characteristic function of ! from text.
We also have to adjust the De�nition 2.5 of locking sequences.

De�nition 3.7. Let " be a learner, ! a language and 0 ∈ N ∪ {∗} as well as
1 ∈ N>0 ∪ {∗,∞}. We call f ∈ (N×{0, 1})<l an Ex�01-locking sequence for "
on !, if Cons(f, !) and

∃� ⊆ N
(
|� | ≤ 1 ∧ ∀g ∈ (N×{0, 1})<l

(
Cons(g, !) ⇒

(" (fag)↓ ∧ |Di�! (" (fag)) | ≤ 0 ∧" (fag) ∈ � )) )

Then the proof of Lemma 2.6 immediately transfers and we obtain the follow-
ing lemma.

Lemma 3.8. Let" be a learner, 0 ∈ N∪ {∗}, 1 ∈ N>0∪ {∗,∞} and ! a language
Ex�01-identi�ed by" . Then there is a Ex�01-locking sequence for" on !.

We also have to adjust the De�nition 2.4 of consistency in the following way.

De�nition 3.9. Let i be a Boolean computable function. We de�ne

pos(i) = {G ∈ N | i (G)↓= 1};
neg(i) = {G ∈ N | i (G)↓= 0}.

Let 5 ∈ (N×{0, 1})≤l . We say 5 is consistent with i , for short Cons(5 , i), if

pos(5 ) ⊆ pos(i) ∧ neg(5 ) ⊆ neg(i) .

Let �ℎC denote pos(iℎC ). By replacing ,ℎC by �ℎC , the de�nitions of the
learning restrictions in De�nition 2.7, learning success criteria in De�nition 2.9
and learning criteria in De�nition 2.10 remain the same. The implications
(independent of the learning success criterion at hand) between the delayable
learning restrictions as stated in Lemma 2.8 hold accordingly.

Moreover, the De�nition 2.11 and basic Lemma 2.12 concerning delayability
remain unchanged. Also Lemma 2.14 about considering canonical informant
being su�cient and Lemma 2.17 about totality being no restriction for delayable
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learning success criteria still hold as the proofs only refer to the concept of
delayability.

To our knowledge Machine Learning algorithms only hypothesize total clas-
si�ers. Denote the set of encoded programs for total Boolean functions on N
by �Ind. From now on we will allow the learner " to hypothesize elements of
�Ind on data consistent with some classi�er to be learned only. We denote by
[Inf�IndEx� ] the collection of all recursive languages Ex�-learnable by such a
learner " from informant. In De�nition 2.9 in the learning success criterion at
position V , we write �Ind between the learning restrictions to be met and the
convergence criterion.

With [�IndInfEx� ] we refer to the collection of all recursive languages Ex�-
learnable by a learner with range contained in�Ind. These learners only output
hypotheses for total computable Boolean functions and in De�nition 2.9 we
write �Ind as part of U .

Later we might consider appropriately chosen subsets of �Ind as hypothesis
space.

In this setting we can assume the learner to output only hypotheses consistent
with the input on relevant data. This is done by patching the hypothesis according
to the �nitely many training data points the learner has received so far.

Proposition 3.10. We have

[Infcan�IndEx� ] = [SdInfCons�IndEx� ] .

Proof. We use the idea from Lemma 2.14. Thus, the new learner outputs "’s
hypothesis ℎ on the largest complete canonical informant with information only
from the current input f . As ℎ is an index for a total function, we can, in a
uniformly computable way, obtain a hypothesis ℎf from ℎ such that

(i) iℎf is consistent with all data in f and

(ii) ℎf = ℎ if f is consistent with iℎ .
More precisely, the computable operator maps an index ℎ of a computable
function iℎ : N→ {0, 1} and a �nite informant sequence f to an index ℎf of a
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computable function iℎf with

iℎf (G) =


1, if G ∈ pos(f);
0, else if G ∈ neg(f);
iℎ (G), otherwise.

The simulation only requires information about pos(f) ∪ neg(f) and thus the
learner is set-driven. Further, ℎf = ℎ whenever iℎ is consistent with f . As "
converges on the canonical informant and we only alter ℎ in case at least one
datum in f is inconsistent with iℎ , we obtain the convergence of the new learner.
Clearly, it is consistent by construction. �

Summing up, as consistency of the input data with a hypothesized total com-
putable Boolean functions is decidable,�Ind-learners can be assumed consistent
while learning. By the same argument g (�Ind)-learners can be assumed g (Cons).

It is easy to see that Ex can be replaced by every convergence criterion (and
also Mon, NU, SNU).

On the other hand, it is easy to adapt the proof of Proposition 2.18 as follows.

Proposition 3.11. There is a collection of decidable languages witnessing

[RInfCons�IndEx� ] ( [InfCons�IndEx� ] .

Proof. Let > be an index for the everywhere 0-function. Further, de�ne for all
f ∈ (N×{0, 1})<l the learner " by

" (f) :=
{
>, if pos(f) = ∅;
imax(pos(f)) (〈f〉), otherwise.

We argue that L := { ! ⊆ N | ! is decidable and ! ∈ InfConsEx� (") } is not
consistently learnable by a total learner from informant. Assume towards a
contradiction " ′ is such a learner. For a sequence f of natural numbers we
denote by f the corresponding canonical �nite informant sequence, ending with
the highest value f takes. Further, for a natural number G we denote by g (G)
the unique element of N<l with 〈g (G)〉 = G . Then by padded ORT there are
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4, I ∈ N and functions 0, 1 : N<l → N, such that

∀f, g ∈ N<l ( f C g ⇒ max{0(f), 1 (f)} < min{0(g), 1 (g)} ), (3.1)

with the property that for all f ∈ N<l and all 8 ∈ N

f0 = ∅;

f8+1 = f8
a

{
0(f8), if " ′(f8 a0(f8)) ≠ " ′(f8);
1 (f8), otherwise;

(3.2)

i4 (~) =
{
1, if ~ ∈ pos(f~);
0, otherwise;

i0 (f) (G) =
{
4, if Cons(g (G), i4) and " ′(fa0(f)) ≠ " ′(f);
ind(pos(g (G))), otherwise;

i1 (f) (G) =
{
4, if Cons(g (G), i4);
ind(pos(g (G))), otherwise;

Consider the decidable language !4 = pos(i4). Clearly, we have !4 ∈ L and
thus" ′ also InfConsEx� -learns !4 . By the Ex� -convergence there are 4 ′, 9 ∈ N,
where 9 is minimal, such that i4′ = i4 and for all 8 ≥ 9 we have " ′(f8) = 4 ′ and
hence " ′(f8 a0(f8)) = " ′(f8) by (3.2).

We now argue that ! := pos(f 9 ) ∪ {0(f 9 )} ∈ L. Let � be an informant for !
and C ∈ N. By (3.2) we observe that " is consistent on � as

" (� [C]) = imax(pos(� [C ])) (〈� [C]〉) =
{
4, if Cons(� [C], i4);
ind(pos(� [C])), otherwise.

Further, by the choice of 9 we have ¬Cons( (0(f 9 ), 1), i4 ). If pos(� [C]) = !, we
obtain i" (� [C ]) = ind! . On the other hand " ′ does not consistently learn ! as by
the choice of 9 we obtain" ′(f 9a0(f 9 )) = " ′(f 9 ) = 4 ′ and ¬Cons(f 9a0(f 9 ), !4),
a contradiction. �

Thus, learning algorithms not de�ned on all inputs have strictly more learning
power.

As we clearly can do a padding-trick for �-indices, similar to Lemma 2.20,
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we might assume the learner to be syntactically decisive. Furthermore, the
separations of Caut, Mon and SMon are still valid as they are witnessed by
indexable families. Thus, the interesting question is whether Conv and SDec
are also not restrictive for binary classi�ers. We now observe that this still holds
true but the proof is much simpler than for, -indices, because the consistency
of data with hypotheses is decidable.

Theorem 3.12. For X ∈ {T,Mon} holds

[InfX�IndBc� ] = [InfConvSDecX�IndEx� ] .

Proof. By the comment after Proposition 3.10 we assume X ⊆ Cons. Let L ∈
[InfX�IndBc� ] and the learner" witnessing this. It is an easy exercise to check
that the following learner acts as required, where f is a �nite informant sequence
and b ∈ N × {0, 1}:

" ′(∅) = " (∅);

" ′(fab) =
{
" (fab), if ¬Cons(fab," ′(f));
" ′(f), otherwise.

Note that the consistency of " on L is only employed to obtain SDec. �

Corollary 3.13. [Infcan�IndBc� ] = [InfConsConv�IndEx� ] .

For g (�Ind)-learners the simulation in Theorem 3.12 preserves totality.

In a nutshell for learners only outputting �-indices, we obtain the same map
as for, -indices. In contrast, Cons is not a restriction anymore.

Moreover, Bc� -learning is not weaker than explanatory learning and thus the
vacillatory hierarchy collapses.

3.5 Further Research

From Section 3.2 arises the question how memory-restricted variants of learning
from informant relate to learning from text. We give some initial results in
Section 4.3.
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Moreover, future investigations could address the relationships between the
di�erent delayable learning restrictions for some of the investigated convergence
criteria, where the general results in Section 2.3 may be helpful. Some relevant
references, especially for behaviourally correct learning, are [Cas16], [KSS17],
[DK20], [DK21a] and [DK21b].

Another open question regards the relation between learning recursive func-
tions from text for their graphs and learning languages from either informant
or text. It seems like delayability plays a crucial role in order to obtain normal
forms and investigate how learning restrictions relate in each setting. It is yet
not clear, whether delayability is the right assumption to generalize Lemma 3.2.
The survey [ZZ08] and the standard textbook [Jai+99] contain more results in
the setting of function learning which may transfer to learning collections of
languages from informant with such a generalization.

Along this line would also be reproving that consistent learning from canoni-
cally ordered data is easier than consistent learning from every possible order
of presentation, with the observation [ConsFnEx] ( [ConsFncanEx] by [JB80]
and a generalization of Lemma 3.2 to consistent learning.
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Memory-E�icient Learning





4 Iterative Learning
from Informant

In order to model an e�cient learning paradigm, iterative learning algorithms
access data one by one, updating the current hypothesis without regress to
past data. Prior research investigating the impact of additional requirements on
iterative learners left many questions open, especially in learning from informant,
where the input is binary labeled.

We �rst compare learning from positive information (text) with learning from
informant. We provide di�erent concept classes learnable from text but not
by an iterative learner from informant. Further, we show that totality restricts
iterative learning from informant.

Towards a map of iterative learning from informant, we prove that strongly
non-U-shaped learning is restrictive and that iterative learners from informant
can be assumed canny for a wide range of learning criteria. Finally, we compare
two syntactic learning requirements.

4.1 Introduction

We are interested in the problem of algorithmically learning a description for
a formal language (a computably enumerable subset of the set of natural num-
bers) when presented successively all information about that language; this is
sometimes called inductive inference, a branch of (algorithmic) learning theory.

Many criteria for deciding whether a learner " is successful on a language !
have been proposed in the literature. Gold, in his seminal paper [Gol67], gave
a �rst, simple learning criterion, Ex-learning3, where a learner is successful
i�, on every complete information about ! it eventually stops changing its
conjectures, and its �nal conjecture is a correct description for the input sequence.
Trivially, each single, describable language ! has a suitable constant function as
a Ex-learner (this learner constantly outputs a description for !). As we want
algorithms for more than a single learning task, we are interested in analyzing
for which classes of languages L there is a single learner " learning each member

3 Ex stands for explanatory.
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of L. This framework is also sometimes known as language learning in the limit
and has been studied using a wide range of learning criteria in the �avor of
Ex-learning (see, for example, the textbook [Jai+99]).

One major criticism of the model suggested by Gold, see for example [CM08b],
is its excessive use of memory: for each new hypothesis the entire history of
past data is available. Iterative learning [R W76], is the most common variant of
learning in the limit which addresses memory constraints: the memory of the
learner on past data is just its current hypothesis. Due to the padding lemma,
this memory is still not void, but �nitely many data can be memorized in the
hypothesis.

Prior work on iterative learning [CK10; CM08b; Jai+16; Jai+99; JMZ13] focused
on learning from text, that is, from positive data only. Hence, in TxtEx-learning
the complete information is a listing of all and only the elements of !. In this
chapter we are mainly interested in the paradigm of learning from both positive
and negative information. For example, when learning half-spaces, one could
see data declaring that 〈1, 1〉 is in the target half-space, further is 〈3, 2〉, but 〈1, 7〉
is not, and so on. This setting is called learning from informant (in contrast to
learning from text).

1 1 1 1 1

0

1 1

0

1

1 1

0

10

Figure 4.1: Example Learning Process with binary labeled data and half-spaces as
hypotheses.

Iterative learning from informant was analyzed by [JLZ07b], where various
natural restrictions have been considered and the authors focused on the case of
learning indexable families (classes of languages which are uniformly decidable).
In this chapter we are looking at other established restrictions and also consider
learning of arbitrary classes of computably enumerable languages.

In Section 4.3 we consider the two aforementioned restrictions on learning
from informant: learning from text and learning iteratively. Both restrictions
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render fewer classes of languages learnable; in fact, the two restrictions yield
two incomparable sets of language classes being learnable, which also shows
that learning iteratively from text is weaker than supposing just one of the two
restrictions.

Towards a better understanding of iterative learners we analyze which normal
forms can be assumed in Section 4.4. First we show that, analogously to the case
of learning from text (as analyzed in [CM09]), we cannot assume learners to be
total (i.e. always giving an output).

However, from [CM08b] we know that we can assume iterative text learners
to be canny (also de�ned in Section 4.4); we adapt this normal form for the case
of iterative learning from informant and show that it can be assumed to hold for
iterative learners generally.

Many works in inductive inference, see for example [Jai+16], [KP16], [KS16],
[KSS17], focus on relating di�erent additional learning requirements for a �xed
learning model. In particular, [Jai+16] mapped out all pairwise relations for an
established choice of learning restrictions for iterative learning from text. The
complete map of all pairwise relations between for full-information learners
from informant can be found in [AKS18] and Chapter 2. A similar map for the
case of iterative learning from informant is not known. Canniness is central in
investigating the learning power of iterative learning from text. Hence, it is an
important stepping stone to understand iterative learners better and determine
such pairwise relations. We argue in Lemma 4.18 that the normal form of
canniness still can be assumed in case we pose additional semantic learning
requirements.

In Section 4.5 we collect all previously known results for such a map, see
[ST92], [JLZ07b]. We observe that it decreases learning power to require the
learner to never change its hypothesis, once it is correct. The proof for separat-
ing this notion, called strong non-U-shapedness, relies on the ORT recursion
theorem [Cas74]. We close this section by comparing two syntactic learning
requirements for iterative learners from informant that proved important to
derive the equivalence of all syntactic requirements for iterative learners from
text.

We continue this chapter with some mathematical preliminaries in Section 4.2
before discussing our results in more detail.
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4.2 Iterative Learning from Informant

Notation and terminology on the learning theoretic side follow [OSW86], [Jai+99]
and [LZZ08], whereas on the computability theoretic side we refer to [Odi99]
and [Rog67]. For both we also recommend [Köt09].

A language ! is a recursively enumerable subset of N. We denote the charac-
teristic function for ! ⊆ N by 5! : N→ {0, 1}.

Gold in his seminal paper [Gol67], distinguished two major di�erent kinds
of information presentation. A function � : N→ N × {0, 1} is an informant for
language !, if there is a surjection = : N→ N such that � (C) = (=(C), 5! (=(C)))
holds for every C ∈ N. Moreover, for an informant � let

pos(� ) := {~ ∈ N | ∃G ∈ N : pr1(� (G)) = ~ ∧ pr2(� (G)) = 1} and
neg(� ) := {~ ∈ N | ∃G ∈ N : pr1(� (G)) = ~ ∧ pr2(� (G)) = 0}

denote the sets of all natural numbers, about which � gives some positive or
negative information, respectively. A text for language ! is a function ) : N→
N ∪ {#} with range ! after removing #. The symbol # is interpreted as pause
symbol.

Therefore, when learning from informant, the set of admissible inputs to the
learning algorithm S is the set of all �nite sequences

f = ((=0, ~0), . . . , (= |f |−1, ~ |f |−1))

of consistently binary labeled natural numbers. When learning from text (positive
data only), we encounter inputs to the learning algorithm from the set T of �nite
sequences g = (=0, . . . , = |g |−1) of natural numbers and the pause symbol #. The
initial subsequence relation is denoted by E.

A set L = {!8 | 8 ∈ N} of languages is called indexable family if there is a
computer program that on input (8, =) ∈ N2 returns 1 if = ∈ !8 and 0 otherwise.
Examples are Fin and CoFin, the set of all �nite subsets of N and the set of all
complements of �nite subsets ofN, respectively.

Let L be a collection of languages we seek a provably correct learning algo-
rithm for. We will refer to L as the concept class which will often be an indexable
family. Further, letH = {!8 | 8 ∈ N} with L ⊆ H be a collection of languages
called the hypothesis space. In general we do not assume that for every ! ∈ L
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there is a unique index 8 ∈ N with !8 = !. Indeed, ambiguity in the hypothesis
space helps memory-resticted learners to remember data.

A learner" from informant (text) is a computable function

" : S→ N ∪ {?} (" : T → N ∪ {?})

with the output 8 interpreted with respect to H = {!8 | 8 ∈ N}, a pre�xed
hypothesis space. The output ? often serves as initial hypothesis or is interpreted
as no new hypothesis. Often H is an indexable class or the established , -
hypothesis space de�ned in Subsection 4.4.

Let � be an informant () be a text) for ! andH = {!8 | 8 ∈ N} a hypothesis
space. A learner " : S → N ∪ {?} (" : T → N ∪ {?}) is successful on � (on ) )
if it eventually settles on 8 ∈ N with !8 = !. This means that when receiving
increasingly long �nite initial segments of � (of ) ) as inputs, it will from some
time on be correct and not change the output on longer initial segments of � (of
) ). " learns ! wrtH if it is successful on every informant � (on every text) ) for
!. " learns L if there is a hypothesis spaceH such that " learns every ! ∈ L
wrt H . We denote the collection of all L learnable from informant (text) by
[InfEx] ([TxtEx]). If we �x the hypothesis space, we denote this by a subscript
for Ex.

According to [R W76], [LZ96], [Cas+99] a learner" is iterative if its output on
f ∈ S (g ∈ T) only depends on the last input last(f) and the hypothesis " (f−)
after observing f without its last element last(f). The collection of all concept
classes L learnable by an iterative learner from informant (text) is denoted by
[ItInfEx] ([ItTxtEx]).

The s-m-n theorem gives �nite and in�nite recursion theorems, see [Cas94],
[Odi92]. We will refer to Case’s Operator Recursion Theorem ORT in its 1-1-form,
see [Cas74], [Jai+99], [Köt09].

4.3 Comparison with Learning from Text

By ignoring negative information every informant incorporates a text for the
language presented and we gain [ItTxtEx] ⊆ [ItInfEx].

It has been observed in [OSW86] that the super�nite language class Fin∪{N}
is in [InfEx] \ [ItInfEx]. With !: = 2N ∪ {2: + 1} and !′

:
= !: \ {2:} the

indexable family L = {2N} ∪ {!: , !′: | : ∈ N} lies in [TxtEx] ∩ [ItInfEx] but
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not in [ItTxtEx]. In [Jai+99] the separations are witnessed by the indexable
family {ℕ \ {0}} ∪ {� ∪ {0} : � ∈ Fin}.

It can easily be veri�ed that CoFin ∈ [ItInfEx] \ [TxtEx] and with the next
result [ItInfEx] and [TxtEx] are incomparable by inclusion.

Lemma 4.1. There is an indexable family in [TxtEx] \ [ItInfEx].

Proof. As there is a computable bijection between N and N ×N, we can also
consider subsets ofN ×N as languages. Denote by !(,� = ( × (� ∪ {0}) ∪ (ℕ \
() × (ℕ \ {0}) ⊆ N ×N the language with � ∪ {0} in all rows numbered by an
B ∈ ( and ℕ \ {0} in all other rows. Consider the indexable family

L = {!(,� | (, � ∈ Fin}.

L is clearly an indexable family, as there is a computable enumaration of all
pairs ((, �) where ( is a �nite subset of ℕ and � is a �nite subset of ℕ \ {0}.
Moreover, there is a uniform procedure to check whether (=1, =2) is in !(,� .
L ∈ [TxtEx]: Maintain full information at step = of the entire sequence ) [=]

read from text. Conjecture ( ′ := {G | (G, 0) ∈ ) [=]} and � ′ := {~ |∃G ∈ ( ′ :
(G,~) ∈ ) [=]}. ( ′ will eventually converge to ( as all (G, 0) will be received by
the learner at some point for all G ∈ ( . After ( ′ = ( , we can say that � ′ will also
converge to � (if it has not already) because at some point all (G,~) will have
been received for all G ∈ ( .

L ∉ [ItInfEx]: Suppose an iterative learner " learns F from informant. Let
f be a locking sequence of " for ℕ × (ℕ \ {0}). Let G0 be such that (G0, 0) is not
labeled in f . Such an G0 must exist because there are in�nitely many (G, 0) but f
is a �nite sequence. De�ne� := {~ | (G0, ~) ∈ pos(f)}. ! := {G0}×(�∪{0})∪(ℕ\
{G0})×(ℕ\{0}) is then consistent withf , so letf ′ w f be a locking sequence for!.
De�ne ~0 such that ~0 > max({0} ∪ {~ |∃G : (G,~) ∈ pos(f ′) ∪ neg(f ′)}). The
element (G0, ~0) is consistent withℕ×(ℕ\{0}) if and only if it is labeled positively
and with ! if and only if it is labeled negatively. Because f is a locking sequence
for ℕ × (ℕ \ {0}) and ((G0, ~0), 1)) is consistent with it, " (f ((G0, ~0), 1)) =

" (f) = 41 such that,41 = ℕ × (ℕ \ {0}) so by iterativeness of " we have that
if g := f ((G0, ~0), 1) (f ′ − f) where f ′ − f is the subsequence of f ′ starting after
f ends, then " (g) = " (f ′) meaning g is also a locking sequence for !. This is
a contradiction because if � is an informant for !, then � := � \ {((G0, ~0), 0)} is
also consistent with ! so for all ℓ ≥ 0 we have " (g � [ℓ]) = " (f ′) = 42 such that
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,42 = ! but g � is an informant for !′ := {G0} × (� ∪ {(G0, ~0)} ∪ {0}) ∪ (ℕ \
{G0}) × (ℕ \ {0}) ∈ F and !′ ≠ !, a contradiction. �

Summing up, we know [ItTxtEx] ( [TxtEx] ⊥ [ItInfEx] ( [InfEx], where
⊥ stands for incomparability with respect to set inclusion, meaning (1) there is a
concept class learnable from text but not by an iterative learner from informant
and (2) there is a concept class learnable by an iterative learner from informant
but not from text.

In the following we give a procedure to generate more separating classes in
[TxtEx] \ [ItInfEx]. With the help of the Boolean function f being de�ned in
De�nition 4.2 we obtain from an indexable family L ∈ [InfEx] \ [ItInfEx] an
indexable family f (L) ∈ [TxtEx] \ [ItInfEx].

The idea is to apply the Boolean function f , de�ned in the following, to an
indexable family, a set of informant and to a hypothesis space being a candidate
to witness the learnability. With this notation we can draw conclusions from
the learnability in the setting before applying f to the setting after applying f
and vice versa.

De�nition 4.2. We refer to the function f : P(ℕ) → P(ℕ) de�ned by

(2= ∈ f (!) ⇔ = ∈ !) ∧ (2= + 1 ∈ f (!) ⇔ = ∉ !)

as the Boolean mapping. For a set of languages L we de�ne f (L) = {f (!) |! ∈ L}.

Note that for an indexable class L the image 5 (L) is again an indexable class.
To obtain a result also applicable in other context, we generalize the notation.

Let I be a set of informant (text), for example the ones containing each informa-
tion only once or in�nitely often. " learns ! from I if it is successful on every
� ∈ I for !. " learns L from I if it learns every ! ∈ L from I. We denote the
collection of all L learnable from I by [IEx].

The idea is to apply the Boolean function f to an indexable family, a set of
informant and a hypothesis space possibly witnessing the learnability. With this
notation we can draw conclusions from the learnability in the setting before
applying f to the setting after applying f and vice versa.

De�nition 4.3. We refer to the function f : P(ℕ) → P(ℕ) de�ned by

(2= ∈ f (!) ⇔ = ∈ !) ∧ (2= + 1 ∈ f (!) ⇔ = ∉ !)
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as the Boolean mapping. For a set of languages L we de�ne f (L) = {f (!) |! ∈ L}.
For an informant � for ! we obtain an informant f (� ) for f (!) by interweaving �+
and �− where

�+(C) =
{
(2=C , 1), if � (C) = (=C , 1);
(2=C + 1, 1), if � (C) = (=C , 0) .

and

�−(C) =
{
(2=C + 1, 0), if � (C) = (=C , 1);
(2=C , 0), if � (C) = (=C , 0) .

Moreover, the projection of �+ to the �rst coordinate yields a text for f (!). For a set
of informant I we de�ne the corresponding sets of informant f (I) and text )f (I)
by

f (I) = {f (� ) | � ∈ I} and )f (I) = {pr1 ◦ �+ | � ∈ I}.

Note that for an indexable class L the image 5 (L) is again an indexable class.

We will apply the following result to the full set of informant but state it more
generally for arbitrary sets of informant I.

Theorem 4.4. Let I be a set of informant, L ⊆ {pos(� ) |� ∈ I} a concept class
andH an indexable family as suitable �xed hypothesis space. Consider the Boolean
mapping f from De�nition 4.2.
If L ∈ [IExH], then f (L) ∈ [)f (I)Exf (H) ].
Moreover, if I is upwards closed with respect to the subsequence relation, then
L ∈ [(It)IExH] is equivalent to f (L) ∈ [(It)f (I)Exf (H) ].

Proof. Let f , I, L andH be as stated above.
L ∈ [IExH] ⇒ f (L) ∈ [)f (I)Exf (H) ] : Let " be a learner for L from I.

Let f (!) ∈ f (L) and ) ∈ )t(I) a text for f (!). Then there is an informant � ∈ I
for ! such that ) = pr1 ◦ �+. If for every C ∈ N we denote the �rst and second
coordinate of � (C) by =C and _C , respectively, we obtain ) = (2=C + 1 − _C )C ∈N.
Therefore, we can in a computable way reconstruct � [C] from ) [C]. We de�ne a
learner " ′ which simulates " by " ′() [C]) = " (� [C]). It is easy to see that " ′
learns f (L) from )f (I).

IfI is upwards closed with respect to the subsequence relation,L ∈ [ItIExH]
implies 5 (L) ∈ [Itf (I)Exf (H) ] : The proof is very similar to the last paragraph.
Let " be a learner for L from I. Let f (!) ∈ f (L) and � ′ ∈ f (I) an informant
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for f (!). Then there is an informant � ∈ I for ! such that � ′ results from
interweaving �+ and �−. We compute �̃ (C) = (b GC2 c, (GC − |C ) mod 2) from
� ′(C) = (GC , |C ) and de�ne " ′ by " ′(� ′[C]) = " (�̃ [C]). Because �̃ contains � as a
subsequence, we obtain �̃ ∈ I. Again, it is easily veri�ed that " ′ learns f (L)
from f (I). Moreover, it easy to see that " ′ is iterative, in case " is.
5 (L) ∈ [Itf (I)Exf (H) ] ⇒ L ∈ [ItIExH]: We proceed in a similar fashion.

Let " ′ be a learner for f (L) from f (I). Let ! ∈ L and � an informant for !.
We recursively construct initial segments fC with |fC | = 2C for the informant
f (� ) for f (!) from � as follows: f0 = ∅; if fC is de�ned and � (C) = (=C , _C ) then
let fC+1 = fC (2=C + 1 − _C , 1) (2=C + _C , 0). Clearly, f (� ) = ⋃

C ∈N fC . The learner
" (� [C]) = " ′(fC ) learns L from I. Finally, if " ′ is iterative, so is " . �

If I is the set of all informant for L, then )f (I) is the set of all text for f (L).
f (I) is the set of all informant for f (L) that have the positive and negative
information in the order given by interweaving.

Corollary 4.5. Consider the Boolean mapping f from De�nition 4.2. Let L be
an indexable concept class and require that learnability is witnessed by indexable
hypothesis spaces. Then L ∈ [InfEx] implies f (L) ∈ [TxtEx]. Moreover, from
f (L) ∈ [ItInfEx] we can conclude L ∈ [ItInfEx].

Proof. For the second implication note that f (L) ∈ [ItInfEx] ⇒ f (L) ∈
[It f (Inf)Ex] ⇒ L ∈ [ItInfEx]. �

Therefore, every set of languages separating [ItInfEx] and [InfEx] yields a
separating class for [ItInfEx] and [TxtEx].

4.4 Total and Canny Learners

For the rest of this chapter, without further notation, all results are understood
with respect to the , -hypothesis space de�ned in the following. We �x a
programming system i as introduced in [RC94]. Brie�y, in the i-system, for a
natural number ? , we denote byi? the partial computable function with program
code ? . We also call ? an index for,? de�ned as dom(i?). In reference to a
Blum complexity measure, for all ?, C ∈ N, we denote by, C

? ⊆,? the recursive
set of all natural numbers less or equal to C , on which the machine executing ?
halts in at most C steps.
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The question whether excluding partial functions as learners, denoted by R,
makes some sets of languages unlearnable has been investigated. Allowing only
total learners does not restrict full-information learning from informant and text,
i.e. [RInfEx] = [InfEx] and [RTxtEx] = [TxtEx]. On the other hand [CM09]
showed [RItTxtEx] ( [ItTxtEx].

We show that totality, denoted byR, restricts iterative learning from informant.
The proof uses an easy ORT argument.

Theorem 4.6. [ItInfEx] \ [RItInfEx] ≠ ∅.

Proof. Let > be an index for ∅ and de�ne the iterative learner " for all b ∈
N×{0, 1} by

" (∅) = > ;

ℎ" (ℎ, b) =
{
ipr1 (b) (0), if pr2(b) = 1 and ℎ ∉ ran(ind);
ℎ, otherwise.

We argue that L := { ! ⊆ N | ! ∈ ItInfEx(") } is not learnable by a total
learner from informant. Assume towards a contradiction " ′ is such a learner.

For a �nite informant sequence f we denote by f the corresponding canonical
�nite informant sequence, ending with f’s datum with highest �rst coordinate.
Then by 1-1 ORT there are 4 ∈ N and a strictly increasing computable function
0 : N<l → N, such that for all f ∈ N<l and all 8 ∈ N

f0 = ∅;

f8+1 = f8
a

{
(0(f8), 1), if " ′(f8 a(0(f8), 1)) ≠ " ′(f8);
∅, otherwise;

(4.1)

,4 =
⋃
8∈N

pos(f8);

i0 (f) (G) =
{
4, if " ′(fa(0(f), 1)) ≠ " ′(f);
indpos(f)∪{0 (f) }, otherwise;

Clearly, we have,4 ∈ L and thus" ′ also InfEx-learns,4 . By theEx-convergence
there are 4 ′, C0 ∈ N, where C0 is minimal, such that,4′ =,4 and for all C ≥ C0
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we have " ′(⋃8∈N f8 [C]) = 4 ′ and hence by (4.1) for all 8 with |f8 | ≥ C0

" ′(f8 a(0(f8), 1)) = " ′(f8) = " ′(f8 a(0(f8), 0)) .

It is easy to see, that,4 = pos(f8) and,4 ∪ {0(f8)} ∈ L. On the other hand
" ′ is iterative and hence does not learn,4 and,4∪{0(f8)}, a contradiction. �

The following de�nition is central in investigating the learning power of
iterative learning from text, see [CM07] and [Jai+16]. We transfer it to learning
from informant.

De�nition 4.7. A learner " from informant is called canny in case for every
�nite informant sequence f holds

(i) if" (f) is de�ned then" (f) ∈ N;

(ii) for every G ∈ N \ (pos(f) ∪ neg(f)) and 8 ∈ {0, 1} a mind change
" (fa(G, 8)) ≠ " (f) implies for all �nite informant sequences g with
fa(G, 8) E g that" (ga(G, 8)) = " (g).

Hence, the learner is canny in case it always outputs a hypotheses and no da-
tum twice causes a mind change of the learner. Also for learning from informant
the learner can be assumed canny by a simulation argument.

Lemma 4.8. For every iterative learner" , there exists a canny iterative learner
" ′ such that

InfEx(") ⊆ InfEx(" ′) .

Proof. Let 5 be a computable 1-1 function mapping every �nite informant se-
quence f to a natural number encoding a program with ,5 (f) = ," (f) if
" (f) ∈ N and,5 (f) = ∅ otherwise. Clearly, f can be reconstructed from 5 (f).
We de�ne the canny learner " ′ by letting

" ′(∅) = 5 (∅)

ℎ"′ (5 (f), (G, 8)) =



5 (fa(G, 8)), if G ∉ pos(f) ∪ neg(f) ∧
" (fa(G, 8)) ↓ ≠ " (f) ↓;

5 (f), if " (fa(G, 8)) ↓ = " (f) ↓ ∨
G ∈ (pos(f) ∪ neg(f));

↑, otherwise.
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" ′ mimics " via 5 on a possibly �nite informant subsequence of the originally
presented informant with ignoring data not causing mind changes of " or that
has already caused a mind change.

Let ! ∈ InfEx(") and � ′ ∈ Inf (!). As " has to learn ! from every informant
for it, " ′ will always be de�ned. Further, let f0 = ∅ and

fC+1 =

{
fC
a� ′(C), if � ′(C) ∉ ran(fC ) ∧" (fCa� ′(C)) ↓ ≠ " (fC ) ↓;

fC , otherwise.

Then by induction for all C ∈ N holds " ′(� ′[C]) = 5 (fC ).
The following function translates between the two settings

r(0) = 0;
r(C + 1) = min{A > r(C) | � ′(A − 1) ∉ ran(fr (C ) )}.

Intuitively, the in�nite range of r captures all points in time A at which a datum
that has not caused a mind change so far, is seen and a mind-change of " ′
is possible. Thus, the mind change condition is of interest in order to decide
whether fr (C+1) ≠ fr (C ) . Note that fA = fr (C ) for all A with r(C) ≤ A < r(C + 1).

Let � (C) = � ′(r(C + 1) − 1) for all C ∈ N. Since only already observed data is
ommited, � is an informant for !.

We next argue that " (� [C]) = " (fr (C ) ) for all C ∈ N. As � [0] = ∅ = f0,
the claim holds for C = 0. Now we assume " (� [C]) = " (fr (C ) ) and obtain
" (� [C + 1]) = " (� [C]a� (C)) = " (fr (C )a� (C)). The equality " (fr (C )a� (C)) =
" (fr (C+1) ) is true with the following arguments. By the de�nitions of � and r

we have � (C) = � ′(r(C + 1) − 1) ∉ ran(fr (C ) ). Hence, there are two cases:
(i) If " (fr (C )a� (C)) = " (fr (C ) ), then from fr (C+1)−1 = fr (C ) and the de�nition

of" ′ we obtain fr (C+1) = fr (C ) . Putting both together, the claimed equality
" (fr (C )a� (C)) = " (fr (C+1) ) follows.

(ii) If" (fr (C )a� (C)) ≠ " (fr (C ) ), the de�nition of" ′ yields fr (C+1) = fr (C )a� (C).
Hence the claimed equality also holds in this case.

We now argue that " ′ explanatory learns ! from � ′. In order to see this, �rst
observe fr (C+1) = fr (C ) if and only if" (� [C + 1]) = " (� [C]) for every C ∈ N. This
is because

fr (C+1) = fr (C ) ⇔ " ( fr (C )a� (C) ) = " (fr (C ) )
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⇔ " (� [C]a� (C)) = " (� [C])
⇔ " (� [C + 1]) = " (� [C]) .

As � is an informant for !, the learner " explanatory learns ! from � . Hence
there exists some C0 such that," (� [C0 ]) = ! and for all C ≥ C0 holds " (� [C]) =
" (� [C0]). With this follows fr (C ) = fr (C0) for all C ≥ C0. As for every A there exists
some C with r(C) ≤ A and fA = fr (C ) , we obtain fA = fr (C0) for all A ≥ r(C0). We
conclude " ′(� ′[C]) = 5 (fC ) = 5 (fr (C0) ) for all C ≥ r(C0) and by the de�nition of
5 �nally,5 (fr (C0 ) ) =," (fr (C0 ) ) =," (� [C0 ]) = !. �

4.5 Additional Requirements

In the following we review additional properties one might require the learning
process to have in order to consider it successful. For this, we employ the
following notion of consistency when learning from informant.

As in [LZZ08] according to [BB75] and [Bār77] for � ⊆ N we de�ne

Cons(5 , �) :⇔ pos(5 ) ⊆ � ∧ neg(5 ) ⊆ N \�

and say 5 is consistent with � or 5 is compatible with �.

Learning restrictions incorporate certain desired properties of the learners’
behavior relative to the information being presented. We state the de�nitions
for learning from informant here.

De�nition 4.9. Let" be a learner and � an informant. We denote byℎC = " (� [C])
the hypothesis of" after observing � [C] and write

(i) Conv(", � ) ([Ang80]), if" is conservative on � , i.e., for all B, C with B ≤ C
the consistency Cons(� [C],,ℎB ) implies ℎB = ℎC .

(ii) Dec(", � ) ([OSW82]), if" is decisive on � , i.e., for all A, B, C with A ≤ B ≤ C
the semantic equivalence,ℎA =,ℎC implies the semantic equivalence,ℎA =

,ℎB .

(iii) Caut(", � ) ([OSW86]), if" is cautious on � , i.e., for all B, C with B ≤ C holds
¬,ℎC (,ℎB .

(iv) WMon(", � ) ([Jan91],[Wie91]), if" is weakly monotonic on � , i.e., for all
B, C with B ≤ C holds Cons(� [C],,ℎB ) ⇒ ,ℎB ⊆,ℎC .
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(v) Mon(", � ) ([Jan91],[Wie91]), if " is monotonic on � , i.e., for all B, C with
B ≤ C holds,ℎB ∩ pos(� ) ⊆,ℎC ∩ pos(� ) .

(vi) SMon(", � ) ([Jan91],[Wie91]), if" is strongly monotonic on � , i.e., for all
B, C with B ≤ C holds,ℎB ⊆,ℎC .

(vii) NU(", � ) ([Bal+08]), if " is non-U-shaped on � , i.e., for all A, B, C with
A ≤ B ≤ C the semantic success,ℎA = ,ℎC = pos(� ) implies the semantic
equivalence,ℎA =,ℎB .

(viii) SNU(", � ) ([CM11]), if" is strongly non-U-shaped on � , i.e., for all A, B, C
with A ≤ B ≤ C the semantic success ,ℎA = ,ℎC = pos(� ) implies the
syntactic equality ℎA = ℎB .

(ix) SDec(", � ) ([KP14]), if " is strongly decisive on � , i.e., for all A, B, C with
A ≤ B ≤ C the semantic equivalence,ℎA =,ℎC implies the syntactic equality
ℎA = ℎB .

It is easy to observe that Conv(", � ) implies SNU(", � ) and WMon(", � );
SDec(", � ) implies Dec(", � ) and SNU(", � ); SMon(", � ) implies Caut(", � ),
Dec(", � ),Mon(", � ), WMon(", � ) and �nally Dec(", � ) and SNU(", � ) imply
NU(", � ).

When additional requirements apply to the de�nition of learning success, we
write them between Inf and Ex. For example, Theorem 4.6 proves

[ItInfConvSDecSMonEx] \ [RItInfEx] ≠ ∅

because the non-total learner acts conservatively, strongly decisively and strongly
monotonically when learning L.

The text variants can be found in [Jai+16] where all pairwise relations =, ( or
⊥ between the sets [ItTxtXEx] (iterative learners from text) for X ∈ J, whereJ =

{Conv,Dec,Caut,WMon,Mon, SMon,NU, SNU, SDec}, are depicted. Moreover,
they can be found in Chapter 5. The complete map of all pairwise relations
between the sets [InfXEx] (full-information learners from informant) for X ∈ J
can be found in Section 2.4. We sum up the current status regarding the map for
iterative learning from informant in the following.

Recall the indexable family L = {2N} ∪ {!: , !′: | : ∈ N} with !: = 2N ∪
{2: + 1} and !′

:
= !: \ {2:}, separating [ItTxtEx] from [TxtEx]. Clearly, L ∈

[RItInfConvSDecMonEx].
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With a locking sequence argument we observe for all X ∈ J \ {SMon} that
[ItInfSMonEx] \ [ItInfXEx] ≠ ∅.

Let Infcan denote the set of all informant labelling the natural numbers accord-
ing to their canonical order. Then Fin∪{N} ∈ [RItInfcanConsConvSDecMonEx]
and thus in contrast to full-information learning from informant [ItInfcanEx] ≠
[ItInfEx], see [AKS18] or Section 2.3.

Theorem 4.6 can be restated as.

Theorem 4.10. [ItInfConvSDecSMonEx] \ [RItInfEx] ≠ ∅.

It has been observed that requiring a monotonic behavior of the learner is
restrictive.

Theorem 4.11. [ST92] There exists an indexable family in [ItInfMonEx] (
[ItInfEx].

It is easy to see that requiring a cautious behavior of the learner is also
restrictive.

Theorem 4.12. There exists an indexable family in [ItInfCautEx] ( [ItInfEx].

Proof. The indexable family {N} ∪ {N \ {G} | G ∈ N} is clearly not cautiously
learnable but conservatively, strongly decisively and monotonically learnable by
a total iterative learner from informant. �

Corollary 4.13. [ItInfCautEx] ⊥ [ItInfMonEx]

Moreover, requiring a conservative learning behavior is also restrictive.

Theorem 4.14. [JLZ07b] There exists an indexable family in [ItInfConvEx] (
[ItInfEx].

Indeed, they provide an indexable family in [ItInfCautWMonNUDecEx] \
[ItInfConvEx] and an indexable family that lies in [RItTxtCautConvSDecEx] \
[ItInfMonEx].
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Hence the map di�ers from the map on iterative learning from text in [Jai+16]
as Caut is restrictive and also from the map of full-information learning in
[AKS18] from informant as Conv is restrictive too. It has been open how WMon,
Dec, NU, SDec and SNU relate to each other and the other requirements. We
show that also SNU restricts ItInfEx with an intricate ORT-argument.

Theorem 4.15. [ItInfSNUEx] ( [ItInfEx]

Proof. Let " be a learner as follows, where the initial hypothesis is > , an index
for ∅. We consider input data G with given label ℓ ∈ {0, 1}.

∀4, G, ℓ : ℎ" (4, (G, ℓ)) =


4, if 4 = > ∧ ℓ = 0;
pad(iG (0), G), else if 4 = > ∧ ℓ = 1;
pad(i~ (〈4 ′, G, ℓ〉), ~), else, with 4 = pad(4 ′, ~).

Let L be what " learns and suppose " ′ learns L also SNU.

We de�ne strictly increasing computable functions 0, 1, 41, 42 : N → N and
40 ∈ N by ORT. Thereby, we interpret 0 and 1 as data streams and for all :, C the
numbers 40, 41(〈:, C〉) and 42(〈:, C〉) as hypotheses. We start with de�ning 0 and
1 by letting for all 8, : ∈ N

i0 (8) (I) =



41(〈:, :〉), if I = 〈40, 1 (:), 1〉;
40, else if I = 0 ∨ I = 〈40, G, ℓ〉;
41(〈:, C〉), else if I = 〈41(〈:, B〉), 0(C), 1〉 ∧ C ≥ B∧

, C
40 [:] ≠,

B
40 [:];

42(〈:, :〉), else if I = 〈41(〈:, B〉), 0(C), 0〉 ∧ C ≥ : ;
42(〈:, C〉), else if I = 〈42(〈:, B〉), 0(C), ℓ〉 ∧ C ≥ B∧

, C
40 [:] ≠,

B
40 [:];

4, else if I = 〈4, G, ℓ〉;
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i1 (:) (I) =



41(〈:, :〉), if I = 0;
41(〈:, C〉), else if I = 〈41(〈:, B〉), 0(C), 1〉 ∧ C ≥ B∧

, C
40 [:] ≠,

B
40 [:];

42(〈:, :〉), else if I = 〈41(〈:, B〉), 0(C), 0〉 ∧ C ≥ : ;
42(〈:, C〉), else if I = 〈42(〈:, B〉), 0(C), ℓ〉 ∧ C ≥ B∧

, C
40 [:] ≠,

B
40 [:];

4, else if I = 〈4, G, ℓ〉;

Before we de�ne ,40 , ,41 ( 〈:,C 〉) and ,42 ( 〈:,C 〉) , note that, while " sees only
negatively labeled data, it sticks to > as hypothesis. Once a positive 0-datum is
seen, it sticks to 40 as hypothesis. The �rst positive 1 (:)-datum makes it change
its mind to 41(〈:, :〉). Any negative 0-datum after the positive 1 (:)-datum leads
to 42(〈:, :〉). As the second coordinate in 〈:, C〉 will tell us which canonical
informant sequence, C

40 [:] we consider, we enlarge it whenever neccessary in
order to guarantee, C

40 [:] =,40 [:] in the limit.
We give the de�nitions of what to list into ,40 , ,41 ( 〈:,C 〉) and ,42 ( 〈:,C 〉) as

algorithms.
In,40 we enumerate all 0(8) on which " ′ changes its mind when labeled

positively while " ′ observes the canonical informant for,40 . For convenience,
in the de�nition of,40 we let 0(−1) = −1 and denote by [D,|] the set of all
integers { with D ≤ { ≤ |.

Algorithm 1: The de�nition of 40 in the ORT-argument.
1 4 ← initial hypothesis of " ′;
2 for 8 = 0 to∞ do
3 if ℎ∗

"′ (4, [0(8 − 1) + 1, 0(8) − 1] × {0}a(0(8), 1)) ↓≠ 4 then
4 4 ← ℎ"′ (4, [0(8 − 1) + 1, 0(8) − 1] × {0}a(0(8), 1));
5 list 0(8) into,40 ;
6 else if ℎ∗

"′ (4, [0(8 − 1) + 1, 0(8) − 1] × {0}a(0(8), 0)) ↓≠ 4 then
7 4 ← ℎ"′ (4, [0(8 − 1) + 1, 0(8) − 1] × {0}a(0(8), 0));

As " learns,40 , also " ′ has to learn it. Let � be the canonical informant for
,40 and : be such that " ′(� [8]) = " ′(� [:]) for all 8 ≥ : and,"′ (� [: ]) =,40 .
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Algorithm 2: The de�nition of 41(〈:, C〉) and 42(〈:, C〉) in the ORT-
argument.

1 Input: 〈:, C〉;
2 4 ←" ′(, C

40 [:] (1 (:), 1));
3 8 ← : ;
4 list 1 (:) and the positive information in, C

40 [:] into,41 and,42 ;
5 for B = 0 to∞ do
6 while ℎ"′ (4, (0(8), 1)) = 4 and ℎ"′ (4, (0(8), 0)) = 4 do
7 list 0(8) into,41 ;
8 8 ← 8 + 1;
9 list all of what is already listed in,41 into,42 ;

10 if ℎ"′ (4, (0(8), 1)) ≠ 4 then
11 list 0(8) into,41 and,42 ;
12 4 ← ℎ"′ (4, (0(8), 1));
13 else
14 9 ← 8;
15 8 ← 8 + 1;
16 while ℎ"′ (4, (0(8), 1)) = 4 do
17 list 0(8) into,41 and,42 ;
18 8 ← 8 + 1;
19 list 0(8) into,41 and,42 ;
20 list 0( 9) into,41 and,42 ;
21 4 ← ℎ∗

"′ (4, (0(8), 1) (0( 9), 1));
22 8 ← 8 + 1;
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For all:, C, C ′with, C
40 [:] =,

C ′
40 [:] holds,41 ( 〈:,C 〉) =,41 ( 〈:,C ′〉) and,42 ( 〈:,C 〉) =

,42 ( 〈:,C ′〉) .

We will now argue that for C minimal with , C
40 [:] = � [:] every possible

outcome of Algorithm 2 is contradictory.

(i) If all stages B are visited, then,41 ( 〈:,C 〉) =,42 ( 〈:,C 〉) contains essentially all
0(8) with 8 ≥ : . Hence " will eventually output the correct hypothesis
41(〈:, C〉) while " ′ makes in�nitely many mind changes on a suitable
informant � ′. More precisely, the informant � ′ starts with � [:] (1 (:), 1)
and afterwards enumerates all 0(8) with 8 ≥ : in the order they were listed
into,41 ( 〈:,C 〉) .

(ii) If the �rst while loop does not terminate for some stage B , then,41 ( 〈:,C 〉)
and,42 ( 〈:,C 〉) are di�erent. As,42 ( 〈:,C 〉) is �nite," learns it by changing its
mind on some negative 0-datum. On the other hand,41 ( 〈:,C 〉) contains all
0(8) with 8 ≥ : and " learns it by not changing its mind. Let 4B−1 denote
the current value of variable 4 when entering the stage B . By the case
assumption," ′ does not perform a mind-change on any further positive or
negative 0-datum. Therefore, we must have,41 ( 〈:,C 〉) =,4B−1 =,42 ( 〈:,C 〉) ,
a contradiction.

(iii) If the second while loop does not terminate for some stage B , then we
have,41 ( 〈:,C 〉) = ,42 ( 〈:,C 〉) and it contains all 0(8) with 8 ≥ : but 0( 9B).
This is learned by " from any informant (though with di�erent �nal
hypotheses, depending on the informant). Again, we let 4B−1 denote the
current value of 4 when entering stage B . By the choice of : for all 9 ≥ :
holds " ′(� [:]a(0( 9), 1)) = " ′(� [:]) and " ′(� [:]a(0( 9), 0)) = " ′(� [:]).
Hence " ′ on the informant

� ′′ = � [:] (0( 9B), 0) (1 (:), 1) ((0(8), 1))8≥:,8≠9B

for,41 ( 〈:,C 〉) outputs 4B−1 and therefore 4B−1 must be correct. On the other
hand 4B−1 cannot be correct, since " ′ is SNU and changing its mind on
the negative information (0( 9B), 0) in the informant

� ′′′ = � [:] (1 (:), 1) ((0(8), 1))8< 9B (0( 9B), 0) ((0(8), 1))8> 9B

for,41 ( 〈:,C 〉) . �
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We are now attempting to clarify in which sense precisely Conv is a restriction
and more speci�cally, where exactly and how often there are separations in the
implication chains Conv ⇒ WMon ⇒ T, Conv ⇒ SNU ⇒ NU ⇒ T and
SDec⇒ Dec⇒ NU⇒ T. In the following we provide a lemma that might help
to investigate WMon, Dec and NU.

De�nition 4.16. Denote the set of all unbounded and non-decreasing functions
byS, i.e.,

S := { s : N→ N | ∀G ∈ N∃C ∈ N : s(C) ≥ G and ∀C ∈ N : s(C + 1) ≥ s(C) }.

Then every s ∈ S is a so called admissible simulating function.
A predicate V ⊆ P × I is semantically delayable, if for all s ∈ S, all � , � ′ ∈ I

and all learners "," ′ ∈ P holds: Whenever we have pos(� ′[C]) ⊇ pos(� [s(C)]),
neg(� ′[C]) ⊇ neg(� [s(C)]) and,"′ (� ′ [C ]) =," (� [s (C ) ]) for all C ∈ N, from V (", � )
we can conclude V (" ′, � ′).

Lemma 4.17. Let X be a semantic learning restriction, i.e. X ∈ {Caut,Dec,
WMon,Mon, SMon,NU}. Then X is semantically delayable.

Lemma 4.8 can be generalized as follows.

Lemma 4.18. For every iterative learner " and every semantically delayable
learning restriction X , there exists a canny iterative learner" ′ such that InfXEx(")
⊆ InfXEx(" ′).

Proof. We add X in front of Ex in the proof of Lemma 4.8. Further, we de�ne a
simulating function (De�nition 4.16) by

s(C) = max{B ∈ N | r(B) ≤ C}.

It is easy to check that s is unbounded and clearly it is non-decreasing. Then by
the de�nitions of � and s we have pos(� [s(C)]) ⊆ pos(� ′[r(s(C))]) ⊆ pos(� ′[C])
and similarly neg(� [s(C)]) ⊆ neg(� ′[C]) for all C ∈ N. As " ′(� ′[C]) = 5 (fC ) and
" (fr (s (C )) ) = " (� [s(C)]) for all C ∈ N, in order to obtain,"′ (� ′ [C ]) =," (� [s (C ) ])
it su�ces to show,5 (fC ) = ," (fr (s (C ) ) ) . Since,5 (fC ) = ," (fC ) for all C ∈ N,
this can be concluded from fC = fr (s (C )) . But this obviously holds because
r(s(C)) ≤ C < r(s(C) + 1) follows from the de�nition of s.

Finally, from X (", � ) we conclude X (" ′, � ′). �
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Two other learning restrictions that might be helpful to understand the syn-
tactic learning criteria SNU, SDec and Conv better are the following.

De�nition 4.19. Let " be a learner and � an informant. We denote by ℎC =

" (� [C]) the hypothesis of" after observing � [C] and write
(i) LocConv(", � ) ([JLZ07b]), if " is locally conservative on � , i.e., for all C

the mind-change ℎC ≠ ℎC+1 implies Cons(� (C),,ℎC ).

(ii) Wb(", � ) ([KS16]), if" is witness-based on � , i.e., for all A, B, C with A < B ≤
C the mind-change ℎA ≠ ℎB implies pos(� [B]) ∩,ℎC \,ℎA ≠ ∅ ∨neg(� [B]) ∩
,ℎA \,ℎC ≠ ∅.

Hence, in a locally conservative learning process every mind-change is jus-
ti�ed by the datum just seen. Moreover, a in witness-based learning process
each mind-change is witnessed by some false negative or false positive datum.
Obviously, LocConv⇒ Conv and Wb⇒ Conv.

As for learning from text, see [Jai+16], we gain that every concept class locally
conservatively learnable by an iterative learner from informant is also learnable
in a witness-based fashion by an iterative learner.

Theorem 4.20. [ItInfLocConvEx] ⊆ [ItInfWbEx]

Proof. Let L be a concept class learned by the iterative learner " in a locally
conservative manner. As we are interested in a witness-based learner # , we
always enlarge the guess of " by all data witnessing a mind-change in the past.
As we want # to be iterative, this is done via padding the set of witnesses to
the hypothesis and a total computable function 6 adding this information to the
hypothesis of " as follows:

,6 (pad(ℎ, 〈"� 〉)) = (,ℎ ∪ pos["�]) \ neg["�];
# (∅) = 6(pad(" (∅), 〈∅〉));

ℎ# (6(pad(ℎ, 〈"�〉)), b) =


6(pad(ℎ, 〈"�〉)), if ℎ" (ℎ, b) = ℎ∨

b ∈ "�;
6(pad(ℎ" (ℎ, b),
〈"� ∪ {b}〉)), otherwise.

Clearly, # is iterative. Further, whenever" is locked on ℎ and,ℎ = !, since"�
is consistent with !, we also have,6 (pad(5 (ℎ), 〈"� 〉)) = !. As # simulates " on
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an informant omitting all data that already caused a mind-change beforehand, #
does explanatory learn L. As " learns locally conservatively and by employing
6, the learner # acts witness-based. �

4.6 Suggestions for Future Research

Future work should address the complete map for iterative learners from infor-
mant. It remains open, whether the syntactic learning criteria SNU, SDec and
Conv have the same learning power. Theorem 4.20 might be helpful regarding
the latter. Further, it seems like settling NU, Dec and WMon requires completely
new techniques. We hope that Lemma 4.18 is a helping hand in this endeavour.

Maps for other models of memory-limited learning, such as BMS, see [Car+07],
or Bem, see [FJO94], [LZ96] and [Cas+99], would help to rate models. We address
the map for BMS algorithms when learning from text in the next chapter.
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5 Map for BMS-Learning from Text

We investigate learning collections of languages from text by an inductive infer-
ence machine with access to the current datum and a bounded memory in form
of states. Such a bounded memory states (BMS) learner is considered successful
in case it eventually settles on a correct hypothesis while exploiting only �nitely
many di�erent states.

We give the complete map of all pairwise relations for an established collection
of criteria of successfull learning. Most prominently, we show that non-U-
shapedness is not restrictive, while conservativeness and (strong) monotonicity
are. Some results carry over from iterative learning by a general lemma showing
that, for a wealth of restrictions (the semantic restrictions), iterative and bounded
memory states learning are equivalent. We also give an example of a non-
semantic restriction (strongly non-U-shapedness) where the two settings di�er.

5.1 Introduction

We are interested in the problem of algorithmically learning a description for a
formal language (a computably enumerable subset of the set of natural numbers)
when presented successively all and only the elements of that language; this is
sometimes called inductive inference, a branch of (algorithmic) learning theory.
For example, a learner " might be presented more and more even numbers.
After each new number, " outputs a description for a language as its conjecture.
The learner " might decide to output a program for the set of all multiples of 4,
as long as all numbers presented are divisible by 4. Later, when " sees an even
number not divisible by 4, it might change this guess to a program for the set of
all multiples of 2.

Many criteria for deciding whether a learner " is successful on a language !
have been proposed in the literature. Gold, in his seminal paper [Gol67], gave
a �rst, simple learning criterion, TxtEx-learning4, where a learner is successful

4 Txt stands for learning from a text of positive examples; Ex stands for explanatory.
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i�, on every text for ! (listing of all and only the elements of !) it eventually
stops changing its conjectures, and its �nal conjecture is a correct description
for the input sequence. Trivially, each single, describable language ! has a
suitable constant function as an TxtEx-learner (this learner constantly outputs
a description for !). Thus, we are interested in analyzing for which classes of
languages L there is a single learner " learning each member of L. Sometimes,
this framework is called language learning in the limit and has been studied
extensively, using a wide range of learning criteria similar to TxtEx-learning
(see, for example, the textbook [Jai+99]).

One major criticism of the model suggested by Gold is its excessive use of
memory, see for example [CM08a]: for each new hypothesis the entire history of
past data is available. Iterative learning is the most common variant of learning
in the limit which addresses memory constraints: the memory of the learner on
past data is just its current hypothesis. Due to the padding lemma [Jai+99], this
memory is not necessarily void, but only �nitely many data can be memorized
in the hypothesis. There is a comprehensive body of work on iterative learning,
see, e.g., [CK10; CM08a; Jai+16; Jai+99; JMZ13].

Another way of modelling restricted memory learning is to grant the learner
access to not their current hypothesis, but a state which can be used in the
computation of the next hypothesis (and next state). This was introduced in
[Car+07] and called bounded memory states (BMS) learning. It is a reasonable
assumption to have a countable reservoir of states. Assuming a computable
enumeration of these states, we use natural numbers to refer to them. Note
that allowing arbitrary use of all natural numbers as states would e�ectively
allow a learner to store all seen data in the state, thus giving the same mode as
Gold’s original setting. Probably the minimal way to restrict the use of states
is to demand for successful learning that a learner must stop using new states
eventually (but may still traverse among the �nitely many states produced so far,
and may use in�nitely many states on data for a non-target language). It was
claimed that this setting is equivalent to iterative learning [Car+07, Remark 38]
(this restriction is called ClassBMS there, we refer to it by TxtBMS∗Ex). However,
this was only remarked for the plain setting of explanatory learning; for further
restrictions, the setting is completely unknown, only for explicit constant state
bounds a few scattered results are known, see [Car+07; CK13].

We consider a wealth of restrictions, described in detail in Section 5.2 (after
an introduction to the general notation). Following the approach of giving maps
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of pairwise relations suggested in [KS16], we give a complete map in Figure 5.1.
We note that this map is the same as the map for iterative learning given in
[Jai+16], but partially for di�erent reasons.

In Lemma 5.10 we show that, for many restrictions (the so-called semantic
restrictions, where only the semantics of hypotheses are restricted) the learning
setting with bounded memory states is equivalent to learning iteratively. This
proves and generalizes the aforementioned remark in [Car+07] to a wide class of
restrictions. The iterative learner uses the hypotheses of the BMS∗-learner on an
equivalent text and additionally pads a subgraph of the translation diagram to it.
It keeps track of all states visited so far together with the datum which caused
the �rst transfer to the respective state. This way we can reconstruct the last
�rst-time-visited state while observing the equivalent text sequence. Moreover,
the equivalent text prevents the iterative learner from returning to a previously
visited state but the last one and hence enables the required convergence.

However, if restrictions are not semantic, then iterative and bounded memory
states learning can di�er. We show this concretely for the case of so-called
strongly non-U-shaped learning in Theorem 5.16. Inspired by cognitive science
research [SS82], [Mar+92] a semantic version of this requirement was de�ned
in [Bal+08] and later the syntactic variant was introduced in [CM11]. Both
requirements have been extensively studied, see [CC13] for a survey and more-
over [CK13], [CK16], [KSS17]. The proof of Theorem 5.16 uses an intricate
ORT-argument, which might suggest that the two settings, while di�erent, are
very similar nonetheless. It is based on the proof that strong non-U-shapedness
restricts BMS∗Ex-learning. The proof of the latter result combines the tech-
niques for showing that strong non-U-shapedness restricts iterative learning, as
proved in [CK13, Theorem 5.7], and that not every class strongly monotonically
learnable by an iterative learner is strongly non-U-shapedly learnable by an
iterative learner, see [Jai+16, Theorem 5]. Moreover, it relies on showing that
state decisiveness can be assumed in Lemma 5.12.

The remainder of Section 5.4 completes the map given in Figure 5.1 for the case
of syntactic restrictions (since these do not carry over from the setting of iterative
learning). All syntactic learning requirements are closely related to strongly
locking learners. The fundamental concept of a locking sequence was introduced
by [BB75]. For a similar purpose than ours [Jai+16] introduced strongly locking
learners. We generalize their construction for certain syntactically restricted
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iterative learners from a strongly locking iterative learner. Finally, we obtain
that all non-semantic learning restrictions also coincide for BMS∗-learning.

5.2 Learners, Success Criteria and other Terminology

As far as possible, we follow [Jai+99] on the learning theoretic side and [Odi99]
for computability theory. We recall the most essential notation and de�nitions.

We let N denote the natural numbers including 0. For a function 5 we write
dom(5 ) for its domain and ran(5 ) for its range. If we deal with (a subset of) a
cartesian product, we are going to refer to the projection functions to the �rst or
second coordinate by pr1 and pr2, respectively.

Further, -<l denotes the �nite sequences over the set - and -l stands for
the countably in�nite sequences over - . For every f ∈ -<l and C ≤ |f |, C ∈ N,
we let f [C] := {(B, f (B)) | B < C} denote the restriction of f to C . Moreover, for
sequences f, g ∈ -<l their concatenation is denoted by fag . Finally, we write
last(f) for the last element of f , f ( |f | − 1), and f− for the initial segment of f
without last(f), i.e. f [|f | − 1]. Clearly, f = f−alast(f).

For a �nite set � ⊆ N and a �nite sequence f ∈ -<l , we denote by 〈�〉 and
〈f〉 a canonical index for � or f , respectively. Further, we �x a Goedel pairing
function 〈., .〉 with two arguments.

Let ! ⊆ N. We interpret every = ∈ N as a code for a word. If ! is recursively
enumerable, we call ! a language.

We �x a programming system i as introduced in [RC94]. Brie�y, in the i-
system, for a natural number ? , we denote by i? the partial computable function
with program code ? . We call ? an index for,? de�ned as dom(i?).

In reference to a Blum complexity measureQ? , for all ?, C ∈ N, we denote by
, C
? ⊆,? the recursive set of all natural numbers less or equal to C , on which

the machine executing ? halts in at most C steps, i.e.

, C
? = {G | G ≤ C ∧ Q? (G) ≤ C}.

Moreover, the well-known s-m-n theorem gives �nite and in�nite recursion the-
orems, see [Cas74], [Cas94], [Odi92]. We will refer to Case’s Operator Recursion
Theorem ORT in its 1-1-form, see for example [Köt09] and Section 2.2.
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Learners, Success Criteria and other Terminology Section 5.2

We let O = N∪ {#} be the input alphabet with = ∈ N interpreted as code for a
word in the language and # interpreted as pause symbol, i.e. no new information.
Further, let S = N ∪ {?} be the output alphabet with ? ∈ N interpreted as
i-index and ? as no hypothesis or repetition of the last hypothesis, if existent. A
function with range S is called a hypothesis generating function.

A learner is always a (partial) computable function

" : dom(") ⊆ O<l → S.

The set of all total computable functions " : O<l → S is denoted by R.
Let 5 ∈ O<l ∪Ol , then the content of 5 , de�ned as content(5 ) := ran(5 ) \ {#},

is the set of all natural numbers, about which 5 gives some positive information.
The set of all text for the language ! is de�ned as

Txt(!) := {) ∈ Ol | content() ) = !}.

De�nition 5.1. Let " be a learner. " is an iterative learner or It-learner, for
short " ∈ It, if there is a computable (partial) hypothesis generating function
ℎ" : S × O → S such that" = ℎ

‡
"
where ℎ‡

"
is de�ned on �nite sequences by

ℎ
‡
"
(n) = ?;

ℎ
‡
"
(faG) = ℎ" (ℎ‡" (f), G).

De�nition 5.2. Let " be a learner. " is a bounded memory states learner or
BMS-learner, for short " ∈ BMS, if there are a computable (partial) hypothesis
generating function ℎ" : N × O → S and a computable (partial) state transition
function B" : N× O → N such that dom(ℎ" ) = dom(B" ) and" = ℎ∗

"
where ℎ∗

"

and B∗
"
are de�ned on �nite sequences by

B∗" (n) = 0;
ℎ∗" (faG) = ℎ" (B∗" (f), G);
B∗" (faG) = B" (B∗" (f), G) .

Note that every iterative learner gives a BMS-learner by identifying the hy-
pothesis space S with the set of states via a computable bijection between N
and S . The resulting BMS-learner will succeed on the same languages the itera-
tive learner does learn. Further, as the set of visited states contains exactly all
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hypotheses the learner puts out, this BMS-learner only uses �nitely many states
on all text for languages it explanatory learns. In [Car+07, Rem. 38] it is claimed
that BMS∗-learners and iterative learners are equally powerful on text. This also
follows from our more general Lemma 5.10. The above intuition is formalized in
the corresponding proof.

De�nition 5.2 may be stated more generally for arbitrary �nite or in�nite
sets of states & , instead ofN. Moreover, B∗

"
and ℎ∗

"
can easily be generalized to

functions taking also a starting state B as input by

B∗" (B, n) = B;
ℎ∗" (B, faG) = ℎ" (B∗" (B, f), G);
B∗" (B, faG) = B" (B∗" (B, f), G) .

We now clarify what we mean by successful learning.

De�nition 5.3. Let" be a learner and L a collection of languages.

(i) Let ! ∈ L be a language and ) ∈ Txt(!) a text for ! presented to" .

a) We call ℎ = (ℎC )C ∈N ∈ Sl , where ℎC := " () [C]) for all C ∈ N, the
learning sequence of " on ) .

b) " learns ! from ) in the limit, for short " Ex-learns ! from ) or
Ex(",) ), if there exists C0 ∈ N such that,ℎC0

= content() ) and
∀C ≥ C0

(
ℎC ≠ ? ⇒ ℎC = ℎC0

)
.

(ii) " learns L in the limit, for short " Ex-learns L, if Ex(",) ) for every
! ∈ L and every ) ∈ Txt(!).

De�nition 5.4. Let L be a collection of languages. L is learnable in the limit or
Ex-learnable, if there exists a learner" that Ex-learns L.

Ex-learning is the most common de�nition for successful learning in inductive
inference and corresponds to the notion of identi�ability in the limit by [Gol67],
where the learner eventually decides on one correct hypotheses.

In our investigations, the most important additional requirement on a suc-
cessful learning process for a BMS-learner is to use �nitely many states only, as
stated in the following de�nition.
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De�nition 5.5. Let" be a BMS-learner and) ∈ Txt. We say that" uses �nitely
many memory states on ) , for short BMS∗(",) ), if { B∗" () [C]) | C ∈ N } is �nite.

We list the most common additional requirements regarding the learning
sequence, which may tag a learning process. For this we �rst recall the notion
of consistency of a sequence with a set.

De�nition 5.6. Let 5 ∈ O<l ∪ Ol and � ⊆ O . We de�ne

Cons(5 , �) :⇔ content(5 ) ⊆ �

and say 5 is consistent with �.

The listed properties of the learning sequence have been at the center of
di�erent investigations. Studying how they relate to one another did begin in
[KP16], [KS16], [Jai+16] and [AKS18].

De�nition 5.7. Let" be a learner, ) ∈ Txt and ℎ = (ℎC )C ∈N ∈ Sl the learning
sequence of" on ) , i.e. ℎC = " () [C]) for all C ∈ N.. We write

(i) Conv(",) ) ([Ang80]), if" is conservative on ) , i.e., for all B, C with B ≤ C
holds Cons() [C],,ℎB ) ⇒ ℎB = ℎC .

(ii) Dec(",) ) ([OSW82]), if" is decisive on) , i.e., for all A, B, C with A ≤ B ≤ C
holds,ℎA =,ℎC ⇒ ,ℎA =,ℎB .

(iii) Caut(",) ) ([OSW86]), if" is cautious on) , i.e., for all B, C with B ≤ C holds
¬,ℎC (,ℎB .

(iv) WMon(",) ) ([Jan91],[Wie91]), if " is weakly monotonic on ) , i.e., for
all B, C with B ≤ C holds Cons() [C],,ℎB ) ⇒ ,ℎB ⊆,ℎC .

(v) Mon(",) ) ([Jan91],[Wie91]), if" is monotonic on ) , i.e., for all B, C with
B ≤ C holds,ℎB ∩ content() ) ⊆,ℎC ∩ pos() ).

(vi) SMon(",) ) ([Jan91],[Wie91]), if " is strongly monotonic on ) , i.e., for
all B, C with B ≤ C holds,ℎB ⊆,ℎC .

(vii) NU(",) ) ([Bal+08]), if " is non-U-shaped on ) , i.e., for all A, B, C with
A ≤ B ≤ C holds,ℎA =,ℎC = content() ) ⇒ ,ℎA =,ℎB .

(viii) SNU(",) ) ([CM11]), if" is strongly non-U-shaped on ) , i.e., for all A, B, C
with A ≤ B ≤ C holds,ℎA =,ℎC = content() ) ⇒ ℎA = ℎB .
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(ix) SDec(",) ) ([KP16]), if" is strongly decisive on ) , i.e., for all A, B, C with
A ≤ B ≤ C holds,ℎA =,ℎC ⇒ ℎA = ℎB .

(x) Wb(",) ) ([KS16]), if" is witness-based on ) , i.e., for all A, C such that for
some B with A < B ≤ C holds ℎA ≠ ℎB we have content() [B]) ∩ (,ℎC \,ℎA ) ≠
∅.

As for learning from informant in Section 2.2, Conv(",) ) implies SNU(",) ),
WMon(",) ); SDec(",) ) implies Dec(",) ), SNU(",) ); SMon(",) ) implies
Caut(",) ), Dec(",) ), Mon(",) ), WMon(",) ), Dec(",) ); SNU(",) ) im-
plies NU(",) ). Moreover, WMon(",) ) also implies NU(",) ). Figure 5.1
includes the resulting backbone with arrows indicating the aforementioned im-
plications. Further, Wb(",) ) implies Conv(",) ), SDec(",) ) and Caut(",) ).

In order to characterize what successful learning means, these predicates
may be combined with the explanatory convergence criterion. For this, we let
J := {Caut,Conv,Dec, SDec,WMon,Mon, SMon, NU, SNU,T } denote the set
of admissible learning restrictions, with T standing for no restriction. Further, a
learning success criterion is a predicate being the intersection of the convergence
criterion Ex with arbitrarily many admissible learning restrictions. This means
that the sequence of hypotheses has to converge and in addition has the desired
properties. Therefore, the collection of all learning success criteria is

{
=⋂
8=0

X8 ∩ Ex | = ∈ N,∀8 ≤ =(X8 ∈ J)}.

Note that plain explanatory convergence is a learning success criterion by
letting = = 0 and X0 = T.

We refer to all X ∈ {Caut,Cons,Dec,Mon, SMon,WMon,NU,T} also as se-
mantic learning restrictions, as they do not require the learner to settle on exactly
one hypothesis.

In order to state observations about how two ways of de�ning learning success
relate to each other, the learning power of the di�erent settings is encapsulated
in notions [UTxtV] de�ned as follows.

De�nition 5.8. Let U be a property of partial computable functions from the set
O<l to N and V a learning success criterion. We denote by [UTxtV] the set of all
collections of languages that are V-learnable from text by a learner " with the
property U .
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At position U , we restrict the set of admissible learners for example by requir-
ing them to be iterative or �nite bounded memory states learners. The properties
stated at position U are independent of learning success. In contrast, at position V ,
the required learning behavior and convergence criterion are speci�ed. We do
not use separators in the notation to stay consistent with established notation in
the �eld that was inspired by [Jai+99].

For example, a collection of languagesL lies in [BMSTxtBMS∗ConvEx] if and
only if there is a bounded memory states learner " conservatively explanatory
learning every ! ∈ L from text while using only �nite memory. More concretely,
for all ! ∈ L and for every text ) ∈ Txt(!) we have Conv(",) ), BMS∗(",) )
and Ex(",) ).

The proofs of Lemmata 5.10 and 5.12 employ the following property of learning
requirements and learning success criteria, that applies to all such considered in
this chapter.

De�nition 5.9. Denote the set of all unbounded and non-decreasing functions by
S, i.e.,

S := { s : N→ N | ∀G ∈ N∃C ∈ N : s(C) ≥ G and ∀C ∈ N : s(C + 1) ≥ s(C) }.

Then every s ∈ S is a so called admissible simulating function.

A predicate V on pairs of learners and text allows for simulation on equivalent
text, if for all simulating functions s ∈ S, all text),) ′ ∈ Txt and all learners"," ′
holds: Whenever we have content() ′[C]) = content() [s(C)]) and " ′() ′[C]) =
" () [s(C)]) for all C ∈ N, from V (",) ) we can conclude V (" ′,) ′).

Intuitively, as long as the learner " ′ conjectures ℎ′C = ℎs (C ) = " () [s(C)]) at
time C and has, in form of ) ′[C], the same data available as was used by " for
this hypothesis, " ′ on ) ′ is considered to be a simulation of " on ) .

It is easy to see that all learning success criteria considered in this chapter
allow for simulation on equivalent text.
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5.3 Relations between Semantic Learning
Requirements

We show that bounded memory states learners and iterative learners have
equal learning power, when a semantic learning requirement is added to the
standard convergence criterion. With this the results from iterative learning are
transferred to this setting.

The following lemma formally establishes the equal learning power of iterative
and BMS∗-learning for all learning success criteria but Conv, SDec and SNU.
We are going to prove in Section 5.4 that even for the three aforementioned
non-semantic additional requirements we obtain the same behavior.

Lemma 5.10. Let X allow for simulation on equivalent text.

(i) We have [TxtBMS∗XEx] ⊇ [ItTxtXEx] .

(ii) If X is semantic then [TxtBMS∗XEx] = [ItTxtXEx] .

Proof. While (i) and “⊇” in (ii) are easy to verify by using the hypotheses as states,
the other inclusion in (ii) is more challenging. The iterative learner constructed
from the BMS-learner " uses the hypotheses of " on an equivalent text and
additionally pads a subgraph of the translation diagram of " to it.

(1) and “⊇” of (2). Let " be an iterative learner, i.e. there is a computable
function ℎ" : S × O → S with " = ℎ

‡
"

where ℎ‡
"
(n) = ? and ℎ‡

"
(faG) =

ℎ" (ℎ‡" (f), G) for all f ∈ O<l and G ∈ O . We show that " can be obtained
as a state driven learner by using the hypotheses also as states. For this, we
�x the computable bijection c : & → S with computable inverse, de�ned
by c (0) = ? and c (8) = 8 − 1 for all 8 > 0. Then the learner # = ℎ∗

#
with

〈B# , ℎ# 〉(@, G) = (c−1(ℎ" (c (@), G)), ℎ" (c (@), G)) is as wished because the state
corresponds via c directly to the last hypothesis of " and so the learners " and
# act identically.

Formally, this follows by an induction showing for every g ∈ O<l that B∗
#
(g) =

c−1(" (g)) and moreover if |g | > 0 we have # (g) = " (g). The claim holds for
g = n , because of B∗

#
(n) = 0 = c−1(" (n)). In case there are f ∈ O<l and G ∈ O

such that g = faG , we may assume B∗
#
(f) = c−1(" (f)) and obtain

B∗# (g)
Def . B∗

#
= B# (B∗# (f), G)

B∗
#
(f)=c−1 (" (f))

= B# (c−1(" (f)), G)
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Def . B#
= c−1(ℎ" (" (f), G))

"=ℎ
‡
"

= c−1(" (g)),

# (g)
#=ℎ∗

#
= ℎ# (B∗# (f), G)

B∗
#
(f)=c−1 (" (f))

= ℎ# (c−1(" (f)), G)
Def . ℎ#
= ℎ" (" (f), G))

"=ℎ
‡
"

= " (g).

That" in case of learning success uses only �nitely many states follows immedi-
ately from the Ex-convergence, implying to output only �nitely many pairwise
distinct hypotheses.

“⊆” of (2). Let L ∈ [TxtBMS∗XEx] be witnessed by the learner " , i.e., there
is 〈B" , ℎ"〉 : & × O → & ×S such that " = ℎ∗

"
. Further, we may assume that

for all ! ∈ L and) ∈ Txt(!) the set of visited states B∗
"
[{) [C] | C ∈ N}] is �nite

and " XEx-learns ! from ) .
Intuitively, the iterative learner"It uses the hypotheses of" on an equivalent

text )̂ and additionally pads a subgraph visit(f) of the translation diagram of the
BMS-learner" to it. In visit(f), which is being build after having observed f , we
keep track of all states visited so far together with the datum which caused the
�rst transfer to the respective state. In order to assure Ex-convergence, we do not
change the subgraph in case the new state had already been visited after some
proper initial segment of f was observed. From visit(f) we can reconstruct the
last �rst-time-visited state B∗

"It
(f) of" while observing the equivalent sequence

corresponding to f . Moreover, we build the equivalent text )̂ by inserting a
path of already observed data leading to state B∗

"It
(f), in case this is necessary

to prevent the learner "It from returning to a previously visited state but the
last one. With this strategy we make sure that the last state is the one we are
currently in, as keeping track of the current state while observing the original
text may destroy the Ex-convergence.

Formally, we de�ne functions pump : O<l \ {n} × N → O<l and visit :
O<l → O<l by

pump(visit(f), G) =


G, if B" (B∗"It

(f), G) ∉
pr1 [visit(f)];

Gapath(B" (B∗"It
(f), G), B∗

"It
(f)), otherwise;

visit(n) = n ;
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visit(faG) =


visit(f)a〈B" (B∗"It

(f), G), G〉, if B" (B∗"It
(f), G) ∉

pr1 [visit(f)];
visit(f), otherwise;

with the application of the projection to the �rst coordinate extracting the set
of visited states. Moreover, for states B0, B1 ∈ ( with path(B0, B1) we refer to
the unique sequence (f (8), f (8 + 1), . . . , f ( 9)) of second coordinates in visit(f)
such that (B0, f (8))a . . . a(B1, f ( 9)) is an intermediate sequence in visit(f). The
learner "It is now de�ned by

"It(faG) = pad(ℎ∗" (B∗"It
(f), pump(visit(f), G)), visit(faG)) .

By construction B∗
"It
(f) = last(pr1(visit(f))) and therefore the hypothesis of

"It on some sequence faG is always only based on visit(f) and G , which makes
"It iterative.

The text )̂ =
⋃
C ∈N gC with g0 = n and gC+1 = gC

apump(visit() [C]),) (C))
is a text for !. Let s : N → N, C ↦→ |gC | be the corresponding simulat-
ing function. As for all C ∈ N holds content() [C]) = content()̂ [s(C)]) and
"It() [C]) = pad(" ()̂ [s(C)]), visit() [C])), we obtain ,"It () [C ]) = ," ()̂ [s (C ) ])
and because X is semantic and afsoet, we conclude the semantic X-convergence
of "It on ) . Having in mind that " uses only �nitely many pairwise distinct
states visit() [C]) stabilizes. Paired with the Ex-convergence of " on )̂ we
conclude the Ex-convergence of "It on ) . �

Note that obviously the proof is identical for learning from positive and nega-
tive information, introduced by [Gol67]. In this learning model the information
the learner receives is labeled, like in binary classi�cation, and has to be complete
in the limit. See [AKS18] for a formal de�nition, a summary of results on this
model and the complete map.

With Lemma 5.10 the following results transfer from learning with iterative
learners and it remains to investigate the relations to and between the non-
semantic requirements Conv, SDec and SNU.

Theorem 5.11. (i) [TxtBMS∗NUEx] = [TxtBMS∗Ex]

(ii) ∀X ∈ {Dec,WMon,Caut} [TxtBMS∗XEx] = [TxtBMS∗Ex]

(iii) [TxtBMS∗MonEx] ( [TxtBMS∗Ex]
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(iv) [TxtBMS∗SMonEx] ( [TxtBMS∗MonEx]

Proof. The respective results for iterative learners are [CM08a, Theorem 2],
[Jai+16, Theorem 10], [Jai+16, Theorem 3] and [Jai+16, Theorem 2]. �

5.4 Relations to and between Syntactic Learning
Requirements

The following lemma establishes that we may assume BMS∗-learners to never go
back to withdrawn states. This is essential in almost all of the following proofs.
It can also be used to simplify the proof of Lemma 5.10.

Lemma 5.12. Let V be a learning success criterion allowing for simulation on
equivalent text and L ∈ [TxtBMS∗V]. Then there is a BMS-learner # such that
# never returns to a withdrawn state and BMS∗V-learns L from text.

Proof. Let" be a BMS-learner with L ∈ TxtBMS∗V ("). We employ a construc-
tion similar to the one in the proof of Theorem 5.10. Again for visit ∈ & × O<l

with pairwise distinct �rst coordinates and B ′ ∈ pr1 [visit] by path(visit, B ′) we
denote the unique sequence of second coordinates G0a . . . aGb of visit such that
(B ′, G0)a . . . a(last(pr1 [visit]), Gb ) is a �nal segment of visit. The BMS learner #
is initialized with state pad(0, (0, #)) and for every B ∈ & , visit ∈ & × O<l and
G ∈ O de�ned by

B# (〈B, visit〉, G) =
{
〈B, visit〉, if B" (B, G) ∈ pr1 [visit];
〈B" (B, G), visita(B" (B, G), G)〉, otherwise;

ℎ# (〈B, visit〉, G) =
{
ℎ∗
"
(B, Gapath(visit, B" (B, G))), if B" (B, G) ∈ pr1 [visit];

ℎ" (B, G), otherwise.

By construction # is a BMS∗-learner, as it only uses states 〈B, visit〉 where B =
pr1(last(visit)) is a state used by " and for every B ∈ & , visited by " , there
is exactly one sequence visit ∈ & × O<l such that 〈B, visit〉 is used by # . The
learner # simulates" on an equivalent text as in the proof of Theorem 5.10. �

We show that strongly monotonicallyBMS∗-learnability does not imply strongly
non-U-shapedly BMS∗-learnability.
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Theorem 5.13. [TxtBMS∗SMonEx] * [TxtBMS∗SNUEx]

Proof. We de�ne a self-learningBMS-learner" and with a tailored ORT-argument
there can not be a BMS-learner strongly non-U-shapedly learning all languages
that " learns strongly monotonically.

Consider the BMS-learner " initialized with state 〈 ?, 〈∅〉〉 and ℎ" and B" for
every 4 ∈ S , � ⊆ N �nite and G ∈ O de�ned by:

B" (〈4, 〈�〉〉, G) =


〈4, 〈�〉〉, if G ∈ � ∪ {#} ∨ iG (4) = 4;
〈iG (4), 〈� ∪ {G}〉〉, else if iG (4) ≠ 4;
↑, otherwise.

ℎ" (〈4, 〈�〉〉, G) =


4, if G ∈ � ∪ {#} ∨ iG (4) = 4;
iG (4), else if iG (4) ≠ 4;
↑, otherwise.

Thus, " is self-learning by interpreting the datum G as a program and the
conjectures are generated by applying this program to the last hypothesis. (We
identify iG with the function obtained by using a bijection fromN toS .) Further,
in form of the states, the last hypothesis as well as exactly the data that already
lead to a mind change of " is stored.

Let L = TxtBMS∗SMonEx(").
Assume there is aBMS∗-learner# with hypothesis generating functionℎ# and

state transition function B# , such that L ⊆ TxtBMS∗SNUEx(# ). By Lemma 5.12
we assume that # does not return to withdrawn states.

We are going to obtain a language ! ∈ L not strongly non-U-shapedly learned
by # by applying 1-1 ORT and thereby refering to the c.e. predicates MC and
NoMC de�ned for �xed 0, 1 ∈ R, all : ∈ N and f ∈ O<l with the help of the
formulask: (ℓ), expressing that the BMS∗-learner # does not perform a mind-
or state-change on the text 0[:]a1 (:)a#∞ after having observed 0[:]a1 (:)a#ℓ .
The predicates state that # does converge and (not) make a mind-change when
observing f after having observed 0[:]a0(:)a#ℓ: , with ℓ: being the least ℓ with
k: (ℓ).

k: (ℓ) ⇔ # (0[:]a1 (:)a#ℓ ) = # (0[:]a1 (:)a#ℓ+1) ∧
B∗# (0[:]a1 (:)a#ℓ ) = B∗# (0[:]a1 (:)a#ℓ+1);

NoMC(:, f) ⇔ ∃ℓ: ∈ N (k: (ℓ: ) ∧ ∀ℓ < ℓ: ¬k: (ℓ) ∧
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# (0[:]a1 (:)a#ℓ:af) ↓ = # (0[:]a1 (:)a#ℓ: ) );
MC(:, f) ⇔ ∃ℓ: ∈ N (k: (ℓ: ) ∧ ∀ℓ < ℓ: ¬k: (ℓ) ∧

# (0[:]a1 (:)a#ℓ:af) ↓ ≠ # (0[:]a1 (:)a#ℓ: ) ).

Now, let ? be an index for the program which on inputs : ∈ N and f ∈
O<l searches for ℓ: . In case ℓ: exists, the program encoded in ? runs # on
0[:]a1 (:)a#ℓ:af . Hence,Q? (:, f) stands for the number of computation steps
the program just described needs on input :, f . By the de�nition of ? we have
Q? (:, f) ↑ if and only if ℓ: ↑ or # (0[:]a1 (:)a#ℓ:af) ↑.

We abbreviate with (<l0, 8) = <l ≤8 (ran(0[8]) ∪ {#}) the set of all �nite
sequences over ran(0[8]) ∪ {#} with length at most 8 . Moreover, we employ a
well-order <0 on (<lran(0)) by letting d <0 f if and only if for the unique 8d
such that d ∈ (<l0, 8d + 1) \ (<l0, 8d ) holds f ∉ (<l0, 8d + 1) or else f ∉ (<l0, 8d )
and at the same time 〈d〉 < 〈f〉.

For constructing ! we will also make use of the c.e. sets

�: = { 0(8) | ∀f ∈ (<l0, 8) NoMC(:, f) ∨
( ∃f∀d <0 f NoMC(:, d) ∧ Q? (:, f) > 8 ) }.

It is easy to see that �: is �nite and equals { 0(8) | 8 < max({8f0} ∪ {Q? (:, f) |
f ≤0 f0}) } if and only if for f0 ∈ (<lran(0)) holds MC(:, f0) and NoMC(:, f)
for all f <0 f0. Otherwise �: = ran(0).

By 1-1 ORT there are 0, 1, 41, 42 ∈ R with pairwise disjoint ranges and 40 ∈ N,
such that

i0 (8) (4) =


40 if 4 ∈ {?, 40};
42(:) else if 4 = 41(:) for some : ≤ 8;
4, otherwise;

i1 (:) (4) =
{
41(:) if 4 ∈ {?, 40};
4, otherwise;

,40 =


ran(0[C0]) if C0 is minimal with ∀C ≥ C0

( # (0[C]) = # (0[C0]) ∧ B∗# (0[C]) = B∗# (0[C0]) );
ran(0), no such C0 exists.;
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,41 (:) = content(0[:]) ∪ {1 (:)} ∪


�: if ∃f0 (MC(:, f0) ∧
∀f <0 f0 NoMC(:, f) );

∅, otherwise;
,42 (:) = content(0[:]) ∪ {1 (:)} ∪ �: .

As,40 ∈ L by construction, # has to learn it and hence C0 exists.
We �rst observe that there exists f0 such that MC(C0, f0) and NoMC(C0, f)

for all f <0 f0. Assume otherwise, then one of the following is true: ℓC0↑ or for
all f ∈ (<lran(0)) holds NoMC(C0, f) or for f0 minimal with ¬NoMC(C0, f0)
we have # (0[C0]a1 (C0)a#ℓC0af0) ↑. Anyhow, this would mean �C0 = ran(0).
By the de�nition of 41, 42 and our converse assumption we obtain ,41 (C0) =
content(0[C0]) ∪ {1 (C0)} and,42 (C0) = ran(0) ∪ {1 (C0)}. It can be easily checked
that,41 (C0) and,42 (C0) are strongly monotonically learned by " and hence lie
in L. As # has to learn ,41 (C0) from the text 0[C0]a1 (C0)a#∞, we know ℓC0 ↓
and moreover ,# (0 [C0 ]a1 (C0)a#ℓ ) = ,41 (C0) holds for all ℓ ≥ ℓC0 . Moreover, #
has to learn,42 (C0) from all the text 0[C0]a1 (C0)a#ℓC0afa0 with f ∈ (<lran(0)).
Thus, # (0[C0]a1 (C0)a#ℓC0af) ↓ for all f ∈ (<lran(0)). Because of our converse
assumption, the only option left is NoMC(C0, f) for all f ∈ (<lran(0)). Since
this is equivalent to # (0[C0]a1 (C0)a#ℓC0af) = # (0[C0]a1 (C0)a#ℓC0 ) for all f ∈
(<lran(0)), # cannot learn both,41 (C0) and,42 (C0) . Hence f0 exists.

By the choice of C0 and f0 we obtain �C0 = content(0[C1]) for C1 = max({8f0} ∪
{Q? (:, f) | f ≤0 f0}) ∈ N. Let Ĉ = max{C0, C1} and ! = content(0[Ĉ]) ∪ {1 (C0)}.
Then,41 (C0) =,42 (C0) = ! ∈ L and by construction of �C0 we have Cons(f0, !).
Because of Ĉ ≥ C0, we obtain B∗

#
(0[Ĉ]) = B∗

#
(0[C0]). With this and the choice of

C0 we conclude # (0[Ĉ]a1 (C0)a#ℓ ) = # (0[C0]a1 (C0)a#ℓ ) for all ℓ ∈ N. Further, as
# learns ! from the text 0[Ĉ]a1 (C0)a#∞ we have,

# (0 [Ĉ ]a1 (C0)a#ℓC0 ) = !. On the
other hand byMC(C0, f0)we obtain# (0[Ĉ]a1 (C0)a#ℓC0 ) ≠ # (0[Ĉ]a1 (C0)a#ℓC0af0),
which forces# to perform a syntactic U-shape on the text 0[Ĉ]a1 (C0)a#ℓC0af0a#∞
for !. �

For inferring the relations between the syntactic learning requirements SNU,
SDec and Conv, we refer to Wb. All these criteria are closely related to strongly
locking learners, which we de�ne in the following.

It was observed by [BB75] that the learnability of every language ! by a learner
" is witnessed by a sequence f , consistent with !, such that" (f) is an index for
! and no extension of f consistent with ! will lead to a mind-change of " . Such
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a sequence f is called (sink-)locking sequence for" on !. For a similar purpose
as ours [Jai+16] introduced strongly locking learners. A learner " acts strongly
locking on a language !, if for every text ) for ! there is an initial segment f of
) that is a locking sequence for " on !.

The proof of the following theorem generalizes the construction of a conser-
vative and strongly decisive iterative learner from a strongly locking iterative
learner in [Jai+16, Theorem 8]. With it we obtain in the Corollary thereafter,
that all non-semantic learning restrictions coincide.

Theorem 5.14. Let L be a set of languages BMS∗Ex-learned by a strongly locking
BMS-learner. Then

L ∈ [TxtBMS∗WbEx] .

Proof. Let L ∈ [TxtBMS∗Ex] be learned by the strongly locking learner " . By
Lemma 5.12 we may assume that " does not return to withdrawn states.

We proceed in two steps. First we construct a learner " ′ conservatively
BMS∗Ex-learning at least L in a strong sense, i.e.,

∀f ∈ O<l ∀G ∈ O (" ′(faG) ≠ " ′(f) ⇒ G ∉,"′ (f) ) . (5.1)

That we require the last datum to violate consistency with the former hypothesis
�ts the setting of BMS-learners and is also called locally conservative by [JLZ06].
Second, with such a learner at hand, we are going to construct a learner # which
BMS∗Ex-learns L in a witness-based fashion. We will do this by keeping track
of all data having caused a mind-change so far. More concretely, we alter the
text by excluding mind-change data causing another mind-change and make
sure that the witness for the mind-change is contained in all future hypotheses.

For de�ning the strongly conservative learner " ′, we employ a one-one
function 5 : N ×& → S satisfying

,5 (4,B) =
⋃
C ∈N

{
, C
4 , if ∀G ∈, C

4 ( ℎ" (B, G) = 4 ∧ B" (B, G) = B );
∅, otherwise

for every hypothesis 4 ∈ N ⊆ S and state B ∈ & . The existence of 5 is granted
by the smn theorem. Thus, 5 takes into account only the initial part of,4 not
necessary to possibly justify a mind-change or state-change later on. Now de�ne
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for all f ∈ O<l

" ′(f) = 5 (" (f), B∗" (f)) .

As " never returns to withdrawn states and behaves strongly locking while
BMS∗Ex-learning L, " ′ also Ex-learns L. For f ≠ n the values of " (f) and
B∗
"
(f) only depend on B∗

"
(f−) and last(f) and hence " ′ is a BMS∗-learner with

B"′ = B" . Moreover, by construction it is conservative in the strong sense de�ned
in (5.1).

We now de�ne the witness-based learner # . In addition to thinning out the
hypotheses of " ′, as we did with the hypotheses of " when constructing " ′
from " , we patch all data causing mind-changes to it. This data is stored in
the states used by # . Further, we only alter our old hypothesis in case we can
guarantee the existence of a witness justifying the possible mind-change. To do
this in a computable way, we need to store also the last hypothesis of " ′ in the
states of # .

For every datum G ∈ O , data-sequence f ∈ O<l , hypothesis 4 ∈ N ⊆ S and
every �nite sequence MC of natural numbers, interpreted as pairs of hypotheses
and data, we de�ne a state transition function B# , auxiliary hypothesis generating
function " , recursive function 6 : N2 → S and the learner # by

ℎ(〈B, 〈MC〉〉, G) =
{
ℎ"′ (B, #), if G ∈ pr2 [MC];
ℎ"′ (B, G), otherwise;

B# (〈B, 〈MC〉〉, G) =



〈B"′ (B, #), 〈MC〉〉, if G ∈ pr2 [MC] ∧
ℎ"′ (B, #) =
pr1(last(MC));

〈B"′ (B, #), 〈MCa〈ℎ"′ (B, #), #〉〉〉, if G ∈ pr2 [MC] ∧
ℎ"′ (B, #) ≠
pr1(last(MC));

〈B"′ (B, G), 〈MC〉〉, else if ℎ"′ (B, G) =
pr1(last(MC));

〈B"′ (B, G), 〈MCa〈ℎ"′ (B, G), G〉〉〉, otherwise;
,6 (4, 〈B, 〈MC〉〉) = pr2 [MC] ∪,4 ;
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# (faG) =


?, if ℎ∗(faG) = ?;
6(ℎ∗(faG), B∗

#
(faG)), else if ℎ∗(faG) ≠

pr1(last(decode(pr2(B∗# (f))))));
# (f), otherwise.

Thus with the help of 6 the data stored in the second coordinates of MC is
patched to the language encoded in 4 . Further, # only makes a mind-change
if ℎ∗ does, as ℎ∗(f) = pr1(last(decode(pr2(B∗# (f)))))). The learner ℎ∗ behaves
like " ′ on the text, in which every datum repeatedly causing a mind-change is
replaced by the pause symbol.

Let ! ∈ L and ) ∈ Txt(!). It is easy to see that for the text ) ′ recursively
de�ned by

) ′(C) =
{
#, if ∃B < C () (B) = ) (C) ∧ " ′() ′[B]a) (B)) ≠ " ′() ′[B]) );
) (C), otherwise,

holds ℎ∗() [C]) = " ′() ′[C]) for all C ∈ N. This follows with a simultaneous
induction also showing pr1(B∗# () [C])) = B∗"′ () ′[C]). Hence ℎ∗ on ) behaves like
" ′ on ) ′ ∈ Txt(!).

Because " ′ Ex-converges on ) ′, it makes only �nitely many mind-changes
and uses only �nitely many states, which implies that # also only uses �nitely
many states. Let 4 = " ′() ′[C0]) be the �nal correct hypothesis of " ′ on ) ′
with C0 ∈ N chosen appropriately. Because " ′ never returns to withdrawn
states, the states of # also stabilize. Moreover, # () [C0]) has to be correct since
pr2 [MC] ⊆,4 .

As already mentioned, # learns every ! ∈ L witness-based because " ′ is
strongly conservative. Every time # performs a mind-change on ) , so does " ′
on ) ′. Therefore, there is a responsible datum G which was not in the former
hypothesis of " ′ and also has not occured so far, as no datum in ) ′ causes
more than one mind-change. This datum G will be contained in all languages
hypothesized by # in the future. �

With the latter theorem it is straightforward to observe that in the BMS∗Ex-
setting conservative, strongly decisive and strongly non-U-shaped Ex-learning
are equivalent.

Corollary 5.15. ∀W, X ∈ {Conv, SDec, SNU} [TxtBMS∗WEx] = [TxtBMS∗XEx].
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Proof. On the one hand a conservative or strongly decisive learning behavior is
also a strongly non-U-shaped learning behavior. On the other hand, a learner
behaving strongly non-U-shaped proceeds strongly locking and, by Theorem 5.14,
from a strongly locking learner we may construct a learner with at least equal
learning power, acting witness-based and hence also conservatively and strongly
decisively. �

By [Jai+16, Theorem 2] and Lemma 5.10 ((i)) we obtain

[TxtBMS∗ConvEx] * [TxtBMS∗SMonEx] .

From this we conclude with Theorem 5.13 and Corollary 5.15 the following
incomparability

[TxtBMS∗ConvEx] ⊥ [TxtBMS∗SMonEx] .

Similarly, with [Jai+16, Theorem 3] and again Lemma 5.10 ((i)) we obtain
[TxtBMS∗ConvEx] * [TxtBMS∗MonEx]. Moreover, Theorem 5.13 implies
[TxtBMS∗MonEx] * [TxtBMS∗SNUEx] and with Corollary 5.15 follows

[TxtBMS∗ConvEx] ⊥ [TxtBMS∗MonEx] .

Because Theorem 5.13 also reproves [TxtBMS∗SNUEx] ( [TxtBMS∗Ex], �rst
observed in [CK13, Th. 3.10], we completed the map for BMS∗Ex-learning from
text. An overview is depicted in Figure 5.1.

As this map equals the one for It-learning, naturally the question arises,
whether a result similar to Lemma 5.10 can be observed for the syntactic learning
criteria. In the following we show that this is not the case.

Theorem 5.16. [ItTxtSNUEx] ( [TxtBMS∗SNUEx]

Proof. By Lemma 5.10 we have [ItTxtSNUEx] ⊆ [TxtBMS∗SNUEx].
We consider the BMS-learner" initialized with state 〈〈 ?, 0〉, 〈∅〉〉 and ℎ" and
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TxtBMS∗Ex

T

NU

Dec

SMon

Mon

WMon

Caut

SDec

SNU

Conv

Figure 5.1: Relations between delayable learning restrictions in explanatory �nitely
bounded memory states learning of languages from informant. The arrows represent
implications independent of the model. The outlined areas stand for equivalence classes
with respect to learning power, when the underlying model is TxtBMS∗Ex.

B" for every 〈4, b〉 ∈ S , � ⊆ N �nite and G ∈ O de�ned by:

B" (〈〈4, b〉, 〈�〉〉, G) =


〈〈4, b〉, 〈�〉〉, if G ∈ � ∪ {#} ∨

pr1( iG (〈4, b〉) ↓ ) = 4;
〈iG (〈4, b〉), 〈� ∪ {G}〉〉, else if pr1( iG (〈4, b〉) ↓ ) ≠ 4;
↑, otherwise.

105



Chapter 5 Map for BMS-Learning from Text

ℎ" (〈〈4, b〉, 〈�〉〉, G) =


4, if G ∈ � ∪ {#} ∨

pr1( iG (〈4, b〉) ↓ ) = 4;
pr1( iG (〈4, b〉) ), else if pr1( iG (〈4, b〉) ↓ ) ≠ 4;
↑, otherwise.

Additionally to the last hypothesis as well as exactly the data that already lead
to a mind-change of " , some parameter b is stored, indicating whether a further
mind-change may cause a syntactic* -shape.

Let L = TxtBMS∗SNUEx("). We will show that there is no iterative learner
ItTxtSNUEx-learning L. Assume # is an iterative learner with hypothesis
generating function ℎ# and L ⊆ ItTxtEx(# ).

We obtain ! ∈ L \ ItTxtSNUEx(# ) by applying 1-1 ORT [Cas74] referring
to the O1-predicates MC and NoMC, expressing that # does (not) perform a
mind-change on a text built from parameters 0, 1 ∈ R. More speci�cally, the
predicates state that # does converge and (not) make a mind-change when
observing f ∈ O<l after having observed 0[8]a1 (8)a#ℓ8 , with 8 ∈ N.

k8 (ℓ) ⇔ # (0[8]a1 (8)a#ℓ ) = # (0[8]a1 (8)a#ℓ+1);
NoMC(8, f) ⇔ ∃ℓ8 ∈ N (k8 (ℓ8) ∧ ∀ℓ < ℓ8 ¬k8 (ℓ) ∧

# (0[8]a1 (8)a#ℓ8af) ↓ = # (0[8]a1 (8)a#ℓ8 ) );
MC(8, f) ⇔ ∃ℓ8 ∈ N (k8 (ℓ8) ∧ ∀ℓ < ℓ8 ¬k8 (ℓ) ∧

# (0[8]a1 (8)a#ℓ8af) ↓ ≠ # (0[8]a1 (8)a#ℓ8 ) ).

By 1-1 ORT, applied to the recursive operator implicit in the following case
distinction, there are recursive total functions 0, 1, 41, 42 with pairwise disjoint
ranges and 40 ∈ N, such that for all 8, b ∈ N, 4 ∈ S

i0 (8) (〈4, b〉) =



〈40, b〉, if 4 ∈ {?, 40};
〈41(:), 1〉, else if b = 0, 8 even and ∃: ≤ 8 ( 4 = 41(:) );
〈41(:), 2〉, else if b = 0, 8 odd and ∃: ≤ 8 ( 4 = 41(:) );
〈42(:), 0〉, else if b = 1, 8 odd and ∃: ≤ 8 ( 4 = 41(:) );
〈42(:), 0〉, else if b = 2, 8 even and ∃: ≤ 8 ( 4 = 41(:) );
〈4, b〉, otherwise;
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Relations to and between Syntactic Learning Requirements Section 5.4

i1 (8) (〈4, b〉) =
{
〈41(8), b〉, if 4 ∈ {?, 40};
〈4, b〉, otherwise;

,40 =

{
ran(0[C0]), if C0 is minimal with ∀C ≥ C0 # (0[C]) = # (0[C0]);
ran(0), no such C0 exists;

,41 (8) = ran(0[8]) ∪ {1 (8)} ∪


{0( 9)} for �rst 9 ≥ 8 found

with MC(8, 0( 9));
∅, no such 9 exists;

,42 (8) = ran(0) ∪ {1 (8)}.

As the learner constantly puts out 40 on every text for,40 , we have,40 ∈ L.
Thus, also # learns the �nite language ,40 and C0 exists. Note that by the
iterativeness of # we obtain # (0[C0]) = # (0[C0]a0(8)) for all 8 ≥ C0 and with
this # (0[C0]a1 (C0)a#ℓC0 ) = # (0[C0]a0(8)a1 (C0)a#ℓC0 ) for all 8 ≥ C0.
,41 (C0) and ,42 (C0) also lie in L. To see that " explanatory learns both of

them, note that, after having observed 1 (C0), " only changes its mind from
41(C0) to 42(C0) after having seen 0(8) and 0( 9) with 8, 9 ≥ C0 and 8 ∈ 2N as well
as 9 ∈ 2N+1. This clearly happens for every text for the in�nite language,42 (C0) .
As |,41 (C0) \ (content(0[C0]) ∪ {1 (C0)}) | ≤ 1, this mind change never occurs for
any text for,41 (C0) .

The syntactic non-U-shapedness of " ’s learning processes can be easily seen
as for all :, ; ∈ N the languages,40 ,,41 (:) and,42 (;) are pairwise distinct, the
learner never returns to an abandoned hypothesis and " only leaves hypothesis
〈41(:), 0〉 for 〈41(:), b〉, b ≠ 0, if,41 (:) is not correct.

Next, we show the existence of 9 ≥ C0 with MC(C0, 0( 9)). Assume towards
a contradiction that 9 does not exist. Then,41 (C0) = content(0[C0]) ∪ {1 (C0)}.
As " learns this language from the text 0[C0]a1 (C0)a#∞, so does # . The con-
vergence of # implies the existence of ℓC0 . Thus, for every 9 ∈ N we either
have # (0[C0]a1 (C0)a#ℓC0a0( 9)) = # (0[C0]a1 (C0)a#ℓC0 ) or the computation of
# (0[C0]a1 (C0)a#ℓC0a0( 9)) does not terminate. Because # is iterative and learns
,42 (C0) , it may not be unde�ned and therefore always the latter is the case. But
then # will not learn,41 (C0) and,42 (C0) as they are di�erent but # does not
make a mind-change on the text 0[C0]a1 (C0)a#ℓC0a0 after having observed the
initial segment 0[C0]a1 (C0)a#ℓC0 , due to its iterativeness. Hence, 9 exists and
,41 (C0) = ran(0[C0]) ∪ {1 (C0), 0( 9)}.
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Chapter 5 Map for BMS-Learning from Text

Finally, by the choice of 9 , the learner # does perform a syntactic U-shape
on the text 0[C0]a0( 9)a1 (C0)a#ℓC0a0( 9)a#∞ for ,41 (C0) . More precisely, C0 and
ℓC0 were chosen such that # (0[C0]a0( 9)a1 (C0)a#ℓC0 ) has to be correct and the
characterizing property of 9 assures

# (0[C0]a0( 9)a1 (C0)a#ℓC0 ) ≠ # (0[C0]a0( 9)a1 (C0)a#ℓC0a0( 9)) .

Thus, no iterative learner can explanatory syntactically non-U-shapedly learn
the language L. �

By Corollary 5.15 we also obtain [ItTxtSDecEx] ( [TxtBMS∗SDecEx] and
[ItTxtConvEx] ( [TxtBMS∗ConvEx].

5.5 Related Open Problems

We have given a complete map for learning with bounded memory states, where,
on the way to success, the learner must use only �nitely many states. Future
work can address the complete maps for learning with an a priori bounded
number of memory states, which needs very di�erent combinatorial arguments.
Results in this regard can be found in [Car+07] and [CK13]. We expect to see
trade-o�s, for example allowing for more states may make it possible to add
various learning restrictions (just as non-deterministic �nite automata can be
made deterministic at the cost of an exponential state explosion).

Also memory-restricted learning from positive and negative data (so-called
informant) has only partially been investigated for iterative learners and to
our knowledge not at all for other models of memory-restricted learning. Very
interesting also in regard of 1-1 hypothesis spaces that prevent coding tricks is
the Bem-hierarchy, see [FJO94], [LZ96] and [Cas+99].
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6 Conclusions & Outlook

In this thesis, we investigated di�erent models for incremental binary classi�ca-
tion. All of them are based on a formal model for incremental binary classi�cation
by E. M. Gold. First, we analyzed full-information learning algorithms from
informant and showed that they can be assumed total for all delayable learn-
ing success criteria and that we can assume the information is presented in a
canonical order. Moreover, both of these observations fail for the non-delayable
requirement of consistency. We also derived all pairwise relations between estab-
lished delayable learning success criteria, where conservativeness, cautiousness,
monotonicity and strong monotonicity are representatives of the equivalence
classes. With this we also showed that syntactic and semantic non-U-shapedness
are not restrictive with respect to this model.

In addition, we observed that learning from text is strictly weaker, even with
all delayable additional restrictions required from the informant learner in order
to be considered successful. We also showed that when allowing for �nitely
many errors, we obtain a strict hierarchy depending on the permitted number
of such. This does not hold if instead we vary the number of correct hypothesis
the learner is allowed to vacillate between. Furthermore, we proved a duality
where explanatory and behaviourally correct learning represent the equivalence
classes. The complete map with respect to the hypothesis space of recursive
binary classi�ers instead of the, -hypothesis space closed the �rst part.

We then investigated iterative learning algorithms from informant and showed
that their learning capability is incomparable with that of full-information learn-
ing algorithms from text. Afterwards, we showed that we can no longer assume
totality but without loss of generality the iterative learning algorithms can be
assumed canny. Finally, we separated non-U-shapedness.

In the �nal chapter, we considered bounded memory states (BMS) learning
algorithms and derived the complete map when learning from text. In particular
we showed that for all semantic learning success criteria iterative learning
algorithms and BMS learning algorithms are equally strong. On the other hand
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we observed that this is not the case for non-U-shapedness. Still as for iterative
algorithms learning from text, the syntactic criteria are equivalent and restrictive.

We add some more suggestions for future research on top of what we men-
tioned at the end of the respective chapters.

For automatic structures as alternative approach to model a learner, there
have been investigations on how di�erent types of text e�ect the Ex-learnability,
see [JLS10] and [Höl+17]. The latter started investigating how learning from
canonical informant and learning from text relate to one another in the automatic
setting. A lot of questions answered for the Turing machine model in this thesis
are open for learning with automatic learners.

The learnability of computably presentable structures from informant has been
initiated in [FKS19] and pursued further in [Bel+20] and [BFS20]. It might be
interesting to look at the results again from the perspective of memory-e�ciency
or additional requirements on the learning process.

Regarding iterative learning algorithms the incomparability of Caut and Mon,
as well as the separation of Conv are still valid for�-indices. �-Indices have been
investigated for learning from positive information in [Ber+20a] and [Ber+20b],
where also memory-e�ciency is addressed. Still the investigations leave a lot of
questions open, especially for learning from informant or with BMS algorithms.

Last but not least we encourage to investigate the learnability of indexable
classes motivated by real-world machine learning and cognitive science research.
For example, uniform families of formal languages serve as a illustrating example
[JLZ07b], [LZZ08] and we discussed the learnability of half-spaces. This might
also involve using techniques from other areas of mathematics and conducting
more sophisticated experiments.
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