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Abstract

We investigate models for incremental binary classification, an example for
supervised online learning. Our starting point is a model for human and machine
learning suggested by E. M. Gold, [Gol67].

In the first part, we consider incremental learning algorithms that use all of the
available binary labeled training data in order to compute the current hypothesis.
For this model, we observe that the algorithm can be assumed to always terminate
and that the distribution of the training data does not influence learnability. This
is still true if we pose additional delayable requirements that remain valid despite
a hypothesis output delayed in time [KP16]. Additionally, we consider the non-
delayable requirement of consistent learning. Our corresponding results underpin
the claim for delayability being a suitable structural property to describe and
collectively investigate a major part of learning success criteria.

Our first theorem states the pairwise implications or incomparabilities between
an established collection of delayable learning success criteria, the so-called
complete map. Especially, the learning algorithm can be assumed to only change
its last hypothesis in case it is inconsistent with the current training data. Such
a learning behaviour is called conservative [Ang80].

By referring to learning functions, we obtain a hierarchy [Bar74], [CS83] of
approximative learning success criteria. Hereby we allow an increasing finite
number of errors of the hypothesized concept by the learning algorithm compared
with the concept to be learned.

Moreover, we observe a duality depending on whether vacillations between
infinitely many different correct hypotheses are still considered a successful
learning behaviour. This contrasts the vacillatory hierarchy for learning from
solely positive information [Cas99].

We also consider a hypothesis space located between the two most common
hypothesis space types in the nearby relevant literature and provide the complete
map.

In the second part, we model more efficient learning algorithms. These update
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their hypothesis referring to the current datum and without direct regress to
past training data. We focus on iterative (hypothesis based) [R W76] and BMS
(state based) [Car+07] learning algorithms.

Iterative learning algorithms use the last hypothesis and the current datum
in order to infer the new hypothesis. Past research analyzed, for example, the
above mentioned pairwise relations between delayable learning success criteria
when learning from purely positive training data, see [LZ91], [CM08a], [CK10],
[Jai+16].

We compare delayable learning success criteria with respect to iterative learn-
ing algorithms, as well as learning from either exclusively positive or binary
labeled data. The existence of concept classes that can be learned by an iterative
learning algorithm but not in a conservative way had already been observed
[JLZ07a], showing that conservativeness is restrictive. An additional require-
ment arising from cognitive science research is U-shapedness [SS82], stating that
the learning algorithm does diverge from a correct hypothesis. We show that
forbidding U-shapes also restricts iterative learners from binary labeled data.

In order to compute the next hypothesis, BMS learning algorithms refer to
the currently observed datum and the actual state of the learning algorithm. For
learning algorithms equipped with an infinite amount of states, we provide the
complete map.

A learning success criterion is semantic if it still holds, when the learning
algorithm outputs other parameters standing for the same classifier. Syntac-
tic (non-semantic) learning success criteria, for example conservativeness and
syntactic non-U-shapedness, restrict BMS learning algorithms. For proving the
equivalence of the syntactic requirements, we refer to witness-based learning
processes [KS16]. In these, every change of the hypothesis is justified by a
later on correctly classified witness from the training data. Moreover, for every
semantic delayable learning requirement, iterative and BMS learning algorithms
are equivalent. In case the considered learning success criterion incorporates
syntactic non-U-shapedness, BMS learning algorithms can learn more concept
classes than iterative learning algorithms.

The proofs are combinatorial, inspired by investigating formal languages or
employ results from computability theory, such as infinite recursion theorems
(fixed point theorems) [K6t09].



Zusammenfassung

Wir untersuchen Modelle fiir inkrementelle binére Klassifikation, ein Beispiel fiir
iiberwachtes online Lernen. Den Ausgangspunkt bildet ein Modell fiir menschli-
ches und maschinelles Lernen von E. M. Gold, [Gol67].

Im ersten Teil untersuchen wir inkrementelle Lernalgorithmen, welche zur
Berechnung der Hypothesen jeweils die gesamten binéar gelabelten Trainings-
daten heranziehen. Bezogen auf dieses Modell konnen wir annehmen, dass
der Lernalgorithmus stets terminiert und die Verteilung der Trainingsdaten die
grundsitzliche Lernbarkeit nicht beeinflusst. Dies bleibt bestehen, wenn wir
zusatzliche Anforderungen an einen erfolgreichen Lernprozess stellen, die bei
einer zeitlich verzogerten Ausgabe von Hypothesen weiterhin zutreffen, [KP16].

Weitherin untersuchen wir nicht verzégerbare konsistente Lernprozesse. Un-
sere Ergebnisse bekraftigen die Behauptung, dass Verzogerbarkeit eine geeignete
strukturelle Eigenschaft ist, um einen Grofiteil der Lernerfolgskriterien zu be-
schreiben und gesammelt zu untersuchen.

Unser erstes Theorem klart fiir dieses Modell die paarweisen Implikationen
oder Unvergleichbarkeiten innerhalb einer etablierten Auswahl verzogerbarer
Lernerfolgskriterien auf. Insbesondere konnen wir annehmen, dass der inkremen-
telle Lernalgorithmus seine Hypothese nur dann verdndert, wenn die aktuellen
Trainingsdaten der letzten Hypothese widersprechen. Ein solches Lernverhalten
wird als konservativ, [Ang80], bezeichnet.

Ausgehend von Resultaten iber Funktionenlernen erhalten wir eine strikte
Hierarchie von approximativen Lernerfolgskriterien [BP73].

Weiterhin ergibt sich eine Dualitit abhéngig davon, ob das Oszillieren zwi-
schen korrekten Hypothesen als erfolgreiches Lernen angesehen wird. Dies
steht im Gegensatz zur oszillierenden Hierarchie, wenn der Lernalgorithmus
von ausschlief3lich positiven Daten lernt, [Cas99].

Auch betrachten wir einen Hypothesenraum, der einen Kompromiss zwischen
den beiden am haufigsten in der naheliegenden Literatur vertretenen Arten von
Hypothesenridumen darstellt.
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Im zweiten Teil modellieren wir effizientere Lernalgorithmen. Diese aktuali-
sieren ihre Hypothese ausgehend vom aktuellen Datum, jedoch ohne Zugriff auf
die zuriickliegenden Trainingsdaten. Wir konzentrieren uns auf iterative (hypo-
thesenbasierte) [R W76] and BMS (zustandsbasierte) [Car+07] Lernalgorithmen.

Iterative Lernalgorithmen nutzen ihre letzte Hypothese und das aktuelle Da-
tum, um die neue Hypothese zu berechnen. Die bisherige Forschung klart bei-
spielsweise die oben erwahnten paarweisen Vergleiche zwischen den verzoger-
baren Lernerfolgskriterien, wenn von ausschliellich positiven Trainingsdaten
gelernt wird, siehe [LZ91], [CMO08a], [CK10], [Jai+16].

Wir vergleichen verzogerbare Lernerfolgskriterien bezogen auf iterative Ler-
nalgorithmen, sowie das Lernen von aussschlie3lich positiver oder binar gela-
belten Daten. Bereits bekannt war die Existenz von Konzeptklassen, die von
einem iterativen Lernalgorithmus gelernt werden kénnen, jedoch nicht auf eine
konservative Weise, [JLZ07a]. U-shapedness [SS82] ist ein in den Kognitionswis-
senschaften beobachtetes Phinomen, demzufolge der Lerner im Lernprozess
von einer bereits korrekten Hypothese divergiert. Wir zeigen, dass iterative
Lernalgorithmen auch durch das Verbieten von U-Shapes eingeschrankt werden.

Zur Berechnung der niachsten Hypothese nutzen BMS-Lernalgorithmen er-
ginzend zum aktuellen Datum den aktuellen Zustand des Lernalgorithmus. Fiir
Lernalgorithmen, die iiber unendlich viele mégliche Zustande verfiigen, leiten
wir alle paarweisen Implikationen oder Unvergleichbarkeiten innerhalb der
etablierten Auswahl verzogerbarer Lernerfolgskriterien her.

Ein Lernerfolgskriterium ist semantisch, wenn es weiterhin gilt, falls im
Lernprozess andere Parameter ausgegeben werden, die jeweils fiir die gleichen
Klassifikatoren stehen. Syntaktische (nicht-semantische) Lernerfolgskriterien,
beispielsweise Konservativitidt und syntaktische Non-U-Shapedness, schrin-
ken BMS-Lernalgorithmen ein. Um die Aquivalenz der syntaktischen Lerner-
folgskriterien zu zeigen, betrachten wir witness-based Lernprozesse, [KS16]. In
diesen wird jeder Hypothesenwechsel durch einen spater korrekt klassifizier-
ten Zeugen in den Trainingsdaten gerechtfertig. Weiterhin sind iterative und
BMS-Lernalgorithmen fir die semantischen verzégerbaren Lernerfolgskriterien
jeweils dquivalent. Ist syntaktische Non-U-Shapedness Teil des Lernerfolgskrite-
riums, sind BMS-Lernalgorithmen méchtiger als iterative Lernalgorithmen.

Die Beweise sind kombinatorisch, angelehnt an Untersuchungen zu formalen
Sprachen oder nutzen Resultate aus dem Gebiet der Berechenbarkeitstheorie,
beispielsweise unendliche Rekursionstheoreme (Fixpunktsitze) [K6t09].
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Introduction

Humans, other life forms and in an rapidly growing amount also machines utilize
prior knowledge, in order to generalize to and succeed in unseen situations. In the
current era of machine learning, heuristics play a crucial role in order to design
and improve algorithms that employ the growing amount of available data as
well as impressive computing abilities. The engineering practices massively used
in the technologies that are interweaved with society are far from understood.
Research in computational learning theory discusses concrete initial mathematical
models and algorithms for this complex subject, [Wig19].

We investigate models for binary classification, a special case of supervised
machine learning, [GBC16]. As an illustrating example, let us assume we want to
verify formally whether there is a learning algorithm for the collection of email
spam filters. Here we are not concerned with the definition of spam as discussed
elsewhere, for example [Cor08]. Many different machine learning algorithms
have been applied to the challenging problem of designing spam filters, see
[Dad+19] for a recent publication. The details of the algorithms used by email
providers and companies focusing on spam filtering are not publicly available. We
aim to explain our abstract terminology with this sample application. However,
our models also suit this example well as they can take into account that in
email spam filtering false positive and false negative predictions are not treated
equally.

Let us for the start leave a lot of challenging details aside. A suitable online
learning algorithm successively experiences more and more emails labeled to
be spam or not spam by higher-order knowledge and the specific user. We call
this sequence of emails the training data. Every time the learning algorithm
observes a new labeled email, it outputs a classifier that also predicts whether
future emails are spam or not. The learner is successful, if after some time the
hypothesized classifier generalizes well with respect to the user’s taste. Hence,
we seek a learning algorithm that for every user succeeds on the following task:
When comprising more and more data into the hypotheses, the sequence of
suggested classifiers converges to an optimal one for this user. As we are not in
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control of the user’s taste, the evolution of higher-order knowledge or the order
in which the emails arrive, the algorithm has to succeed for all possible email
filters and for every distribution of the data.

We can think of an email as a sequence of characteristics, for example symbols,
words or collections of the latter and other more sophisticated features. (Note
that a reasonable feature extraction is at the core of machine learning.) Encoding
transforms the target features into numeric values or vectors. Hence, for each
email we obtain a sequence of the encoded features. Essentially, this numerical
feature array or tensor is the input for the machine learning algorithm. This
approach also covers the emerging field of Graph Neural Networks by addition-
ally providing the corresponding graph structure, [Sca+08]. The edges represent
interactions or similarities between the feature tensors, [Bro+17].

For our purposes, we encode the feature array and possibly more structural
information associated to an email into a single number. This number represents
the underlying email. The above encoding procedure is not specific to email
classification but applies to several machine learning applications with their
respective inputs, for example pattern recognition, [Bis06]. The actual encoding
techniques in electronic devices differ.

In inductive inference the classifier is often given by an algorithm recursively
enumerating all numbers representing spam emails, [Odi92]. With this mind-set,
one can think of some email spam detector to be given by a set of rules such that
every email derived by them is classified as spam.

On the other hand for real-world machine learning scenarios, one could define
the hard classifier to be a computable function mapping numbers representing
spam emails to one and all other emails to zero. A classifier of the second kind
can easily be transformed into a classifier of the first kind. The second definition
is more restrictive and hence, if not stated differently, we stick to recursively
enumerable sets.

Following the terminology in [SB14], our concept class to be learned is the
collection of all email spam detectors. Due to the connections of inductive
inference to grammatical inference, we stay closer to the terminology in [Jai+99],
where a concept class is referred to as a language class. With respect to our
running example a concept or language corresponds to a spam filter for one
specific user. Due to the ambiguity of some terminology when referring to
applied machine learning, we stick to concepts in the introduction. However, all
eligible classifiers output by the learning algorithm are required to be elements
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of the so-called hypothesis space. The general hypothesis space of recursively
enumerable sets is called W-hypothesis space, [RC94]. In our example each
classifier is given by a computer program corresponding to an enumeration
of all the spam emails. The W-hypothesis space comprises all other common
hypothesis spaces.

As noted above, for a finite amount of data the learner produces a hypothesis
that corresponds to a classifier. In the limit the hypothesized classifiers are
supposed to minimize the error with respect to the concept to be learned. There
are different formalizations of this requirement. Successful PAC-learning requires
that for enough available data with high probability the error becomes small,
[Val84]. The sample complexity associated to a given probability and error has
been settled, [Han16].

We build on the model suggested by E. M. Gold, [Gol67], following which
the learner is successful if it eventually settles on a correct classifier. For our
running example a correct classifier is an email spam filter that perfectly reflects
the users taste. In Section 3.3 we study versions of Gold’s model, that consider
approximations, [Cas99]. In addition also ideas from probability theory play an
important role and have been incorporated into Gold’s model by L. Pitt, [Pit84],
and G. Barmpalias and F. Stephan, [BS17]. These are interesting directions to
pursue further, especially in the context of learning algorithms not relying on
all data available.

Fundamental machine learning algorithms for supervised binary classification
like the perceptron [Ros58] and support vector machines [BGV92] use linear
classifiers as hypothesis space. With a fixed computable kernel function even
more learning tasks can be reduced to classifying with half-spaces. This is one
of many examples for more uniform hypothesis spaces of classifiers, [LZZ08]. If
we restrict ourselves to linear classifiers, we might ask whether the concept class
of spam filters is learnable with the uniform hypothesis space of half-spaces.

The learnability of linear predictors has been investigated with respect to
other learning models and respective research questions, see for example [SB14],
[Sha15] and [Gao+17]. The concept class of linear classifiers forms a uniform
hypothesis space, because a computer can enumerate the parameters correspond-
ing to a linear inequality. In the spirit of Occams Razor, we obtain a successful
learning algorithm when unbiasedly outputting the first enumerated half-space
consistent with all of the training data.

Chapter 1
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Figure 1.1: Example Learning Process when the hypotheses correspond to half-spaces.

This successful learning strategy is referred to as learning by enumeration,
[Gol67]. If we pose a realizability assumption, [SB14], we obtain the learnability
of the sub concept class of email spam filters. The learning by enumeration
strategy works for every concept class assumed to be a subset of a uniform
hypothesis space. Questions regarding efficiency are not considered here. We
refer the interested reader to [K6t09].

A classical perceptron or support vector machine computes the current hy-
pothesis by using all of the available data. We refer to learning algorithms with
this property as full-information or full-batch learners and analyze them in Part L.
Our results can also be found in [AKS18].

In Chapter 2 we follow [Gol67] and start with formalizing binary classification
with full-batch learning algorithms by referring to Turing machines, one of
the most fundamental mathematical models for computer algorithms, [Odi92].
As most computer programs rely on recursion, we do not require the learning
algorithm to produce an output on every possible input. In the respective
Section 2.2, the formalized notions include the data stream, learning algorithm,
learning success criteria and a corresponding notation that allows to state how
different models relate to each other, [K6t09]. We also give the definitions of an
established collection of additional requirements that can be incorporated into
the learning success criterion, [KP14], [KS16] and [Jai+16].

Thereafter, in Section 2.3, we observe that every learnable concept class
can be learned by a total learner, namely a learning algorithm that terminates
its computation on every input. Moreover, the underlying distribution of the
data does not matter as we can provably assume that the data is presented in
some canonical order. These observations hold for all learning success criteria
invariant with respect to a time delayed output of the hypothesis. For example,
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the learning algorithm will still converge to the optimal classifier if the hypothesis
is output 2 time units later due to some technical issues. Such learning success
criteria are called delayable, [KP16]. We prove that the above observations about
the totality of the learning algorithm and a canonical presentation of the data
hold for all delayable learning success criteria. In contrast, we show that these
observations are no longer true when we require the output hypothesis of the
learning algorithm to be consistent with the respective input. Consistency is
not delayable, see for example the learning by enumeration strategy mentioned
earlier.

In Section 2.4 we derive all 45 pairwise equivalences, proper implications or
incomparabilities between the introduced delayable learning success criteria. By
definition and previous results about one third of the 90 relevant implications
have been known, see Section 2.2, [OSW386] and [LZK96]. In particular, we
show that any learning algorithm can be assumed to only change its previously

hypothesized classifier if the latter is inconsistent with the available training data.

This so-called conservative learning behaviour, [Ang80], can be accomplished
with our insights from Section 2.2 and a regularity property. The proof gives a
deeper understanding of the W-hypothesis space and additionally covers other
requirements. For example, conservativeness implies that the learning algorithm
does not diverge from a correct hypothesis.

The following Chapter 3 is concerned with other models of successful learning
in Inductive Inference.

In Section 3.2 we sharpen the comparison of learning from exclusively positive
data with learning from labeled data in [LZ93] by posing the most restrictive
additional requirements.

Thereafter, in Section 3.3, we consider approximations by allowing a finite
number of errors of the concept hypothesized by the learning algorithm compared
with the classifier to be learned. With appropriate representations as a total
function or recursively enumerable set, we provide an equivalence between

learning total classifiers from either exclusively positive or binary labeled data.

This allows us to transfer the approximative hierarchy in [Bar74] and [CS83] to
our setting of full-information learning from binary labeled data. Concretely, we
show that increasing the number of allowed errors makes strictly more concept
classes learnable. Furthermore, for a fixed error parameter, we provide a duality
depending on whether vacillating between infinitely many different correct

Chapter 1
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hypotheses is still considered successful learning. This contrasts the hierarchies
when learning from solely positive information, [Cas99].

In Section 3.4 we consider a hypothesis space between uniform hypothesis
spaces of symmetric classifiers and the W-hypothesis space. Different varia-
tions of this approach are investigated for learning from solely positive data in
[Ber+20a] and [Ber+20b]. For learning from binary labeled data, we immediately
observe that the pairwise equivalences, proper implications and incomparabili-
ties between the established collection of delayable learning success criteria are
the same as for the W-hypothesis space considered in Section 2.4.

In contrast to classical machine learning algorithms, there is a growing interest
in incremental implementations that do not access all training data to infer the
new hypothesized classifier. For example, when training binary classifiers from
standard libraries for one epoch, a parameter to be adjusted is the so-called batch
size, specifying how many training examples are used for the computation of
the next hypothesis. In Part II we consider models for these memory-efficient
algorithms.

In Chapter 4 we focus on iterative algorithms, that compute the next hypothesis
based on the current labeled datum and the last hypothesized classifier, [R W76].
With an easy locking sequence argument, [BB75], one can show that these
iterative learners have strictly less learning power than the full-information
variant. It has also been observed that the learning capability is not improved if
the last k > 1 data are used in the computation of the next hypothesis from the
previous one, [OSW86]. Our results can also be found in [KKS20]. This reference
in addition includes a constructive iterative algorithm proving the learnability of
the uniform concept class of half-spaces from labeled data. Assuming realizability,
also the sub concept class of all spam filters is learnable by an iterative algorithm.

The essential terminology is recapitulated in Section 4.2. Thereafter, in Sec-
tion 4.3, we provide a procedure to obtain concept classes learnable by a full-
information algorithm from solely positive data but not by an iterative learning
algorithm from positive and negative information. Hence, we observe that the
aforementioned two settings are incomparable with respect to their learning
capabilities.

In the next two Sections, we investigate the pairwise relations between the
delayable learning success criteria for iterative learners. For learning from solely
positive information these have been clarified in [LZ91], [CM08a], [CK10] and
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[Jai+16]. For learning from binary labeled data, it was observed in [JLZ07a] that
consistency and conservativeness are restrictive. A further additional require-
ment arising from cognitive science research is U-shapedness [SS82], stating that
the learning algorithm does deviate from an optimal classifier. We already men-
tioned that conservativeness forbids U-shapes and hence naturally the question
arises whether non-U-shapedness is also restrictive. We differentiate a semantic
and a syntactic formalization of this phenomenon, where a learning success
criterion is semantic, if it does still hold, when the learning algorithm outputs
other parameters standing for the same classifier. On the one hand, in Section 4.4,
we provide a lemma that might be helpful to settle the learning power of the
semantic version. On the other hand, in Section 4.5, we show that forbidding
non-semantic U-shapes also restricts iterative learning algorithms on binary
labeled data.

In Chapter 5 we investigate the learning abilities of BMS learning algorithms
that do refer to the currently observed datum and the actual state of the algorithm
in order to compute the next hypothesis, [Car+07]. For successful learning the
algorithm must stop using new states eventually. We provide the complete map of
implications or incomparabilities between the established collection of delayable
learning success criteria when learning from positive data.

In Section 5.2 we fix the notation that is also inspired by automata theory.

Building on this, in Section 5.3 we prove that BMS and iterative learning
algorithms are equally powerful for all semantic delayable learning success
criteria. This is also true for learning from binary labeled data.

In Section 5.4 we show the equivalence of syntactic (non-semantic) learning
success criteria, for example conservativeness and syntactic non-U-shapedness.
For this, we refer to witness-based learning processes, [KS16], in which every
change of the hypothesis is justified by a later on correctly classified witness from
the training data. Moreover, we observe that syntactic non-U-shapedness re-
stricts BMS learning algorithms from positive data. Finally, we observe that with
respect to learning success criteria incorporating syntactic non-U-shapedness,
BMS learning algorithms can learn more concept classes than iterative learning
algorithms.

Our insights have a strong mathematical flavor. We rely on results from
Computability Theory, which round off the contributions towards a better under-
standing of Machine Learning by Linear Algebra, Calculus, Probability Theory,

Chapter 1
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Differential Geometry, Statistics and other areas of mathematics. Most notably,
we employ infinite fixed-point-theorems, like a one-to-one version of Case’s
Operator Recursion Theorem, [K6t09].
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Map of Delayable
Learning Success Criteria

Learning from positive and negative information, so-called informant, being
one of the models for human and machine learning introduced by E. M. Gold is
investigated. Particularly, naturally arising questions about this learning setting,
originating in results on learning from solely positive information, are answered.

By a carefully arranged argument learners can be assumed to only change
their hypothesis in case it is inconsistent with the data (such a learning behavior
is called conservative). The deduced main theorem states the relations between
the most important delayable learning success criteria, being the ones not ruined
by a delayed in time hypothesis output.

Additionally, our investigations concerning the non-delayable requirement of
consistent learning underpin the claim for delayability being the right structural
property to gain a deeper understanding concerning the nature of learning
success criteria.

2.1 Introduction

Research in the area of inductive inference aims at investigating the learning
of formal languages and has connections to computability theory, complexity
theory, cognitive science, machine learning, and more generally artificial intelli-
gence. Setting up a classification program for deciding whether a given word
belongs to a certain language can be seen as a problem in supervised machine
learning, where the machine experiences labeled data about the target language.
The label is 1 if the datum is contained in the language and 0 otherwise. The
machine’s task is to infer some rule in order to generate words in the language
of interest and thereby generalize from the training samples. This so-called
learning from informant was introduced in [Gol67] and further investigated in
several publications, including [BB75], [OSW86] and [LZK96].

According to [Gol67] the learner is modelled by a computable function, suc-
cessively receiving sequences incorporating more and more data. The source of
labeled data is called an informant, which is supposed to be complete in the limit,
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i.e., every word in the language must occur at least once. Thereby, the learner
possibly updates the current description of the target language (its hypothesis).
Learning is considered successful, if after some finite time the learner settles
on exactly one correct hypothesis, which precisely captures the words in the
language to be learned. As a single language can easily be learned, the interest-
ing question is whether there is a learner successful on all languages in a fixed
collection of languages.

Example. Consider £ = {IN\ X | X C N finite }, the collection of all co-finite
sets of natural numbers. Clearly, there is a computable function p mapping finite
subsets X € IN to p(X), such that p(X) encodes a program which stops if and
only if the input is not in X. We call p(X) an index for IN \ X. The learner is
successful if for every finite X € IN it infers p(X) from a possibly very large but
finite number of samples labeled according to IN \ X.

Regarding this example, let us assume the first two samples are (60, 1) and
(2,0). The first datum still leaves all options with 60 ¢ X. As the second datum
tells us that 2 € X, we may make the learner guess p({2}) until possibly more
negative data is available. Thus, the collection of all co-finite sets of natural
numbers is Ex-learnable from informant, simply by making the learner guess
the complement of all negative information obtained so far. Since after finitely
many steps all elements of the finite complement of the target language have
been observed, the learner will be correct from that point onward.

It is well-known that this collection of languages cannot be learned from purely
positive information. Intuitively, at any time the learner cannot distinguish the
whole set of natural numbers from all other co-finite sets which contain all
natural numbers presented to the learner until this point.

Learning from solely positive information, so-called text, has been studied
extensively, including many learning success criteria and other variations. Some
results are summed up in [Jai+99] and [Cas16]. We address the naturally arising
question what difference it makes to learn from positive and negative informa-
tion.

For learning from text there are entire maps displaying the pairwise relations
of different well-known learning success criteria, see [KP14], [KS16] and [Jai+16].
We give an equally informative map for Ex-learning from informant.

The most important requirements on the learning process when learning
from informant are conservativeness (Conv), where only inconsistent hypotheses
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are allowed to be changed; strong decisiveness (SDec), forbidding to ever return
semantically to a withdrawn hypothesis; strong monotonicity (SMon), requiring
that in every step the hypothesis incorporates the former one; monotonicity
(Mon), fulfilled if in every step the set of correctly inferred words incorporates
the formerly correctly guessed; cautiousness (Caut), for which never a strict
subset of earlier conjectures is guessed. In [LZK96] it was observed that requiring
monotonicity is restrictive and that under the assumption of strong monotonicity
even fewer collections of languages can be learned from informant. We complete
the picture by answering the following questions regarding Ex-learning from
informant positively:

1. Is every learnable collection of languages also learnable in a conservative
and strongly decisive way?

2. Are monotonic and cautious learning incomparable?

The above mentioned observations in [LZK96] follow from positively answer-
ing the second question.

A diagram incorporating the resulting map is depicted in Figure 2.1. The
complete map can be found in Figure 2.2.

Answering the first question builds on providing the two normal forms of (1)
requiring learning success only on the information presented in the canonical
order and (2) assuming the learner to be defined on all input sequences. Further,
a regularity property borrowed from text learning plays a crucial role in the
proof.

Requiring all of the learners guesses to be consistent with the positive and the
negative information being presented to it so far makes learning harder. Next
to this we also observe that the above normal forms cannot be assumed when
the learner is required to act consistently. On the one hand, it is easier to find a
learner for a collection of languages that consistently learns each of them only
from the canonical presentation than finding one consistently learning them
from arbitrary informant. On the other hand finding a total learner consistently
Ex-learning a collection of languages is harder than finding a partial one.

We further transfer the concept of a learning success criterion to be invariant
under time-delayed outputs of the hypotheses, introduced for learning from text
in [KP16] and generalized in [KSS17], to the setting of learning from informant.
Consistency is not delayable since a hypothesis which is consistent now might

Section 2.1
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be inconsistent later due to new data. As this is the only requirement not being
delayable, the results mentioned in the last paragraph justify the conjecture of
delayability being the right property to proof more results that at once apply to
all learning success criteria but consistency.

While in [LZ94] variously restricted learning of collections of recursive lan-
guages with a uniform decision procedure are considered, the above mentioned
results also apply to arbitrary collections of recursively enumerable sets. Further,
our results are as strong as possible, meaning that negative results are stated for
indexable families, if possible, and positive results for all collections of languages.

T NU SNU
WMon Dec SDec Conv

InfEx

g N
SdInfEx ‘\ /

Figure 2.1: Relations between delayable learning restrictions in Ex-learning from infor-
mants. Implications are represented as black lines from bottom to top. Two learning
settings are equivalent if and only if they lie in the same grey outlined zone.

In contrast to our observations, it has been shown in [Ang80] that requiring a
conservative learning process is a restriction when learning from text. Further,
this is equivalent to cautious learning as shown in [KP16]. That monotonic
learning is restrictive and incomparable to both of them in the text learning
setting follows from [LZK96], [KS95], [JS98] and [KP16]. Further, when learning
from text, strong monotonicity is again the most restrictive assumption by
[LZK96]. Strong decisiveness is restrictive, see [Bal+08], and further is restricted
by cautiousness/conservativeness on the one hand and monotonicity on the
other hand by [KP16]. In the latter visualizations and a detailed discussion are
provided.
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When the learner does not have access to the order of presentation but knows
the number of samples, the map remains the same as observed in [KS16].

In case the learner makes its decisions only based on the set of presented
samples and ignores any information about the way it is presented, it is called set-
driven (Sd). For such set-driven learners, when learning from text, conservative,
strongly decisive and cautious learning are no longer restrictive and the situation
with monotonic and strong monotonic learning remains unchanged by [KS95]
and [KP16].

We observe that for delayable informant learning all three kinds of learners
yield the same map. Thus, our results imply that negative information compen-
sates for the lack of information set-driven learners have to deal with.

[Gol67] was already interested in the above mentioned normal forms and
proved that they can be assumed without loss of generality in the basic setting
of pure Ex-learning, whereas our results apply to all delayable learning success
criteria.

The name “delayability” refers to tricks in order to delay mind changes of the
learner which were used to obtain polynomial computation times for the learners
hypothesis updates as discussed in [Pit89] and [CK09]. Moreover, it should not
be confused with the notion of §-delay, [AZ08], which allows satisfaction of the
considered learning restriction § steps later than in the un-§-delayed version.

In [OSW86] several restrictions for learning from informant are analyzed and
mentioned that cautious learning is a restriction to learning power; we extend
this statement with our Proposition 2.22 in which we give one half of the answer
to the second question above by providing a family of languages not cautiously
but monotonically Ex-learnable from informant.

Furthermore, [OSW86] consider a version of conservativeness where mind
changes are only allowed if there is positive data contradicting the current
hypothesis, which they claim to restrict learning power. In this thesis, we stick
to the more common definition in [BB75] and [Bar77], according to which mind
changes are allowed also when there is negative data contradicting the current
hypothesis.

In Section 2.2 the setting of learning from informant is formally introduced
by transferring fundamental definitions and —as far as possible— observations
from the setting of learning from text. In Section 2.3 in order to derive the

Section 2.1
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entire map of pairwise relations between delayable Ex-learning success criteria,
normal forms and a regularity property for such learning from informant are
provided. Further, consistent learning is being investigated. In Section 2.4 we
answer the questions above and present all pairwise relations of learning criteria
in Theorem 2.24.

All sections build on Section 2.2. Additionally, Section 2.4 builds on Sec-
tion 2.3.

2.2 Informant Learning

We formally introduce the notion of an informant and transfer concepts and
fundamental results from the setting of learning from text to learning from
informant. This includes the learner itself, convergence criteria, locking se-
quences, learning restrictions and success criteria as well as a compact notation
for comparing different learning settings. In the last subsection delayability
as the central property of learning restrictions and learning success criteria is
formally introduced.

As far as possible, notation and terminology on the learning theoretic side
follow [Jai+99], whereas on the computability theoretic side we refer to [Odi99].

We let IN denote the natural numbers including 0 and write co for an infinite
cardinality. Moreover, for a function f we write dom(f) for its domain and
ran(f) for its range. If we deal with (a subset of) a cartesian product, we are
going to refer to the projection functions to the first or second coordinate by pr,
and pr,, respectively. For sets X, Y and a € IN we write X = Y, if X equals Y with
a anomalies, i.e., |(X\Y)U(Y\X)| < a, where |.| denotes the cardinality function.
In this spirit we write X =" Y, if there exists some a € IN such that X =¢ Y.
Further, X =% denotes the finite sequences over X and X* stands for the countably
infinite sequences over X. Additionally, X =% := X<“ U X denotes the set of
all countably finite or infinite sequences over X. For every f € X=“ and t € IN,
we let f[t] :== {(s, f(s)) | s < t} denote the restriction of f tot. For sequences
0,7 € X=? their concatenation is denoted by 0”7 and we write o < 7, if o is
an initial segment of 7, i.e., there is some ¢ € IN such that o = r[¢]. Finally, we
write last(o) for the last element of o, o(|o| — 1), and o~ for the initial segment
of o without last(o), i.e. o[|o| — 1]. Clearly, 0 = ¢~ "last(o). In our setting, we
typically have X = IN x {0, 1}. Without demanding computability, we denote
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by P and R the set of all partial functions f : dom(f) € INx{0,1}<“ — IN and
total functions f : INx{0, 1}~ — IN, respectively.

Let L € IN. If L is recursively enumerable, we call L a language. In case its
characteristic function is computable, we say it is a recursive language. Moreover,
we call £ € Pow(IN) a collection of (recursive) languages, if every L € Lis a
(recursive) language. In case there exists an enumeration {L¢ | £ € Z} of L,
where = C IN is recursive and a computable function f with ran(f) € {0, 1}
suchthatx € Ly & f(x,&) = 1forall £ € Zand x € IN, we say L is an indexable
family of recursive languages. By definition indexable families are collections of
recursive languages with a uniform decision procedure.

Further, we fix a programming system ¢ as introduced in [RC94]. Briefly, in
the ¢-system, for a natural number p, we denote by ¢, the partial computable
function with program code p. We call p an index for W, := dom(¢,). For a
finite set X € IN we denote by ind(X) a canonical index for X. In reference to a
Blum complexity measure, for all p,t € IN, we denote by Wlf C W, the recursive
set of all natural numbers less or equal to ¢, on which the machine executing p
halts in at most t steps. Moreover, by s-m-n we refer to a well-known recursion
theoretic observation, which gives finite and infinite recursion theorems, like
Case’s Operator Recursion Theorem ORT, [Cas74]. Inuitively, it states that for
every recursive operator there is a computable function that is a fixed point of
the action of the operator on the ¢-system. Formally, a 1-1 version of this result
reads as follows.

1-1 Operator Recursion Theorem ([K6t09]). Let © : P — P be a computable
operator, namely a function mapping partial computable functions to partial
computable functions. Then there is a 1-1 computable function h € # such that

V1, x(@n(m) (x) = ©(h)(n,x)).

For our purposes the operator © will always be implicit. The first application
of ORT is in Proposition 2.18 and it occurs in many different variants in other
proofs. For further intuitions see for example [Cas94].

Finally, we let H = {p € IN | ¢,(p)] } denote the halting problem.

2.2.1 Informant and Learners

Intuitively, for any natural number x an informant for a language L answers
the question whether x € L in finite time. More precisely, for every natural

Section 2.2
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number x the informant I has either (x, 1) or (x, 0) in its range, where the first
is interpreted as x € L and the second as x ¢ L, respectively.

Definition 2.1. (i) Let f € (INx{0,1})=®. We denote by

pos(f) == {y € N[ 3x € N: pr, (f(x)) = y A pr,y(f(x)) = 1},
neg(f) = {y € N | 3x € N: pr, (f(x)) = y A pry(f(x)) = 0}

the sets of all natural numbers, about which f gives some positive or negative
information, respectively.

(ii) Let L be a language. We call every function I : N — INx{0, 1} such that
pos(I) U neg(I) = N and pos(I) N neg(I) = @ an informant. Further, we
denote by Inf the set of all informant and the set of all informant for the
language L is defined as

Inf(L) := {I € Inf | pos(I) = L}.

(iii) Let I be an informant. If for every timet € IN the informant I reveals
information about t itself, for short pr,(I(t)) = t, we call I a canonical
informant.

It is immediate, that neg(I) = IN\ L for every I € Inf(L). In [Gol67] a canonical
informant is referred to as methodical informant.

We employ Turings model for human computers which is the foundation of
all modern computers to model the processes in human and machine learning.

Definition 2.2. A learner is a (partial) computable function
M : dom(M) € (INx{0,1})=“ — IN.

The set of all partial computable functions M : dom(M) € (INx{0,1})~° — IN
and total computable functions M : (INx{0,1})<“ — IN are denoted by £ and
R, respectively.

2.2.2 Convergence Criteria and Locking Sequences

Convergence criteria tell us what quality of the approximation and syntactic
accuracy of the learners’ eventual hypotheses are necessary to call learning

18
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successful. Further, we prove that learning success implies the existence of
sequences on which the learner is locked in a way corresponding to the con-
vergence criterion. We will use locking sequences to show that a collection of
languages cannot be learned in a certain way.

Definition 2.3. Let M be a learner and L a collection of languages. Further, let
a€INU{x}andb € INsq U {*, o0},
(i) Let L € L be a language and I € Inf(L) an informant for L presented to M.

a) Wecallh = (hy);ew € IN®, where hy := M(I[t]) forallt € IN, the
learning sequence of M on I.

b) M learns L from I with a anomalies and vacillation number b in the
limit, for short M Ex;-learns L from I or Ex; (M, I), if there is a time
to € IN such that |[{h, | t > to}| < b and for allt > t; we have
Wy, =% L.

(i) M learns £ with a anomalies and vacillation number b in the limit, for
short M Ex¢ -learns L, if Ex}, (M, I) for every L € L and everyI € Inf(L).

The intuition behind (i)(b) is that, sensing I, M eventually only vacillates
between at most b-many hypotheses, where the case b = * stands for eventually
finitely many different hypotheses. In accordance with the literature, we omit
the superscript 0 and the subscript 1.

Ex-learning, also known as explanatory learning, is the most common defini-
tion for successful learning and corresponds to the notion of identifiability in the
limit by [Gol67], where the learner eventually decides on one correct hypothesis.
On the other end of the hierarchy of convergence criteria is behaviorally correct
learning, for short Bc- or Ex-learning, which only requires the learner to be
eventually correct, but allows infinitely many syntactically different hypotheses
in the limit. Behaviorally correct learning was introduced in [OW82]. The
general definition of Exj-learning fora € N U {+} and b € IN>o U {*} was first
mentioned in [Cas99].

In our setting, we also allow b = co and subsume all Exz under the notion of a
convergence criterion, since they determine in which semi-topological sense the
learning sequence needs to have L as its limit, in order to succeed in learning L.

In the following we transfer an often employed observation in [BB75] to the
setting of learning from informant and generalize it to all convergence criteria

Section 2.2
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introduced in Definition 2.3. For this we first recall the notion of consistency of
a sequence with a set according to [BB75] and [Bar77].

Definition 2.4. Let f € (INx{0,1})=® and A C IN. We define
Cons(f,A) = pos(f) CA A neg(f) CIN\A
and say f is consistent with A.

Definition 2.5. Let M be a learner, L a language and a € IN U {x} as well as
b € INso U {x,00}. Wecallo € (Nx{0,1})=“ a Exjy-locking sequence for M on
L, if Cons(o, L) and

AD CIN(|D| <£b A Vre (INx{0,1})=“
(Cons(r,L) = (M(0"1)| AWp(s-r =* LAM(c"1) €D)))

Further, alocking sequence for M on L is a Ex-locking sequence for M on L.

Intuitively, the learner M is locked by the sequence o onto the language L
in the sense that no presentation consistent with L can circumvent M guessing
admissible approximations to L and additionally all guesses based on an extension
of o are captured by a finite set of size at most b.

Note that the definition implies M(0o)|, Wy (») =* L and M(o) € D.

Lemma 2.6. Let M be a learner,a € NU {x}, b € N5 o U {*, oo} and L a language
Ex; -identified by M. Then there is a Ex; -locking sequence for M on L.

Proof. This is a contradictory argument. Without loss of generality M is defined
on @. Assume towards a contradiction for every o with Cons(o, L), M(0)| and
Wpm(s) = L and for every finite D C IN with at most b elements there exists a
sequence 72 € (INx{0,1})~ with

Cons(z2,L) A (M(O’AT?)T VWyo-0) =LV M(c"tD) ¢ D )

Let I; denote the canonical informant for L. We obtain an informant for L on
which M does not Exj-converge by letting

I:= U o, with

nelN



Informant Learning

0y = IL[l],

Ont1 i= O'nﬁl'?n"AIL(n +1)

for all n € IN, where in D,, := { M(0;) | max{0,n —b+1} <i < n} we collect
M’s at most b-many last relevant hypotheses. Since I is an informant for L by
having interlaced the canonical informant for L, the learner M Exj-converges
on I. Therefore, let ny be such that for all t with o, < I[t] we have h;| and
Wy, =% L. Then certainly { M(o;) | ng < i < ng+ b} has cardinality b+ 1, a

contradiction. O

Obviously, an appropriate version also holds when learning from text is
considered.

2.2.3 Learning Success Criteria

We list the most common requirements that combined with a convergence
criterion define when a learning process is considered successful.

The choice of additional requirements in the following definition is justified
by prior investigations of the corresponding criteria, when learning from text,
see [KP16], [KS16] and [Jai+16].

Definition 2.7. Let M be a learner, I € Inf an informant and h = (h;);ew € IN?
the learning sequence of M on I. We write

(i) Cons(M,I) ([Ang80]), if M is consistent on I, i.e., for all t
Cons(I[t], Wy,).
(ii) Conv(M,I) ([Ang80]), if M is conservative on I, i.e., for all s,t withs <t
Cons(I[t],Wy,) = hs=hy.
(iii) Dec(M,I) ([OSWS82]), if M is decisive on I, i.e., forallr,s,t withr <s <t
Wy, =Wy, = W, =W
(iv) Caut(M,I) ([OSWS86]), if M is cautious on I, i.e., for all s,t withs <t

_'Wh, C th.
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(v) WMon(M, I) ([fan91],[Wie91]), if M is weakly monotonic on I, i.e., for all
s, t withs <t

Cons(I[t],Wy,) = Wy, C Wp,.

(vi) Mon(M,I) ([Jan91],[Wie91]), if M is monotonic on I, i.e., for all s, t with
s<t
Wh, N pos(I) € Wy, Npos().

(vii) SMon(M,I) ([Jan91],[Wie91]), if M is strongly monotonic on I, ie., for all
s, t withs <t
Wh, € Wp,.

(viii) NU(M, I) ([Bal+08]), if M is non-U-shaped on I, i.e., for all r,s,t with
r<sc<t
Wh, = Wy, = pos(I) = Wh, = Wh,.

(ix) SNU(M,I) ([CM11]), if M is strongly non-U-shaped on I, i.e., forallr,s,t
withr <s <t
Wy, = Wy, =pos(I) = h, = h;.

(x) SDec(M,I) ([KP16]), if M is strongly decisive on I, i.e., for allr,s,t with
r<s<t
Whr = Wht = hr = hs-

The following lemma states the implications between almost all of the above
defined learning restrictions, which form the foundation of our research. Fig-
ure 2.2 includes the resulting backbone, which is slightly different from the one
for learning from text, since WMon does not necessarily imply NU in the context
of learning from informant.

Lemma 2.8. Let M be a learner and I € Inf an informant. Then
(i) Conv(M,I) implies SNU(M, I) and WMon (M, I).

(ii) SDec(M,I) implies Dec(M,I) and SNU(M, I).
(iii) SMon(M, I) implies Caut(M, I), Dec(M, I), Mon(M, I) and WMon(M, I).
(iv) Dec(M,I) and SNU(M, I) each imply NU(M,I).
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(v) WMon(M, I) does not imply NU(M, I) in general.

Proof. Verifying the claimed implications is straightforward. In order to verify
(v), consider L = 2IN. Fix p,q € IN such that W, = 2IN U {1} and W;, = 2N and
define the learner M for all o € INx{0, 1}=“ by

p, if 1 € neg(o) A2 ¢ pos(o);

g, otherwise.

M(o) = {

In order to prove WMon(M, I) for every I € Inf(L), let I be an informant for
L and s;(x) := min{t € IN | pr,(I(t)) = x}, i.e,, 57(1) and s;(2) denote the first
occurance of (1,0) and (2, 1) in ran(I), respectively. Then we have for all t € IN

W = 2INU {1}, ifs;(1) <t < s1(2);
he = 2NN, otherwise.

We have Wy, = Wy(r[s)) = 2IN U {1} as well as 1 € neg(I[¢t]) for all s,t € IN
with s7(1) < s < $7(2) and t > s;(2). Therefore, ~Cons(I[t], Wj,) because
of neg(I[t]) € IN \ Wj,. We obtain WMon(M, I) since whenever s < t in IN
are such that Cons(I[t], Wy, ), we know that W, = 2IN U {1} can only hold if
likewise s7(1) < t < s7(2) and hence Wy, = 2IN U {1}, which yields Wj,, € Wj,.
Furthermore, if Wj,, = 2IN all options for W}, satisfy Wy, C Wj,. Otherwise,
in case M observes the canonical informant I for L, we have Wy, = W}, = 2N,

Wp, = 2INU {1} and Wy, = 2IN for all ¢t > 2, which shows -NU(M, I). |

By the next definition, in order to characterize what successful learning means,
we choose a convergence criterion from Definition 2.3 and may pose additional
learning restrictions from Definition 2.7.

Definition 2.9. Let T := B X Inf denote the whole set of pairs of possible learners
and informant. We denote by

A := { Caut, Cons, Conv, Dec, SDec,
WMon, Mon, SMon, NU, SNU, T }

the set of admissible learning restrictions and by

I'={Exj|aeINU{x} A beN,gU{x00}}

Section 2.2
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Map of Delayable Learning Success Criteria

the set of convergence criteria. Further, if

ﬁe{ﬂ5iﬂy|ne]N,ViSn(éieA)andyeF}QinInf,

i=0
we say that f3 is a learning success criterion.

Note that every convergence criterion is indeed a learning success criterion
by letting n = 0 and &, = T, where the latter stands for no restriction. In the
literature convergence criteria are also called identificaton criteria and then
denoted by I or ID.

We refer to all § € {Caut, Cons, Dec, Mon, SMon, WMon, NU, T} also as se-
mantic learning restrictions, as they allow for proper semantic convergence.

2.2.4 Comparing the Learning Power of Learning Settings

In order to state observations about how two ways of defining learning success
relate to each other, the learning power of the different settings is encapsulated
in notions [aInff] defined as follows.

Definition 2.10. Leta C P be a property of partial computable functions from the
set (INx{0,1})<“ to IN and f a learning success criterion. We denote by [aInf[]
the set of all collections of languages that are -learnable from informant by a
learner M with the property a.

In case the learner only needs to succeed on canonical informant, we denote the
corresponding set of collections of languages by [aInf ., f].

In the learning success criterion at position f, the learning restrictions to meet
are denoted in alphabetic order, followed by a convergence criterion.

At position @, we restrict the set of admissible learners by requiring for
example totality. The properties stated at position « are independent of learning
success.

For example, a collection of languages L lies in [RInf ,,ConvSDecEx] if and
only if there is a total learner M conservatively, strongly decisively Ex-learning
every L € £ from canonical informant. The latter means that for every canonical
informant I for some L € £ we have Conv(M,I), SDec(M,I) and Ex(M,I).

Note that it is also conventional to require M’s hypothesis sequence to fulfill
certain learning restrictions, not asking for the success of the learning process.



Delayability versus Consistency

For instance, we are going to show that there is a collection of languages £ such
that:

« there is a learner which behaves consistently on all L € £ and Ex-learns
all of them, for short £ € [InfConsEx].

« there is no learner which Ex-learns every L € £ and behaves consistently
on all languages, for short £ ¢ [ConsInfEx].

The existence of L is implicit when writing [ConsInfEx]| ¢ [InfConsEx].

This notation makes it also possible to distinguish the mode of information
presentation. If the learner observes the language as solely positive information,
we write [aTxtf] for the collections of languages f-learnable by a learner with
property o from text. Of course for « and f the original definitions for the setting
of learning from text have to be used. All formal definitions for learning from
text can be found in [KP14].

2.3 Delayability versus Consistency

In order to facilitate smooth proofs later on, we discuss normal forms for learning
from informant. First, we consider the notion of set-drivenness. In Lemma 2.14
we show for delayable learning success criteria, that every collection of languages
that is learnable from canonical informant is also learnable by a set-driven learner
from arbitrary informant