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Abstract 

High mountain regions are the water towers of the Earth. They can store snow and ice over 

seasons to years, and their meltwater is a vital resource of freshwater for humans and ecosystems. 

Clearly, the benefits from mountain runoff are manifold, from its primary use as drinking water, to 

irrigation, and hydropower generation. Human activity and settlements thus gradually moved into 

river headwaters over the past centuries, accepting that this environment hosts many sources of 

natural hazards. Weather and topography can change frequently over short distances, so that single 

events, such as avalanches, flash floods and debris flows have resulted in dramatic loss of human 

lives and damages to infrastructure. One prominent notion is that ongoing global atmospheric 

warming will express most severely in high mountains. Disasters from snow- and ice-related 

processes may hence become more frequent, with possibly higher magnitudes.  

The Himalayas are a region that is most dependent, but also frequently prone to hazards 

from changing meltwater resources. This mountain belt hosts the highest mountain peaks on earth, 

has the largest reserve of ice outside the polar regions, and is home to a rapidly growing population 

in recent decades. One source of hazard has attracted scientific research in particular in the past two 

decades: glacial lake outburst floods (GLOFs) occurred rarely, but mostly with fatal and catastrophic 

consequences for downstream communities and infrastructure. Such GLOFs can suddenly release 

several million cubic meters of water from naturally impounded meltwater lakes. Glacial lakes have 

grown in number and size by ongoing glacial mass losses in the Himalayas. Theory holds that 

enhanced meltwater production may increase GLOF frequency, but has never been tested so far. The 

key challenge to test this notion are the high altitudes of >4000 m, at which lakes occur, making 

field work impractical. Moreover, flood waves can attenuate rapidly in mountain channels 

downstream, so that many GLOFs have likely gone unnoticed in past decades. Our knowledge on 

GLOFs is hence likely biased towards larger, destructive cases, which challenges a detailed 

quantification of their frequency and their response to atmospheric warming. Robustly quantifying 

the magnitude and frequency of GLOFs is essential for risk assessment and management along 

mountain rivers, not least to implement their return periods in building design codes. 

Motivated by this limited knowledge of GLOF frequency and hazard, I developed an 

algorithm that efficiently detects GLOFs from satellite images. In essence, this algorithm classifies 

land cover in 30 years (~1988–2017) of continuously recorded Landsat images over the Himalayas, 

and calculates likelihoods for rapidly shrinking water bodies in the stack of land cover images. I 

visually assessed such detected tell-tale sites for sediment fans in the river channel downstream, a 

second key diagnostic of GLOFs. Rigorous tests and validation with known cases from roughly 10% 

of the Himalayas suggested that this algorithm is robust against frequent image noise, and hence 



 

III 

 

capable to identify previously unknown GLOFs. Extending the search radius to the entire Himalayan 

mountain range revealed some 22 newly detected GLOFs. I thus more than doubled the existing 

GLOF count from 16 previously known cases since 1988, and found a dominant cluster of GLOFs in 

the Central and Eastern Himalayas (Bhutan and Eastern Nepal), compared to the rarer affected 

ranges in the North. Yet, the total of 38 GLOFs showed no change in the annual frequency, so that 

the activity of GLOFs per unit glacial lake area has decreased in the past 30 years. I discussed possible 

drivers for this finding, but left a further attribution to distinct GLOF-triggering mechanisms open 

to future research. 

This updated GLOF frequency was the key input for assessing GLOF hazard for the entire 

Himalayan mountain belt and several subregions. I used standard definitions in flood hydrology, 

describing hazard as the annual exceedance probability of a given flood peak discharge [m3 s-1] or 

larger at the breach location. I coupled the empirical frequency of GLOFs per region to simulations 

of physically plausible peak discharges from all existing ~5,000 lakes in the Himalayas. Using an 

extreme-value model, I could hence calculate flood return periods. I found that the contemporary 

100-year GLOF discharge (the flood level that is reached or exceeded on average once in 100 years) 

is 20,600+2,200/–2,300 m3 s-1 for the entire Himalayas. Given the spatial and temporal distribution of 

historic GLOFs, contemporary GLOF hazard is highest in the Eastern Himalayas, and lower for 

regions with rarer GLOF abundance. I also calculated GLOF hazard for some 9,500 overdeepenings, 

which could expose and fill with water, if all Himalayan glaciers have melted eventually. Assuming 

that the current GLOF rate remains unchanged, the 100-year GLOF discharge could double 

(41,700+5,500/–4,700 m3 s-1), while the regional GLOF hazard may increase largest in the Karakoram.  

To conclude, these three stages–from GLOF detection, to analysing their frequency and 

estimating regional GLOF hazard–provide a framework for modern GLOF hazard assessment. Given 

the rapidly growing population, infrastructure, and hydropower projects in the Himalayas, this 

thesis assists in quantifying the purely climate-driven contribution to hazard and risk from GLOFs. 
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Zusammenfassung 

Hochgebirge bilden die Wassertürme unserer Erde. Sie können Schnee und Eis über viele Jahre 

hinweg speichern, und ebenso wieder als Schmelzwasser abgeben. Der Abfluss aus Hochgebirgen ist 

daher eine wichtige Süßwasserquelle für Ökosysteme und seit den letzten Jahrhunderten 

zunehmend auch für den Menschen. Der Nutzen von Schmelzwasser reicht von seiner 

ursprünglichen Bedeutung als Trinkwasserressource, über Bewässerung in der Landwirtschaft, bis 

zur Gewinnung von Wasserenergie. Menschliches Handeln und Siedeln dehnte sich daher immer 

weiter in die Oberläufe der Flüsse aus, wohlwissend, dass diese Umgebung auch eine Vielzahl an 

Naturgefahren birgt. Wetter und Topographie ändern sich hier schnell auf engstem Raum, sodass 

einzelne Ereignisse wie Lawinen, Sturzfluten oder Murgänge in der Vergangenheit immer wieder zu 

tragischen Verlusten an Menschenleben und Schäden an Infrastruktur führten. Heutzutage deutet 

vieles darauf hin, dass der weltweit beobachtete Klimawandel am stärksten in Hochgebirgen zum 

Ausdruck kommen könnte. Gerade solche Prozesse, die durch das Abschmelzen von Schnee und Eis 

entstehen, könnten dadurch häufiger und eventuell mit einer stärkeren Intensität auftreten, was 

auch vermehrt Katastrophenfälle zur Folge hätte. 

In kaum einer anderen Region treten Abhängigkeit, Nutzen und Gefährdung von Gletscher- 

und Schneeschmelze so deutlich zu Tage wie im Himalaya. Diese Gebirgskette beherbergt die 

höchsten Berge und das größte Eisvolumen außerhalb der Polregionen weltweit, und bietet 

Lebensraum und natürliche Ressourcen für eine jüngst rasch wachsende Bevölkerung. 

Naturgefahren sind hier allgegenwärtig, wobei eine die Wissenschaftler in den vergangen zwei 

Jahrzehnten besonders beschäftigte: Ausbrüche von Gletscherseen traten in der Vergangenheit zwar 

selten, aber meist mit katastrophalen Konsequenzen für die darunterliegenden Berggemeinden auf. 

Gletscherseeausbrüche (englisches Akronym GLOFs – glacial lake outburst floods) beschreiben den 

plötzlichen Ausfluss von teils mehreren Millionen Kubikmetern Wasser aus natürlich gedämmten 

Schmelzwasserseen. Anhaltender Gletscherrückgang in vergangenen Jahrzehnten schuf mehrere 

tausend Hochgebirgsseen, mit ununterbrochenem Wachstum in Anzahl und Fläche, was den Schluss 

auf ein möglicherweise vermehrtes Auftreten von GLOFs nahelegte. Diese suggerierte Zunahme von 

GLOFs konnte jedoch bisher weder getestet noch bestätigt werden, vor allem weil Seen überwiegend 

jenseits von 4,000 m üNN entstehen, was Feldstudien dort erschwert. Zudem schwächen sich diese 

Flutwellen meist schnell ab, sodass einige davon wahrscheinlich unentdeckt blieben. Unser Wissen 

über GLOFs ist daher möglicherweise zu größeren, schadensreichen Ereignissen verschoben, 

wodurch ihre aktuelle Frequenz, und letztlich auch ihr Zusammenhang mit dem Klimawandel, nur 

schwer quantifizierbar sind. Mit welcher Wiederkehrrate GLOFs auftreten ist nicht zuletzt 
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entscheidend für Risikoanalyse und -management entlang von Flüssen, um beispielsweise Gebäude 

entsprechend sicher gegenüber der zu erwartenden Häufigkeit und Magnitude von GLOFs zu planen. 

Um einer Unterschätzung der tatsächlichen GLOF-Aktivität entgegenzuwirken, entwickelte ich 

einen Algorithmus, der GLOFs automatisch aus Satellitenbildern detektiert. Der Algorithmus greift 

auf etwa 30 Jahre kontinuierlich aufgenommene Landsat-Bilder (~1988-2017) zu, klassifiziert die 

Erdoberfläche in jedem einzelnen Bild und berechnet letztlich die Wahrscheinlichkeit, ob 

Wasserkörper rasch innerhalb dieser Bildzeitreihe geschrumpft sind. An solch gekennzeichneten 

Stellen suchte ich nach Anzeichen für Sedimentverlagerung im Gerinne flussabwärts, was ein 

zweites Hauptkriterium für GLOFs ist. Tests und Validierung in etwa 10% des Himalayas bestätigten, 

dass die Methode robust gegenüber häufig auftretenden atmosphärischen Störeffekten ist. Mit dem 

Ziel bisher unbekannte GLOFs zu entdecken, wendete ich daher diesen Algorithmus auf den 

gesamten Himalaya an. Die Suche ergab 22 neu entdeckte GLOFs, was das bestehende Inventar von 

16 bekannten GLOFs seit 1988 mehr als verdoppelt. Das aktualisierte räumliche Verbreitungsmuster 

bestätigte einmal mehr, dass GLOFs vermehrt im Zentral- und Osthimalaya (Bhutan und Ost-Nepal) 

auftraten, wohingegen im Norden deutlich weniger GLOFs stattfanden. Entgegen der häufigen 

Annahme stellte ich jedoch fest, dass die jährliche Häufigkeit von GLOFs in den letzten drei 

Jahrzehnten konstant blieb. Dadurch hat das Verhältnis von GLOFs pro Einheit See(-fläche) in 

diesem Zeitraum sogar abgenommen. Ich diskutiere mögliche Gründe für dieses Ergebnis, lasse aber 

eine tiefergehende Analyse von möglichen Ausbruchsfaktoren offen für zukünftige Forschung. 

Dieses räumlich aufgelöste GLOF-Inventar bot nun die Möglichkeit, das Gefährdungspotential 

durch GLOFs für den gesamten Himalaya und einzelne Regionen zu berechnen. Dafür verwendete 

ich die in der Hochwasseranalyse gebräuchliche Definition von Gefährdung, welche die jährliche 

Überschreitungswahrscheinlichkeit einer gewissen Abflussmenge, in diesem Fall des 

Spitzenabflusses [m3 s-1] am Dammbruch, beschreibt. Das GLOF-Inventar liefert demnach die 

zeitliche Wahrscheinlichkeit für das Auftreten von GLOFs, während Simulationen von möglichen 

Spitzenabflüssen für alle heute existierenden ~5,000 Seen im Himalaya die zu erwarteten 

Magnituden beisteuerten. Mit Extremwertstatistik lässt sich so die mittlere Wiederkehrzeit dieser 

Spitzenabflüsse errechnen. Ich fand heraus, dass der 100-jährliche Abfluss (die Flutmagnitude, die 

im Durchschnitt einmal in 100 Jahren erreicht oder überschritten wird) derzeit bei rund 

20,600+2,200/–2,300 m³ s-1 für den gesamten Himalaya liegt. Entsprechend der heutigen räumlichen 

und zeitlichen Verteilung von GLOFs ist die Gefährdung im Osthimalaya am höchsten und in 

Regionen mit wenig dokumentierten GLOFs vergleichsweise niedrig. Für ein Szenario, in dem der 

gesamte Himalaya in Zukunft eisfrei sein könnte, errechnete ich zudem das Gefährdungspotential 

von ~9,500 Übertiefungen unterhalb der heutigen Gletschern, die sich nach deren Abschmelzen mit 
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Wasser füllen könnten. Angenommen, dass die zukünftige GLOF-Rate der heutigen entspricht, 

könnte der 100-jährliche Abfluss sich mehr als verdoppeln (41,700+5,500/–4,700 m3 s-1), wobei der 

stärkste regionale Anstieg für den Karakorum zu erwarten wäre. 

Zusammenfassend formen diese drei Schritte–von der Detektion von GLOFs, über die 

Bestimmung derer Frequenz, bis zur regionalen Abschätzung von Spitzenabflüssen–das 

Grundgerüst, das ein moderner Ansatz zur Gefahrenabschätzung von GLOFs benötigt. Angesichts 

einer wachsenden Exposition von Bevölkerung, Infrastruktur und Wasserkraftanlagen liefert diese 

Arbeit einen entscheidenden Beitrag, den Anteil des Klimawandels in der Gefährdung und Risiko 

durch GLOFs zu quantifizieren. 
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1. Introduction 

1.1. Climate Change in the Himalayas 

The Himalayas and its adjacent mountain ranges, the Hindu Kush, Karakoram, 

Nyaiqentanglha and Hengduan Shan, form one of Earth’s largest mountain belts, spanning >3,000 

km across eight countries: Afghanistan, Pakistan, India, Nepal, Bhutan, Myanmar and China (Figure 

1-1). Ten major rivers, including the Indus, Ganges and Brahmaputra, drain this region and sustain 

the livelihood of 240 million people in the mountains and their foothills. Another 1.4 billion people 

downstream depend at least partly on the runoff that these rivers provide for households, 

agriculture, and hydropower operations. Approximately 45,600 glaciers cover ~52,200 km² in the 

headwaters of these rivers today (Arendt et al., 2015), and their meltwater plays a key role in 

modulating stream flow throughout the year. Glacial runoff from the Himalayas is an important 

buffer against drought in regions with hot and dry summers such as the upper Indus Basin, during 

which storages from snow and rainfall are declining or have already depleted (Kaser et al., 2010; 

Lutz et al., 2014). Not least the growing trends in population and economy in recent decades 

underline the benefits, but also the dependency from glacial melt in the Himalayas (Wester et al., 

2019). 

Figure 1-1: The Himalayas and the main river basins draining the Tibetan Plateau. Basins are light blue 

with dark blue rivers and labels; subregions of the Himalayas are yellow; country borders and labels are 

brown; and glaciers are black. 
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We may thus understand the stir that arose from the Fourth Assessment Report of the 

Intergovernmental Panel on Climate Change (IPCC) in 2007. Then, the experts noted that Himalayan 

glaciers are retreating faster than in any other mountain range, and would likely be gone by 2035, if 

warming continued as before (IPCC, 2007). Though these statements were rather quickly convicted 

of erroneous referencing (Cogley et al., 2010), it took five years to summarise for the first time the 

current state of Himalayan glaciers (Bolch et al., 2012; Kääb et al., 2012). Apart from the general 

conclusion that Himalayan glacier mass balances are mostly negative and far from uniform, 

scientists realized that knowledge on glacier processes in this and neighbouring mountain ranges 

was limited with large uncertainties about the impacts of climate change. After a decade of minutely 

quantifying historic glacier changes, evidence has substantiated that the region-wide glacier mass 

balance has likely been negative since at least the 1970s (Bolch et al., 2019). Several studies 

independently provided estimates of mass balances for the 21st century, accentuating the highest 

mass losses in the Western Himalayas (or Spiti Lahaul) and the Nyainqentanglha Mountains (Brun 

et al., 2017; Kääb et al., 2015, 2012), and more stable ice volumes for the Karakoram (Bolch et al., 

2017; Gardelle et al., 2012) (Figure 1-2). 

 

Glacier changes are challenging to capture locally, because ice flow responds with delay to 

climatic changes. A glacier’s annual mass budget can be out of balance for years, until measurable 

fluctuations of the glacier terminus–a conventional indicator for long-term mass change–indicate 

Figure 1-2: Glacier elevation changes and mass balance for High Mountain Asia (2000–2016). Glacier 

elevation change is averaged over the study period (dh/dt) and aggregated on a 1° × 1° grid. Modified after 

Brun et al. (2017). 
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either advance (mass accumulation) or “retreat” (mass loss) (Jóhannesson et al., 1989). Glacial lakes, 

by contrast, are an appropriate archive of negative mass balances, and hence atmospheric warming, 

because they form and grow when glaciers waste back from their former frontal position and expose 

accumulation space for meltwater (Grabs and Hanisch, 1993; Mool, 1995; Yamada and Sharma, 

1993). Thousands of such glacial lakes have thus appeared behind moraines or in bedrock 

depressions and cirques, and many more are recently forming as supraglacial ponds (Benn et al., 

2012; Miles et al., 2017; Thompson et al., 2012; Watson et al., 2016). Mapping glacial lakes from 

satellite imagery, assessing their geometric and topographic properties, and tracking their changes 

over time has become a core field of research in Himalayan glaciology (Table 1.1). The International 

Centre for Integrated Mountain Development (ICIMOD) generated a first consistent glacial lake 

inventory for the entire Himalayas from Landsat images between 2004 and 2007, covering 25,614 

glacial lakes >0.003 km² between 3,500 and 6,000 m a.s.l. (Maharjan et al., 2018) (Figure 1-3). 

Contemporary lake density per unit area is similarly high in the Hindu Kush, the Eastern Himalayas, 

the Nyainqentanglha, and the Hengduan Shan, while most lake area (and hence water volume) has 

accumulated in the Eastern Himalayas. Quantifying lake changes on regional scales is challenging 

and difficult to compare between studies, because multi-temporal inventories cover different 

periods, basins, lake types, data sources, and mapping conventions (Table 1.1). A synopsis of 15 

regional multi-temporal inventories (Table 1.1) suggests that recorded lake numbers have increased 

less consistently than lake areas. Since 1990, lakes areas have grown largest in the Central Himalayas 

(+23%), and lowest in the Northwestern Himalayas (+5.0%) (Nie et al., 2017). 
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Figure 1-3: Lake abundance in the Himalayas. a, Lake density, calculated as the number of glacial lakes 

occurring in a grid of 0.5° × 0.5°. b, Lake area, given as the percentage of the grid area covered by lakes. c, 

Elevation distribution of glacial lakes by dam type: M(e) Terminal moraine; M(l) Lateral moraine, M(o) Other 

moraine-dammed lakes; I(s) Supraglacial lakes; I(v) Glacier-dammed lakes; B(c) Cirque; B(o) Other bedrock-

dammed lakes; O Others. Most of the lakes formed in bedrock depressions. Adapted from Maharjan et al. (2018). 

a 

b 

c 
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Table 1.1: Glacial lake inventories for the entire Himalayas and subregions. Inventories are classified into 

static snapshots (mapped for a specific year) and multi-temporal inventories. 

Period Period of 
mapping 

Authors Region Number of 
lakes 

reported 

Area covered 
by glacial lakes 

[km²] 

Minim
um 

mappi
ng 
unit 

[km²] 

Data sources for 
mapping 

st
a

ti
c 

2004-

2007 

(Maharjan et 

al., 2018) / 
ICIMOD 

Hindu Kush Himalaya 25,614 1,444 0.003 Landsat ETM+ 

1999-
2005 

(Ives et al., 
2010) / 
ICIMOD 

Himalayas without 
Afghanistan, Arunachal 
Pradesh, Jammu and 

Kashmir, Myanmar 

8,790 801.83 NA Topographic maps; 
remote sensing: 
Landsat, IRS, LISS3, 

SPOT 

2015 (Chen et al., 
2017) 

Tibetan Plateau (including 
Himalayas) 

8,215 832.19 0.0081 Landsat OLI 

2009 (Wang et al., 
2011a) 

Boshula Range (Tibet) 78 NA 0.02  Topographic maps, 
Landsat TM, ALOS 

AVNIR-2 

2001 (Ashraf et al., 
2012) 

Hindu Kush, Karakoram 
and Himalaya in Pakistan 

2,420 126.35 0.02 Landsat ETM+ 

2013 (Senese et al., 
2018) 

Central Karakoram 
National Park 

202 3.56 NA Landsat OLI 

2000-
2002 

(Worni et al., 
2013) 

Indian Himalayas 251 NA 0.01 Landsat ETM+, 
Google Earth 
imagery 

2000s (X. Wang et 
al., 2012) 

Chinese Himalayas 1,680 68.13 NA Remote sensing 
analysis 

2008 (Salerno et 
al., 2012) 

Mount Everest region 624 7.43 0.0001 AVNIR-2 

2000-
2010 

(Fujita et al., 
2013) 

Himalaya 2,276 233.3 0.005 ASTER 

m
u

lt
it

em
p

o
ra

l 

nearly 

annually 
1975-
2017 

(Haritashya 

et al., 2018) 

Nepal Himalaya 1975: 3 

2017: 3 

1975: 0.63 

2017: 4 

NA Landsat MSS, TM, 

ETM+, OLI 

~1990, 
~2010 

(Nagai et al., 
2017) 

Bhutan Himalaya ~1990: ? 
~2010: 733 

~1990: ? 
~2010: 82.6 

0.01 ALOS 

2000, 
2015 

(Rounce et 
al., 2017) 

Nepal Himalaya 2000: 131 
2015: 131 

2000: 37.8 
2015: 41.3 

0.1 Landsat ETM+, OLI 

1990, 
2000, 
2009 

(Gardelle et 
al., 2011) 

Hindu Kush, Karakoram, 
Spiti Lahaul, Garhwal, 
West Nepal, Everest and 

Bhutan 

? ? 0.0036 Landsat ETM+ 

1970s, 
2000s 

(Xin et al., 
2012) 

Chinese Himalaya 1970s: 1,750 
2000s: 1,680 

1970s: 166.48 
2000s: 215.28 

NA ASTER 

2002, 
2008, 

2014 

(Prakash and 
Nagarajan, 

2017) 

Chandra-Bhaga basin 
(Western Himalaya) 

2002: 26 
2008: 29 

2014: 30 

2002: 2.45 
2008: 2.75 

2014: 3.62 

0.005 Landsat TM, ETM+, 
OLI 

2000, 
2014 

(Song et al., 
2017) 

Himalayas 2000: 151 
2014: 151 

2000: ? 
2014: ? 

0.5 Landsat scenes, 
IceSat 

1970, 
1988, 

2001, 
2009 

(Wang et al., 
2011b) 

Boshula Range (Tibet) 1970: 96 
1988: 98 

2001: 108 
2009: 123 

1970: 9.24 
1988: 9.85 

2001: 10.43 
2009: 10.96 

0.02 Topographic maps, 
Landsat TM, ETM+, 

ALOS AVNIR-2 

1988, 

2013 

(Song et al., 

2016) 

South Eastern Tibet 1988: 1,278 

2013: 1,396 

1988: 85.02 

2013: 93.09 

0.0045 Landsat TM, ETM+, 

OLI 

1976, 

1991, 
2000, 
2010 

(W. Wang et 

al., 2015) 

Poiqu Basin (Central 

Himalayas) 

1976: 52 

1991: 55 
2000: 63 
2010: 69 

1976: 10.68 

1991: 13.15 
2000: 15.67 
2010: 19.55 

0.01 Landsat MSS, TM, 

ETM+ 

1990, 
2010s 

(S. Wang et 
al., 2015) 

Chinese Himalaya 1990: ? 
2010s: 329 

1990: 100.26 
2010s: 125.43 

0.02 Landsat TM, ETM+ 

1990s, 
2000s 
2009 

(Li and 
Sheng, 2012) 

Himalayas 1990s: 11,056 
2000s: 12,318 
2009:11,289 

1990s:256.25  
2000s: 272.07 
2009: 289.04 

0.0045 Landsat TM, ETM+ 
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~1990, 
2000, 

2010 

(Zhang et al., 
2015a) 

Third Pole region ~1990: 4,602 
2000: 4,981 

2010: 5,701 

~1990: 553.9 
2000: 581.2 

2010: 682.4 

0.003 Landsat TM, ETM+ 

1990, 
2000, 

2005, 
2010 

(Nie et al., 
2013) 

Central Himalaya 1990: 1,191 
2000: 1,290 

2005: 1,303 
2010: 1,314 

1990: 168.4 
2000: 185.28 

2005: 190.84 
2010: 197.22 

0.0081 Landsat TM, ETM+ 

1990, 
2000, 
2005, 

2010,  
2015 

(Nie et al., 
2017) 

Himalayas 1990: 4,549 
2000: 4,671 
2005: 4,691 

2010: 4,723 
2015:4,950 

1990: 389.9 
2000: 421.2 
2005: 431.4 

2010: 442.3 
2015:455.3 

0.0081 Landsat TM, ETM+, 
OLI 
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1.2. Outburst floods from moraine-dammed lakes 

The wealth of studies on glacial lakes has had a motive other than changing lake geometries 

alone, however. Another main reason for the high research attention on glacial lakes is that “glacier 

lake outburst floods may become more frequent as glaciers thin and recede because new lakes will 

form and existing ones might grow” (Huss et al., 2017). Such glacial lake outburst floods (GLOFs) are 

single-source hazards that suddenly release meltwater at peak discharges often several times higher 

than those of hydro-meteorological floods, and entrain, transport and deposit exceptional amounts 

of sediment (Korup and Tweed, 2007). In this context, one of the earliest systematic studies on this 

phenomenon in the Himalayas by Richardson and Reynolds (2000) issued confidence that “the 

potential for larger and more frequent floods is undoubtedly increasing”. The ICIMOD similarly 

expects that the consequence in terms of “the potential for acceleration of extensive downstream 

damage and loss of life is high” (Ives et al., 2010). 

Part of these early projections were based on detailed observations of GLOFs, particularly from 

a series of four large floods from moraine-dammed lakes in Nepal and Bhutan between 1981 and 

1998. Among all historic GLOFs since the 20th century, the 1981 GLOF from Lake Zhangzangbo in 

China still holds the record for the highest estimated peak discharge of ~16,000 m3 s-1 (Xu, 1988). 

The GLOF from Lake Dig Tsho (Nepal) four years later released ~5 million m³ of water, transported 

3 million m³ of debris, and destroyed “a newly built hydroelectric power plant, 14 bridges, about 30 

houses, and many hectares of valuable arable land, [and damaged a] trail network” (Vuichard and 

Zimmermann, 1987). In 1994, the breach of Lake Luggye Tsho (Bhutan) initiated a flood that was 

two metres deep some 200 km downstream from the source, killing 21 people (Richardson and 

Reynolds, 2000; Watanabe and Rothacher, 1996). The GLOF from Tam Pokhari in Nepal 1998 had a 

mean active channel width of >160 m, flow depths of >20 m, and moved ~440,000 m³ of debris 

within the first 15 km; a damage of 156 million Nepalese Rupee [~1.25 million € today] was reported 

even 150 km downstream (Byers et al., 2013; Korup and Tweed, 2007; Osti and Egashira, 2009). 

With more than 6,000 fatalities, the disaster at Kedarnath (India) in 2013 had the highest death toll 

from GLOFs worldwide in modern history (Allen et al., 2016), mostly because the town of Kedarnath 

was located directly downstream of a minor glacial lake. A global assessment of GLOF impacts 

concludes that “central Asia is the most vulnerable region to glacier floods causing extreme levels of 

societal impact, [and] Bhutan and Nepal are the countries with the greatest economic consequences 

of glacier flood impacts” (Carrivick and Tweed, 2016). Considering their catastrophic downstream 

impacts and often short warning times, GLOFs have become one of the most emblematic, if not most 

widely publicised, cryospheric hazard tied to atmospheric warming (Emmer, 2018). 
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The two main source locations for GLOFs in the Himalayas are glacier- and moraine-dammed 

lakes (Richardson and Reynolds, 2000). Glacier dams have formed repeatedly in the Karakoram and 

Hindu Kush Mountains, blocking the discharge from tributary or trunk valleys by gradual or rapid 

(surging) glacier advances (Iturrizaga, 2011). Outbursts occur when the glacier ice begins to float on 

the dammed lake or the dam is eroded laterally, subglacially or superficially by the impounded water 

(Iturrizaga, 2011). The Upper Yarkant and Indus rivers (Karakoram) had a series of >100 outburst 

floods from glacier-dammed lakes from the mid-19th century until the 1960s, but fewer cases 

afterwards (Hewitt, 2014; Hewitt and Liu, 2010; Iturrizaga, 2005). Some 27 glacier-dammed lakes 

existed between 2004 and 2007 in the Karakoram (Maharjan et al., 2018), and Kyagar glacier has 

been the only flood source there in recent decades (Round et al., 2017; Yan et al., 2017). While future 

work may prod deeper into the mechanics of how glacier-dammed lakes form and fail, I focus here 

on >7,300 moraine-dammed lakes that currently dot the Himalayas (Maharjan et al., 2018). This 

focus is motivated by the conclusion of many previous studies that establishing a “hypothetical link 

between climate change, glacier response, moraine-dammed lake formation and GLOF production [is] 

more straightforward compared to the range of processes driving GLOFs from ice- and bedrock-

dammed lakes” (Harrison et al., 2018). 

Several conditioning factors and triggering mechanisms can make moraine-dammed lakes 

prone to outburst (Figure 1-4). Dams are often unvegetated, narrow and steeper than the angle of 

repose (Costa and Schuster, 1988), and contain loose, poorly sorted debris across a wide spectrum 

of clast sizes, from silt to large boulders (Clague and Evans, 2000). Some moraines also have ice 

cores that melt and thus create conduits for water to percolate through the dam (piping), weakening 

the stability of the dam (Richardson and Reynolds, 2000). Settlement of the dam, in turn, can 

decrease the vertical distance to the dam crest (freeboard), allowing overspill and breach initiation 

or decreasing the minimum wave height to overtop the dam (Westoby et al., 2014). Lake levels may 

also rise rapidly by water input from heavy rainfall or after periods of intense snow melt, reducing 

the shear resistance of the dam against the growing hydrostatic pressure (Worni et al., 2012). Other 

triggers for moraine-dam failures are mass movements such as calving glaciers, ice or rock 

avalanches, and debris flows or (outburst) floods from upstream. Such impacts induce displacement 

(seiche) waves that overtop, incise, and erode dams with otherwise sufficient freeboard (Korup and 

Tweed, 2007). Ice avalanches are the most prominent GLOF trigger in the Himalayas, initiating 34 

of 38 cases with known triggers (Nie et al., 2018). In most cases, though, triggers happened 

unnoticed (Richardson and Reynolds, 2000), or are estimated without further field validation, given 

the remote locations of many lakes, far from human settlements. Once water overtops the dam, the 

initial breach channel erodes and enlarges progressively. Physical and geometric properties of the 
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dam (clast size, cohesion, slope, height, width, etc.) ultimately control whether the dam fails partially 

or completely and how rapidly it does so (Westoby et al., 2014). These properties also constrain the 

maximum possible discharge from a moraine-dammed lake, whereas the valley geometry and 

gradient define how rapidly the flood waves attenuate (Kershaw et al., 2005; Schwanghart et al., 

2016b). 

 

1.3. Frequency of Himalayan GLOFs 

The catastrophic impacts from moraine-dammed GLOFs have prompted calls to drain glacial 

lakes artificially in a controlled manner before they burst out (Kattelmann and Watanabe, 1997). Yet 

the thousands of glacial lakes in the Himalayas forbid such logistically challenging countermeasures, 

mainly because it is difficult to identify those lakes that are most prone to catastrophic outburst. 

Modern hazard assessment relies on quantifying the frequency and magnitude of a potentially 

damaging process, and hence the (annual) probability of a lake outburst of a given size, measured 

for example by the amount of water and sediment released or the peak discharge through the failing 

dam. Rigorously appraising and predicting changes in GLOF hazard requires baseline data, such as 

the current GLOF frequency, but suffers from the few reliable cases that enter scientific reports. 

Compiling inventories and estimating average GLOF rates has thus occupied scientists for more than 

two decades. Yamada and Sharma (1993), for example, reported that “severe floods caused by glacier 

outburst have been frequent in the Nepal Himalayas, occurring more than every three years over the 

Figure 1-4: GLOF triggers, conditioning factors and key stages of flood propagation. Capital letters are 

plausible triggers for GLOFs such as A) calving glaciers; B) snow and ice avalanches from hanging glaciers; C) 

rockfall, debris flows and landslides; D) dam settlement and/ or piping; E) melting ice-cores in the moraine; F) 

rapid water input from supra-, en-, or subglacial sources; G) seismic shaking weakening the cohesion of the 

moraine dam or triggering secondary gravitational mass movements. Lower case letters are conditioning factors 

for dam failure, including a) large lake volumes; b) low width-to-height dam ratio; c) degrading moraines from 

melting ice cores; d) brim-full lake basins. Numbers are key stages of GLOF propagation: 1) displacement or 

seiche waves on the lake; 2) breach initiation, dam erosion and incision; 3) propagation of the flood wave(s) 

downstream. Adapted from Westoby et al. (2014). 
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approximately thirty years since the 1960s”. Bajracharya and Mool (2010) projected lower rates with 

“at least one GLOF event occurring every 3–10 years in the Himalayan region”. Four GLOFs in 1935, 

1964, 1981, and 2016 in the Bhotekoshi River, Nepal, indicate return periods of about 30 years for 

this particular basin (Cook et al., 2018), whereas Harrison et al. (2018) recorded a total of 54 GLOFs 

for the entire Himalayas between 1878 and 2018. The most recent Himalayan GLOF inventory by 

Nie et al. (2018; Figure 1-5a) concluded that “out of the 51 persuadable Himalayan GLOF events, 35 

are known with specific occurrence years, while the other 16 events are perceived to have occurred 

before 1975”. Clearly, the study periods and the compiled cases vary substantially in previous work, 

so that apparent mean annual GLOF rates can be anywhere around 0.39 (Harrison et al., 2018), 0.47 

(Nie et al., 2018), or 0.52 (Richardson and Reynolds, 2000). Trends in GLOF frequency have been 

rarely analysed, given the few dozens of documented cases. Richardson and Reynolds (2000) 

speculated that “historical records […] of 33 Himalayan GLOFs [from the past six decades] indicate 

that the frequency of events appears to be increasing.” (Figure 1-5). In contrast, Nie et al. (2018) 

interpreted from 35 cases in their inventory (Figure 1-5a) “that GLOF hazards increased from 1975 

to 1995 and slightly decreased from 1995 to 2015.” 

 

The often inaccessible terrain (most lakes lie above 4,500 m a.s.l., Figure 1-3) naturally biases 

GLOF inventories so that they preferentially include larger cases with commensurate runout and 

impact (Clague and Evans, 2000). Evidence for GLOFs is collated from highly diverse sources such 

as eyewitness reports, local chronologies, remote sensing analysis or sedimentology. Though 

compiling and analysing GLOF inventories have begun to follow standardised and systematic rules 

(Carrivick and Tweed, 2016; Emmer, 2017), the same principles rarely hold for older or historical 

Figure 1-5: Historic GLOF inventories. a, GLOFs with known year of occurrence between 1935 and 2017, 

modified after Nie et al. (2018). b, Cumulative frequency of GLOFs between the 1930s and 1990s, given in 

Richardson and Reynolds (2000). The authors underline their notion of an increasing GLOF trend with a 

polynomial regression fit to the cumulative GLOF count, without further details on model choice or goodness of 

fit. 
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documentation. Sedimentary archives are well-known to include large hiatuses, given that larger 

cases can eradicate evidence of smaller precursors (Lewin and Macklin, 2003; Wasson et al., 2013). 

Data from stream gauges may not fully record all GLOF discharges and can be ambiguous, 

considering that flood waves attenuate rapidly or transform into debris flows (Clague and O’Connor, 

2015; Schwanghart et al., 2016b). 

Our ability to detect past GLOFs has improved substantially with the advance of spaceborne 

earth observation. Today, researchers can resort to declassified spy images from the 1960s and 

Figure 1-6: Flowcharts for hazard classification of Himalayan glacial lakes. Adapted from a, Worni et al. 

(2013) and b, Rounce et al. (2017). NDWI Normalized Difference Water Index, SLA Steep Lake Area. 
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1970s, and to continuous monitoring satellite missions such as Landsat or Sentinel at least since the 

late 1980s (Komori et al., 2012). Selective reporting has thus been assumed negligible in recently 

compiled global GLOF inventories (Carrivick and Tweed, 2016; Harrison et al., 2018), although this 

assumption has not been tested systematically. Indeed, the analysis of multi-temporal satellite 

imagery has lately revealed many unnoticed, even large, GLOFs in the Patagonian Andes (Wilson et 

al., 2018), the Cordillera Blanca of Peru (Emmer, 2017), and the Coast Mountains of British Columbia 

(McKillop and Clague, 2007). The first evidence of such a reporting bias in the Himalayas were three 

newly detected GLOFs from Landsat images (Komori et al., 2012; Nie et al., 2018), but triggered no 

further detailed follow-up investigation. 

Clearly, establishing a more complete inventory and learning from past GLOFs is essential for 

improving our knowledge about the response of GLOFs to atmospheric warming in the Himalayas. 

Moreover, accurately estimating the frequency and the maximum discharges of GLOFs provides 

essential data on the average recurrence and intensity of GLOFs, thus supplying two key diagnostics 

for modern flood hazard assessment. The structure of this PhD thesis addresses some of these basic 

requirements: in Chapter 2, I offer a full workflow that covers the systematic detection of GLOFs 

from Landsat satellite images in the Himalayas and adjacent mountain belts. I apply this approach 

at the mountain-belt scale to obtain a bulk probabilistic estimate of GLOF frequency for the past 

three decades that serves as a measure of the current GLOF activity (Chapter 3). This first 

consistently and objectively derived GLOF inventory provides vital input for estimating 

contemporary GLOF return periods and hazard for the Himalayas and its neighbouring regions 

(Chapter 4). 

 

1.4. GLOF hazard assessment in the Himalayas 

Despite our censored knowledge on GLOF rates and triggers, scientists and regional planners 

have been concerned with providing and improving frameworks for GLOF hazard assessment (Table 

1.3). The current practice of appraising GLOF hazard heavily relies on experts who select and 

evaluate a set of indicators that make lakes likely prone to outburst (Figure 1-6). Emmer and Vilímek 

(2013) compiled 35 of such stability parameters from previous studies that chiefly capture geometric 

properties of the moraine dam; the condition of the surrounding topography and its proneness to 

shed mass movements into the lake; lake size and past growth rates; or characteristics of the parent 

glacier (Table 1.2). While local hazard assessment incorporates fieldwork in some cases, remote 

sensing datasets have substantially advanced the digital mapping and extraction of tell-tale sources 

of GLOF triggers on basin and regional scales (Table 1.3). 
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Table 1.2: Stability parameters of glacial lakes. Compiled by Emmer and Vilímek (2013). 

 

The general workflow of GLOF hazard assessment can be a decision tree with mostly four or 

more stability parameters that are examined in sequence (Figure 1-6, Table 1.3). For each lake, the 

expert either answers yes-or-no queries, given that a specific condition is met (e.g. ice core in a 

moraine) or that a trigger (e.g. rockfalls) is likely to occur; or she or he examines whether the 

parameter exceeds an empirical threshold (e.g. slope of the moraine dam) (Figure 1-6). The more of 

such criteria are met, the higher is the rank of GLOF hazard from a given lake. The expert then 

assigns the lake into a certain hazard category, which may be “critical”, “potentially critical”, “not 

critical” (Worni et al., 2013) or “very high”, “high”, “moderate”, “low”, “no” (Rounce et al., 2017). 

Such classification metrics are not standardised, and assessments of whether a lake is “potentially 

dangerous” (Bolch et al., 2008; Wang et al., 2011a) can be conflicting due to mixing subjective beliefs 

and fixed thresholds. For example, Imja Lake in the Mt. Everest region, Nepal, and has been 

attributed both “high” and “low” GLOF hazard, because researchers selected different stability 

parameters for their hazard appraisals (Rounce et al., 2016). The lake has a volume of 78.4 × 106 m3 

(Haritashya et al., 2018), but has even been deemed to have zero potential flood volume in another 

assessment that “guarantees repeatability to assess the possibility of GLOF hazards because it 

requires no particular expertise to carry out” (Fujita et al., 2013). Such diverging appraisals may 

intend to be objective and reproducible, but eventually confuse scientists, practitioners, and the 

public. 

Moraine parameters Glacier parameters Parameter describing 

lake surrounding 

Lake parameters  Downstream 

parameters 

Slopes of lateral 

moraine/possibility of 
its fall into the lake 

Crevassed glacier snout 

above lake 

Possibility of landslide/ 

rockfall into the lake 

Lake freeboard-to-

moraine crest height 
ratio 

Debris-flow occurrence 

after GLOF 

Armoured overflow 
channel (natural or 
technical) 

Slope between lake and 
glacier snout 

Possibility of dynamic 
slope movements into 
the lake (ice, rock 

material) 

Lake area Flash flood occurrence 
after GLOF 

Moraine slopes 
stabilised by vegetation 

Glacier shrinkage Possibility of snow/ice 
avalanche into the lake 

Lake volume 
 

Moraine width-to-
height ratio 

Glacier snout steepness Seismic activity Lake area change 
 

Piping/ seepage 
through moraine dam  

Distance between lake 
and glacier 

Evidence of recent small 
GLOFs 

Lake depth  
 

Distal flank steepness of 
the dam 

Glacier advance Compound risk present Lake freeboard 
 

Top width of dam Stagnant ice at the 

terminus 

Hydro-meteorological 

situation 

 
 

Dam type Glacier area 
 

 
 

Buried ice present in 

moraine dam 

Supra-/englacial 

drainage 

 
 

 

Moraine height-to-

width ratio 

  
 

Main rock type forming 
moraine 

  
 



Introduction 

14 

 

Much of this controversy results from the vague, if not missing, definition of GLOF hazard. 

Research on other natural hazards such as landslides, wildfires or earthquakes rigorously defines 

hazard as the probability that an event of a given intensity or higher occurs. A fundamental concept 

in flood hydrology and engineering is then to express hazard by an average return period for a given 

flood level, measured for example by peak discharge (Katz et al., 2002). Transferring this concept to 

GLOFs, an objective diagnostic of hazard can be the product of the exceedance probability for a given 

outburst size, for example peak discharge at the breach location, and the outburst probability in a 

specific time interval, assuming that location and frequency are independent of each other. We can 

thus express GLOF hazard as the peak discharge that occurs (or is exceeded) once on average in 10, 

50, or 100 years or any other chosen return period, in any basin or region of interest. 

The rapidly growing literature of GLOFs shows very few attempts at sufficiently producing 

such an objective hazard appraisal for the Himalayas. Recent studies applied numerical and 

statistical models to quantify the magnitude of GLOF-related processes, such as the size of impacts 

into the lake (Byers et al., 2018; Lala et al., 2018; Rounce et al., 2016); the parameters during dam 

failure such as breach depth, rate, and peak discharge (Westoby et al., 2014; Westoby et al., 2015); 

or the propagation of flood waves downstream (Somos-Valenzuela et al., 2015; Watson et al., 2015). 

These studies offer no hazard assessment in a probabilistic sense, but could be expanded easily and 

usefully by estimates of the frequency, or better probability, at which GLOFs or their triggers occur. 

Wang et al. (2012) considered occurrence probabilities of triggers in their hazard appraisal for lakes 

in the Chinese territory of the Himalayas; yet they obtained these figures from expert judgement 

instead from empirically measured rates. Moreover, most estimates of peak GLOF discharge are tied 

to mean or end-member scenarios, relying on a fixed set of breach hydrographs or outburst volumes 

(Shrestha et al., 2010, 2013; Wang et al., 2018), so that the physically plausible range of flood 

magnitudes remains widely unexplored. More advanced, physically-based models of dam failure and 

flood runout require extensive parameterisation with field data (Westoby et al., 2014), which is 

logistically challenging in the Himalayas; in many cases the computational costs to solve these 

models also still run high. Practitioners, however, demand large numbers of outburst simulations to 

understand and cater for model reliabilities and uncertainties, particularly when it comes to 

implement remedial works and precautionary measures. 

Especially for regions with numerous meltwater lakes with a known history of GLOFs, hazard 

assessment must find a way beyond traditional, labour-intense, and overly subjective expert 

judgement. In Chapter 4 of this thesis, I propose a first consistent framework to estimate regional 

GLOF hazard in the Himalayas and neighbouring mountains based on flood return periods. I estimate 

contemporary GLOF rates from a new, consistent GLOF inventory and link these rates to a physically 
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motived model to predict credible (in the Bayesian statistical sense) distributions of peak discharge 

from present and likely future meltwater-lake geometries. Completely reproducible in essence, this 

approach is intended to robustly quantify the contemporary GLOF hazard. Assuming that future lake 

abundance will change with ongoing glacier melt, I also assess the physically plausible range of 

changes in future GLOF hazard, taking into account the worst-case scenario of a completely ice-free 

Himalayan region. 
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Table 1.3: Types of hazard assessments for Himalayan glacial lakes on local, basin and regional scales. 

The data used may be obtained from remote sensing (RS) or fieldwork (FW). Results from hazard classification 

typically identify the “Potentially Dangerous Glacial Lakes” (PDGL) in a given region. 

Scale Location/ 

Region 

Authors Data 

used 

Method Number and specific variables used for 

hazard assessment 

Result 

L
o

ca
l 

 

Longbasaba 

and Pida Lake, 

China 

(Xin et al., 

2008) 

RS/ 

FW 

Expert-based rating of 

breaching risk, breach 

simulations for 

estimating peak 

discharge 

5 (Stability of moraine dam; State of 

mother glacier; Climatic setting; Lake 

water level and dam height relation; Lake 

and mother glacier relation) 

 

High risk of failure 

for Longabasa and 

Pida Lake 

Cirenmaco 

Lake 

(Wang et al., 

2018) 

RS/ 

FW 

Bathymetric survey; flood 

modelling 

NA Outburst volumes 

range from 0.05 to 

0.30 and 5 to 18 

million m³ 

Imja Lake (Watanabe et 

al., 2009) 

RS/ 

FW 

Qualitative expert 

judgement 

6 (Lake area and lake-area expansion rate; 

Up-glacier and down-valley expansion 

rate; Dead-ice melting; Seepage; Lake 

water level change; Surge wave by rockfall 

and/or slide and ice calving) 

Imja Tsho is not in 

immediate danger 

of producing an 

outburst flood 

8 lakes in Nepal (Rounce et al., 

2016) 

RS Expert-based 

classification of failure 

mechanisms 

4 (Mass movement trajectories; Lake 

expansion; Hydrostatic pressure; Buried 

ice) 

GLOF hazard is 5x 

very high, 2x high, 

1x low 

B
as

in
 

 

8 lakes in the 

Mt. Everest 

region, Nepal 

(Bolch et al., 

2008) 

RS Expert judgement of 

potentially dangerous 

lakes 

9 (Lake volume, rate of lake formation and 

growth; Reaction of the glacier to climate 

change; Activity of the glacier; 

Morphometric characteristics of the 

glacier; Possibility of mass movements into 

the lakes; Stability, width and height of the 

moraine dam; Freeboard between lake and 

crest of moraine ridge; Presence of dead ice 

in the moraine; Situation down-valley) 

PDGL: 1x none, 2x 

low; 1x low to 

medium; 2x 

medium  

473 lakes in the 

Mt. Everest 

region, Nepal 

(Bajracharya 

and Mool, 

2010) 

RS/ 

FW 

Expert judgement of 

potentially dangerous 

lakes 

NA (lake expansion and distance to 

glaciers?) 

10 PDGL 

78 lakes in the 

Boshula 

Mountain 

Range, Tibet 

(Wang et al., 

2011a) 

RS Weighting of variables 

with fuzzy consistent 

matrix 

5 (Mother glacier area; Distance between 

lake and glacier terminus; Slope between 

lake and glacier; Mean slope of moraine 

dam; Mother glacier snout steepness) 

8 potentially very 

highly dangerous 

glacial lakes 

254 lakes in the 

Pumqu River 

Basin, Tibet 

(Che et al., 

2014) 

RS Weighting parameters 

based on how frequently 

they were cited 

10 (Type of glacial lake; Area of lake; 

Distance to mother glacier; Slope of 

glacier; Slope downstream; Top width of 

dam; Area of glacier; Slope between lake 

and mother glacier; Change of lake area; 

Elevation of lake) 

19 dangerous 

glacial lakes 

R
eg

io
n

a
l 

 

1680 lakes in 

the Chinese 

Himalayas 

(Wang et al., 

2012) 

RS Calculating breach 

probabilities from an 

event tree model 

5 (Avalanches from glaciers; Glacier 

motion; Seepage enlarging; Overflow 

incision) 

142 PDGL: 4x very 

low, 24x low, 24x 

medium, 47x high, 

43 very high 

251 lakes in the 

Indian 

Himalayas 

(Worni et al., 

2013) 

RS/ 

FW 

(for 3 

lakes) 

Qualitative classification 

by thresholds in 

variables, breach 

simulations; Runout 

modelling 

4 (Dam type; Dam geometry; Freeboard; 

Potential for lake impacts) 

12 critical lakes; 93 

potentially critical 

lakes; 101 no 

critical lakes 

733 lakes in the 

Bhutan 

Himalayas 

(Nagai et al., 

2017) 

RS Expert-based selection of 

candidate variables 

4 (Potential flood volume; Lake expansion 

factor; Evolution of lake type; Connection 

with a debris-covered glacier) 

two lakes with 

high GLOF scale 

and potential 

329 lakes in the 

Chinese 

Himalaya 

(S. Wang et al., 

2015) 

RS Expert-based selection of 

candidate variables 

4 (Moraine-dammed lake area (>0.02 

km2); Rate of lake area increase (>20%); 

Distance between lake and glacier snout 

(<500 m); Availability of settlements 

downstream) 

116 PDGL 
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1.5. Research questions and structure of the thesis 

 

This overview of meltwater lakes and GLOFs in the Himalayas and adjacent mountain regions 

has outlined that records of GLOFs are likely incomplete in past decades and biased towards 

destructive cases with substantial geomorphological and societal impacts. I argue that only a 

systematic and consistent GLOF inventory guarantees objective input to study GLOF frequency, 

hazard, and their response to atmospheric warming. In line with the title of this thesis, the detection, 

frequency and hazard of Himalayan GLOFs form the main body for three key research questions that 

I address in Chapters 2-4: 

 

1/ How can we systematically detect glacial lake outburst floods in Landsat times series? 

(Chapter 2) 

Before testing my hypothesis of a censoring bias in current GLOF inventories, I establish a 

framework that robustly detects GLOFs from satellite image time series. The main challenges in this 

study are frequent image noise from snow and cloud cover; the size of the study area; and the large 

amount of data (~2,500 Landsat images) that forbid visual interpretation. The core of this work was 

methodologically motivated, exploring options to automatically process the full seasonal Landsat 

archive, which is the longest time series of satellite images since the late 1980s. I develop a 

likelihood-based change point algorithm that independently identifies shrinking water bodies, a key 

diagnostic of GLOFs, at the pixel scale. The algorithm robustly detects 10 of 11 test cases in an area 

covering ~10% of the Himalayas, while ten newly found GLOFs support my hypothesis of under-

reporting in past decades. I discuss limitations to detecting GLOFs such as insufficient image co-

registration, misclassifications or continuous image noise over long periods. 

 

2/ What is the frequency of Himalayan glacial lake outburst floods since the late 1980s? 

(Chapter 3) 

The robust performance of the algorithm developed in Chapter 2 calls for application to the 

entire Himalayan mountain belt, and demands detecting lake changes in another 6,500 Landsat 

images. This part of the thesis aims at unravelling the spatial pattern and temporal trends of GLOFs 

in the Himalayas. I nearly double the known GLOF count, and find that the average GLOF frequency 

has not changed in any Himalayan region since the late 1980s despite distinct increases in meltwater 

areas. I discuss underlying climatic and topographic drivers for this invariant GLOF rate, and its 

implications for hazard assessment. 
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3/ What is the return period of Himalayan glacial lake outburst floods and how will it 

change in an ice-free future? (Chapter 4) 

With this spatially resolved estimate of GLOF rates, I obtained the minimum requirements to 

calculate GLOF return periods. Chapter 4 aims at quantifying the contemporary GLOF hazard using 

the 100-year flood discharge as a standard metric in flood hydrology. I combine regional GLOF rates 

with simulations of peak discharge from all existing glacial lakes to estimate the GLOF hazard in the 

entire Himalayas and several key regions. I highlight how regionally varying GLOF rates affect 

estimates of flood hazard. Additionally, I show how the future GLOF hazard can change within its 

physically plausible limits by projecting a scenario of ice-free Himalayas in the future. 

 

1.6. Author Contributions 

The following three chapters are manuscripts, which I wrote for publication in peer-reviewed 

journals. I wish to express my gratitude to four co-authors, Oliver Korup, Sigrid Roessner, Sebastian 

von Specht, and Ariane Walz, who substantially contributed to the production of these manuscripts. 

 

Chapter 2: Veh, G., Korup, O., Roessner, S., Walz, A., 2018. Detecting Himalayan glacial lake 

outburst floods from Landsat time series. Remote Sensing of Environment, 207, 84–97. 

G.V., O.K., S.R. and A.W. designed the study. G.V. collected training samples, developed and 

tested the processing chain and conducted the statistical analysis. All authors interpreted and 

discussed the results. G.V. wrote the paper with input by all co-authors. G.V. and O.K. wrote the 

revisions. 

 

Chapter 3: Veh, G., Korup, O., von Specht, S., Roessner, S., Walz, A., 2019. Unchanged frequency of 

moraine-dammed glacial lake outburst floods in the Himalaya. Nature Climate Change. 

https://doi.org/10.1038/s41558-019-0437-5. 

G.V., O.K., S.R. and A.W. designed the study. G.V. performed the Landsat processing with input 

from S.S., and conducted the statistical analyses with O.K. All authors interpreted and discussed the 

results. G.V. and O.K. wrote the paper with input by all co-authors. G.V. and O.K. wrote the revisions. 

 

Chapter 4: Veh, G., Korup, O., Walz, A. (submitted). Current and future hazard from Himalayan 

meltwater floods. Under Consideration for Nature. 

G.V. and O.K. designed the study, and conducted the modelling and statistical analysis. All 

authors interpreted and discussed the results. G.V. and O.K. wrote the paper with input by A.W. 
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In addition to these manuscripts, I contributed to the following publications, which are not 

part of this thesis: 

von Specht, S., Ozturk, U., Veh, G., Cotton, F., Korup, O., 2019. Effects of finite source rupture 

on landslide triggering: The 2016 MW 7.1 Kumamoto earthquake. Solid Earth Discussions, 

https://doi.org/10.5194/se-2018-101, accepted. 

Dietze, E., Słowinski, M., Zawiska, I., Veh, G, Brauer, A., 2016. Multiple drivers of Holocene 

lakelevel changes at a lowland lake in northeastern Germany. Boreas, 45, 828–845. 

https://doi.org/10.1111/bor.12190. 

 

 

Notes 

All non-peer reviewed chapters in this thesis (Chapters 1, 5, 6) are written in first person to 

represent my line of thought in the framework of this thesis. When I refer to contents of published 

or submitted manuscripts (Chapters 2, 3, 4) in these chapters, the word “I” includes the work of my 

co-authors, whose contributions I acknowledged above. 

The terms “Himalaya” and “Himalayas” broadly summarize the geographical extent of my 

study region, including three subregions (Eastern, Central and Western Himalayas), and the 

mountain ranges attached to what is often referred as the “Main Central Thrust” in a geological 

context, including the Hindu-Kush and Karakoram in the northwest, and the Nyainqentanglha and 

Hengduan Shan in the southeast. Definitions on the geographical, geological or political extent of the 

Himalayas vary widely. Most glaciological studies were guided by the regional naming convention of 

the Randolph Glacier Inventory (RGI), though adapted this to their particular needs, so that 

individual use differs between figures and number cited in this thesis.  
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Several thousands of moraine-dammed and supraglacial lakes 

spread over the Hindu Kush Himalayan (HKH) region, and some 

have grown rapidly in past decades due to glacier retreat. The 

sudden emptying of these lakes releases large volumes of water 

and sediment in destructive glacial lake outburst floods 

(GLOFs), one of the most publicised natural hazards to the 

rapidly growing Himalayan population. Despite the growing 

number and size of glacial lakes, the frequency of documented 

GLOFs is remarkably constant. We explore this possible 

reporting bias and offer a new processing chain for establishing 

a more complete Himalayan GLOF inventory. We make use of 

the full seasonal archive of Landsat images between 1988 and 

2016, and track automatically where GLOFs left shrinking water 

bodies, and tails of sediment at high elevations. We trained a 

Random Forest classifier to generate fuzzy land cover maps for 

2,491 images, achieving overall accuracies of 91%. We 

developed a likelihood-based change point technique to estimate 

the timing of GLOFs at the pixel scale. Our method objectively 

detected ten out of eleven documented GLOFs, and another ten 

lakes that gave rise to previously unreported GLOFs. We thus 

nearly doubled the existing GLOF record for a study area 

covering ~10% of the HKH region. Remaining challenges for 

automatically detecting GLOFs include image insufficiently 

accurate co-registration, misclassifications in the land cover 

maps and image noise from clouds, shadows or ice. Yet our 

processing chain is robust and has the potential for being 

applied on the greater HKH and mountain ranges elsewhere, 

opening the door for objectively expanding the knowledge base 

on GLOF activity over the past three decades. 
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2.1. Introduction 

Melting glaciers in the Hindu Kush Himalayan (HKH) mountain ranges feed several thousand 

moraine-dammed and supraglacial lakes (Ives et al., 2010; Nie et al., 2017). Embedded in loose debris 

and surrounded by sources of falling debris and ice, many of these water bodies are prone to glacial 

lake outburst floods (GLOFs) (Clague and Evans, 2000). GLOFs can release and transport millions 

of cubic meters of water and sediment within few hours (Bajracharya et al., 2007; Cenderelli and 

Wohl, 2001; Wang et al., 2012). Quaternary outburst floods in the HKH have been shaping major 

valley trains for thousands of years (Korup and Tweed, 2007; O’Connor et al., 2013; Scherler et al., 

2014). GLOFs have also killed several hundreds of people in the past decades and caused substantial 

damage to infrastructure, hydropower stations, livestock and farmland (Kattelmann, 2003; 

Richardson and Reynolds, 2000; Yamada and Sharma, 1993). Data on loss and damage are crude, 

though Nepal and Bhutan may have suffered the highest socio-economic impacts by historic GLOFs 

worldwide (Carrivick and Tweed, 2016). In any case, GLOFs clearly rank among the most publicised 

glacial hazards in the Himalayas (Richardson and Reynolds, 2000). 

Difficult access and high alpine conditions make detailed field-based monitoring of lakes prone 

to outburst impractical; several studies thus resorted on measuring lake bathymetry, dam material, 

and the surrounding topography (Fujita et al., 2013; X. Wang et al., 2012; Worni et al., 2013). 

Moreover, data on historic GLOFs in the HKH are scarce and vague about outburst parameters. Local 

GLOF inventories often contradict each other, at least judging from data that we collected on 36 

GLOFs from moraine-dammed lakes in the Himalayas since the 1950s (Ives et al., 2010; Komori et 

al., 2012; J.-J. Liu et al., 2014; X. Wang et al., 2012; Table 2.1). 

Current research aims at linking global climate warming to glacier melt, and the formation 

and changes of meltwater lakes, including the probability of catastrophic lake outburst (Harrison et 

al., 2017). Negative glacier mass balances (Brun et al., 2017) and increases in glacial lake number 

and area (Nie et al., 2017; Song et al., 2017; Zhang et al., 2015) have characterised many parts of the 

HKH over the past decades, and thawing permafrost in glacier dams and surrounding rock walls 

may further destabilise the glacial lake system (Haeberli et al., 2017). While all these observations 

are in line with a hypothesized increase in GLOF frequency, this remains difficult to test given 

commonly observed rates of up to one event per year, and only a few dozen reliably documented 

events (Carrivick and Tweed, 2016; Harrison et al., 2017). This mismatch could reflect a censoring 

bias such that only extreme events and their impacts have been reported. 

Clearly, a database of past events as complete as possible is essential for robust and reliable 

GLOF hazard assessment (Emmer et al., 2016b). Time series from satellite imagery find widespread 

use for compiling multi-temporal glacial lake inventories, especially for rapidly expanding lakes that 
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are thought to have an elevated outburst potential (Nie et al., 2017; Wang et al., 2018, 2011a). To our 

knowledge, no study has systematically explored the Landsat archive for retrospective GLOF 

detection in the HKH, although it offers a largely continuous, nearly 30-year time series with regional 

coverage every 16 days. For tracing past GLOFs, we build on the experience that lakes most often 

disappeared or shrank abruptly and exposed debris fans and sediment tails in river channels 

downstream. Only Komori et al. (2012) used these two indicators to visually scan satellite archives 

for unreported GLOFs in the Bhutan Himalayas. Since glacial lakes often re-fill or re-expand within 

few years after an outburst, previously used mapping intervals of five to ten years might be too 

coarse to detect GLOFs from lake inventories (Zhang et al., 2015a). Dense cloud cover during the 

monsoon, lake freezing in winter, and mountain shadows are the main challenges for pursuing the 

glacial lake area over time. Multiple noise-free images per year may be desirable to detect reliably 

sudden lake changes, but remain rare in the Himalayan weather conditions. Expert-based manual 

mapping from multi-temporal medium to high resolution (<30 m) imagery has so far offered high-

quality lake inventories, but is resource-intensive and thus restricted to few selected glacial lakes 

(Shrestha et al., 2013; Wang et al., 2018; Yao et al., 2012) or single basins (Bolch et al., 2008; Che et 

al., 2014; Jain et al., 2012). Semi-automatic mapping using chains of decision rules along band and 

topographic indices allows for monitoring of glacial lakes over larger areas, but requires time-

consuming post-processing (Gardelle et al., 2011; Li and Sheng, 2012; Song et al., 2016). Machine 

learning classifiers such as Random Forests (RF) have rapidly advanced the mapping of changing 

land cover and water bodies (Mueller et al., 2016; Rover et al., 2012; Tulbure et al., 2016), thereby 

accompanying a high potential for GLOF detection. Random Forests (Breiman, 2001) are ensemble 

classifiers that use bagging to grow and aggregate multiple independent decision trees from a 

bootstrap sample of predictor variables. The classifier can deal with non-monotonic and non-linear 

relationships between the predictors and response variables, and is robust against overfitting 

(Rodriguez-Galiano et al., 2012). Hence, RF are a powerful alternative to single, parametric 

classifiers (Waske and Braun, 2009), especially for spectrally variable target classes such as glacial 

lakes of differing depth and turbidity. Random Forests offer fuzzy or probabilistic class 

memberships, which offer richer information about the likelihood of change in land-cover time series 

(Foody and Boyd, 1999; Metternicht, 1999). 

Change detection of water bodies with Landsat time series focused either on long-term trends 

of lake growth or shrinkage (Fraser et al., 2014; Nitze and Grosse, 2016) or on the estimation of 

flooding frequencies (Mueller et al., 2016; Tulbure et al., 2016). Automatically extracting distinct 

events of rapid lake decrease, as is the case for GLOFs, has rarely been of interest (Olthof et al., 2015). 

Change-point detection in Landsat time series is well-established for forest disturbance mapping, 
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where pixels of vegetation indices are scanned for level shifts (Hermosilla et al., 2015; Kennedy et 

al., 2010) or structural breaks in fitted harmonic models (DeVries et al., 2015; Verbesselt et al., 2012). 

However, alternative techniques are required, as these approaches are difficult to apply to 

Himalayan glacial lakes where indices such as the Normalized Difference Water Index (NDWI; 

McFeeters, 1996) share similar spectral characteristics with clouds or shadows (Li and Sheng, 2012). 

Our aim is to develop, validate and apply a technique to automatically detect past Himalayan 

GLOFs. We present a processing chain that traces losses in lake areas from nearly three decades of 

seasonal Landsat imagery building on (1) a Random-Forest based land cover classification and (2) a 

novel, likelihood based change-point algorithm to approximate the time stamp of GLOFs. We apply 

this processing chain to a spatial subset of the HKH, validate our method with documented GLOFs 

and present newly detected GLOFs. Our search includes sediment tails downstream of drained lakes, 

allowing us to trace the location, timing, and size of GLOFs, and thus contributing to a more complete 

GLOF inventory of the Himalayas. 

 

2.2. Study area 

Of all 36 documented GLOFs over the past seven decades, we could visually identify eleven 

GLOFs in Landsat images (Figure 2-1). We obtained information on the date, location, and type of 

drainage for each GLOF, using the drained lake area as a key metric for comparing pre- and post-

GLOF images (Table 2.1). 

These GLOFs occurred in four different regions (Figure 2-1) between the central-western 

Himalayas of northern India (a), the central Himalayas of Nepal and Bhutan (b and c), and the 

eastern Nyainqentanglha Mountains of China (d). The number of present-day moraine-dammed and 

Figure 2-1: Documented GLOFs (1-11, Table 2.1) between 1994 and 2016 in the HKH. Study regions a-d 

feature 30 km × 30 km tiles (yellow squares; see Table 2.1 for more details). Inset shows the geographic 

setting of the HKH, divided into a western (W), central (C) and eastern (E) segment. 
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supraglacial lakes in these areas is challenging to establish. Estimates for the whole HKH range from 

2,276 (Fujita et al., 2013) to more than 8,000 (Ives et al., 2010), depending on definition, mapping 

scale, and size of study area. In the central Himalayas, glacial lakes grew by 23% in size between 

1990 and 2015. Lakes grow less rapidly in area in the western (5.0-5.4%) and eastern Himalayas 

(7.7-11.1%) (Nie et al., 2017), and mostly tied to glacier melt (Gardelle et al., 2013; Kääb et al., 2012; 

Song et al., 2017; Wang et al., 2015b). 

 

Table 2.1: Documented GLOFs between 1988 and 2016. ID corresponds to labels in Figure 2-1. We visually 

assessed whether drainage was complete (C) or partial (P). 

ID Lake Country E [°] N [°] Eleva-

tion 
[m 
a.s.l.] 

Loss in 

lake area 
[m²] 

Date Type of 

drainage 

Source 

1 Chorabari India 79.06 30.75 3,881 11,700 

 

2013-06-17 C (Allen et al., 2016; 

Das et al., 2015) 

2 Zanaco TAR/ 
China 

85.37 28.66 4,737 66,600 
 

1995-06-06 C Liu et al. (2014) 

3 Zhangzangbo 
2 

Nepal 86.06 28.08 4,501 10,800 
 

2016-07-07 C (Cook et al., 2017; 
Gimbert et al., 2017) 

4 Sabai Tsho Nepal 86.84 27.74 4,492 163,800 
 

1998-09-03 P (Lamsal et al., 2015; 
Osti and Egashira, 

2009) 

5 Lemthang 
Tsho 

Bhutan 89.58 28.07 4,273 53,100 
 

2015-06-28 C (Gurung et al., 2017) 

6 Chongbaxia 
Tsho 

TAR/ 
China  

89.74 28.21 5,028 227,700 
 

Spring-
Summer 

2001 

P (Komori et al., 2012) 

7 Tshojo glacier Bhutan 90.16 28.10 4,273 81,900 
 

2009-07-29 P (Yamanokuchi et al., 
2011) 

8 Luggye Tsho Bhutan 90.28 28.09 4,623 140,400 
 

1994-10-07 P Fujita et al. (2008); 
Watanabe and 

Rothacher (1996) 

9 Gangri Tsho III Bhutan 90.81 27.90 4,826 26,100 
 

Spring-
Summer 

1998 

P (Komori et al., 2012) 

10 Ranzeria Co TAR/ 
China 

93.53 30.47 5,051 246,600 
 

2013-07-05 P (Sun et al., 2014) 

11 Tsho Ga TAR/ 
China 

94.00 30.83 4,760 140,400 
 

2009-04-29 P Y. Nie (pers.comm., 
2017) 

 

2.3. Data and Methods 

2.3.1. Data 

Our processing chain builds on six open-source data sets, including image and topographic 

data in raster format and two glacier inventories in vector format (Table 2.2). The eleven reference 

GLOFs are covered by 19 Landsat scenes. We scanned the entire Landsat archive on the 

EarthExplorer web portal for TM, ETM+ and OLI images with <60% cloud cover and time stamps 

between September and November to avoid excess cloud cover during summer monsoon or snow 

and ice cover in winter. We downloaded 2,491 images that were radiometrically corrected to Top-
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of-Atmosphere (TOA) reflectance, and geometrically corrected to processing level L1T by the ESPA 

Landsat data processing platform. 

 

Table 2.2: Data sets used in study. 

Data set Temporal 
coverage 

Data format Resolution 
[m] 

Source 

Landsat imagery 1988 - 2016 6 raster bands (TM 
and ETM+) 

9 raster bands (OLI) 

30 United States Geological Survey (USGS) 
https://earthexplorer.usgs.gov 

CFmask products 1988 - 2016 Single-raster band 30 Earth Resources Observation And Science (EROS) 
Center Science Processing Architecture (ESPA) 

https://espa.cr.usgs.gov 

SRTM DEM 2000 Single-raster band 30 USGS 

https://earthexplorer.usgs.gov 

ALOS World 3D 
DEM 

2006 - 2012 Single-raster band 30 Japan Aerospace Exploration Agency (JAXA)  
http://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/ind

ex.htm 

Randolph Glacier 

Inventory, V 5.0, 
Region 13-15 

2006 - 2010 Multipart polygon 

shape file 

- Global Land Ice Measurements from Space (GLIMS), 

see (Pfeffer et al., 2014) 

ICIMOD Glacier 

Inventory 

2005 ± 3 

years 

Multipart polygon 

shape file 

- International Centre for Integrated 

Mountain Development (ICIMOD), 
see (Bajracharya et al., 2011) 

 

The first images were acquired in late 1988 by TM, and coverage remained limited in the 

1990s. The deployment of ETM+ in 1999 brought more coverage, though the failure of the Scan Line 

Corrector in 2003 caused image data gaps. The shutdown of TM in 2012 was compensated with the 

launch of OLI in 2013 (Figure 2-2), so that the time series spans 29 years in total. The central HKH 

is most densely captured with up to 429 images per pixel (Figure 2-3-A). We used the CFmask 

product, a C implementation of the Function of Mask, originally designed for detecting clouds in 

Landsat images (Zhu and Woodcock, 2012). (Zhu et al., 2015) extended CFmask to classify each 

Landsat scene into Cloud, Shadow, Ice and Snow, Water and Clear (i.e. without atmospheric 

disturbance), and to assign three categories of classification confidence. 

 

Figure 2-2: Number and approximate time stamps of Landsat images per month for the study period 

(1988-2016). 

https://earthexplorer.usgs.gov/
https://espa.cr.usgs.gov/
https://earthexplorer.usgs.gov/
http://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm
http://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm
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We also used the 30m resolution digital elevation model (DEM) from the Shuttle Radar 

Topography Mission (SRTM) after filling voids with data from the ALOS World 3D–30m digital 

surface model, and smoothing the data with a 9 × 9 Gaussian filter. For data on glaciers we used the 

ICIMOD and the Randolph Glacier Inventory (RGI) (Bajracharya et al., 2011; Pfeffer et al., 2014). We 

filled the missing Chinese territory of the ICIMOD inventory with RGI data, so that our inventory 

contains more than 50,000 glaciers with a total area of ~9,400 km². 

 

 

 

 

 

Figure 2-3 A) Total number of Landsat observations per pixel for the four study regions (Figure 2-1); 

glaciated areas are depicted in grey. B) Remaining observations for time-series analysis after pre-

processing and noise removal (Step 2). Numbers in parentheses are minimum and maximum observations for 

each study region; numbers 1-11 refer to reference GLOFs in Table 2.1. 
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2.3.2. The processing chain 

To automatically detect GLOFs from Landsat time series, we used a two-step approach: first, 

we trained a Random Forest model to classify land cover in all tiles; second, we used a likelihood-

based change-point algorithm to identify GLOF pixels with distinct changes from water to land. 

 

Figure 2-4: Flowchart of processing chain for automated GLOF detection. Abbreviations: CPA – 

Change Point Algorithm (see Chapter 2.3.2.3); RF – Random Forest; LC – Land Cover; CV – Cross-

validation. 
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2.3.2.1. Data preprocessing 

The study area covers six UTM zones so that we first re-projected the images to the centrally 

located UTM zone 45N with nearest neighbour resampling to preserve the original digital numbers 

of the image bands. We divided the study area into 30 km × 30 km tiles to increase data reading 

speed for parallel processing. We processed those eleven tiles containing documented outbursts, and 

their 57 neighbouring tiles, resulting in a total of 68 tiles (Figure 2-1). Our analysis focused on lakes 

impounded by moraines or coalescing on debris-covered glaciers, so that we reduced the search 

range to valley floors <3 km downstream of glaciers in our inventory. We excluded areas above the 

median elevation of each glacier, assuming that these steep and rugged areas do not host lakes. 

 

2.3.2.2. Step 1: Random Forest classification 

We defined six land cover classes that are potentially relevant for detecting GLOFs. Water and 

Sediment were the mandatory classes as we assumed that outbursts of glacial lakes exposes 

sediments in the lake basin and downstream. Three additional classes (Ice & Snow, Cloud and 

Shadow) are sources of image noise in the alpine landscape. Finally, a Land class subsumed all other 

classes not contained in the other five classes. The eleven tiles containing reference GLOFs offered 

training data for our classification. We chose the first cloud- and ice-free observation after each GLOF 

and one randomly selected image before. The adjacent 57 tiles supplied test sites for detecting 

previously unreported GLOFs. We applied a two-fold stratification by land-cover class and 

confidence band from the CFmask product, and distributed 30 random points per stratum. We 

manually assigned each point to one of the six land cover classes by comparing the Landsat image 

with Google Earth images without knowing the classification from the CFmask product. Classes 

Water, Cloud and Sediment were undersampled due to misclassifications in the CFmask product; we 

solved this issue with additional random points using the lake inventory of Zhang et al. (2015), and 

a visually defined threshold of 2,750 in the SWIR1 band for Sediment and Cloud samples. Sampling 

the Sediment class avoids confusion with the spectrally similar Cloud class. We then merged the 

Sediment and Land samples into a Land & Sediment class, resulting in a total of five land cover classes 

as response variables for the RF classifier. 

Landsat TM and ETM+ share the same spectral band width that differ from OLI. We therefore 

divided the sampled pixels into TM5/ETM+ and OLI subsets. For TM/ ETM+ (OLI), we collected in 

total 6573 (5911) point samples, including 617 (633) Water, 1822 (2078) Land & Sediment, 1324 

(1052) Ice & Snow, 1088 (945) Cloud and 1722 (1203) Shadow samples. We extracted the digital 

numbers from the predictor variables, involving all spectral bands, brightness temperature, and ten 

ancillary band and topographic indices (Table 2.3). 
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Table 2.3: Ancillary variables for Random Forest training 

Variable Reference 

Normalized Difference Cloud Index (NDCI) (Martinuzzi et al., 2007) 

Modified Soil Adjusted Vegetation Index 2 (MSAVI2)  (Qi et al., 1994) 

Normalized Difference Vegetation Index (NDVI) (Rouse Jr et al., 1974) 

Normalized Difference Water Index (NDWI) (McFeeters, 1996) 

Normalized Difference Snow Index (NDSI) (Riggs et al., 1994) 

Hillshade (Conrad et al., 2015) 

DEM USGS (EarthExplorer) 

Slope (Zevenbergen and Thorne, 1987) 

Topographic Position Index (TPI) (Weiss, 2001) 

Aspect (Zevenbergen and Thorne, 1987) 

 

For fitting the two RF models (one for TM5/ETM+, one for OLI), we grew 1,000 trees and 

randomly selected four predictors at each split. We assessed the performance of the classifiers via 

spatial cross-validation: we rearranged the samples into different tile combinations, always using 

seven tiles as training and four tiles as test data sets. We resampled the training and test data sets 

to 200 and 100 random instances per class, respectively. In each cross-validation run, the RF models 

were fitted to the 200 training observations and subsequently used for prediction on the 100 hold-

out samples in the test data. We evaluated the classifier performance for each class using a log loss 

function (1) that penalizes divergences between predictions and manually assigned classes: 

𝑙𝑜𝑔𝑙𝑜𝑠𝑠 =  −
1

𝑁
∑ 𝑦𝑖  log 𝑝𝑖

𝑁

𝑖=1

+ (1 − 𝑦𝑖) log(1 − 𝑝𝑖) (1) 

where 𝑁 is the number of pixels, 𝑦𝑖 is an indicator function of whether pixel 𝑖 belongs to the 

target class (𝑦𝑖 = 1; 𝑦𝑖 = 0 otherwise), and 𝑝𝑖 is the proportional membership of pixel 𝑖 over the 

predicted class. We added a ten and five-fold cost of misclassifying Water and Land & Sediment to 

emphasise their importance for GLOF detection. 

Labelling mixed pixels with hard classes potentially introduces an interpreter bias during class 

assignment whose influence can be decreased by cross-validation. We repeated cross-validation 100 

times and chose the run with the lowest median log loss as the optimal sample combination. We 

trained the final RF models with all samples from these tiles and evaluated the accuracy on all 

samples from the remaining test tiles. For the best two classifiers, we converted the fuzzy class 

memberships into a hard classification and estimated the error matrices. We report the Overall 

Accuracy (OA) as well as Producer’s Accuracy (PA) and User’s Accuracy (UA), and used these two 

models to predict land cover on all tiles. 
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2.3.2.3. Step 2: Outburst detection from pixel time series 

Our key indicator for GLOFs is the pixel-based change from Water to Land & Sediment. Each 

pixel from the stack of land cover maps has a time series of membership probabilities for one of five 

land-cover classes (Figure 2-5-A). We defined class-membership probabilities of Cloud, Shadow or 

Ice & Snow >0.5 as noise and excluded them from further analysis (Figure 2-5-B), resulting in 

significant spatial differences of valid observations (Figure 2-3-B). Filtered pixel time series with 

>10% of their original length could potentially include a change event. Yet simply flagging each time 

step at which the class membership changes from Water to Land & Sediment would overestimate the 

number of change points, since we cannot assume correct classifications of water and land 

throughout the time series. Indeed, most classification errors form irregular spikes in the time series 

(Figure 2-5-B). 

We developed a change-point algorithm (CPA) to remove outliers and to detect major 

transitions from water to land for each pixel. We approximate the likelihood of change 𝑝(𝐶) by 

multiplying the likelihoods of belonging to the Water and Land & Sediment class before and after 

each time step i, respectively: 

𝑝(𝐶) =  ∏ 𝑃(𝑊) ∏ 𝑃(𝐿𝑆)

𝑘

𝑖

𝑖−1

𝑘

 (2) 

where 𝑃(𝑊) is the predicted probability of belonging to class Water for 𝑘 time steps before i, 

and 𝑃(𝐿𝑆) is the probability of belonging to the Land & Sediment class for 𝑘 time steps after 𝑖. The 

likelihood of change 𝑝(𝐶) at time step 𝑖 must exceed a specified threshold 𝑇(𝐶) to qualify as a change 

point. We set the threshold as 

𝑇(𝐶)  = 0.52𝑘 (3) 

where 0.5 represents the random chance of belonging to a certain class and 2𝑘 is the CPA 

bandwidth. We tested different sizes of 𝑘 time steps ranging from 2 to 10 to identify optimal values 

for detecting GLOFs. We then generated maps of water change for each tile where all pixels exceeding 

𝑇(𝐶) were labelled with the date of the change point. 
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We followed the recommendations of (Olofsson et al., 2013) to compute stratified error 

matrices that consider the proportion of land change area. We applied a stratified random sampling 

approach by collecting 20 samples for each of the Water to Land and No Change class from the eleven 

water change maps, resulting in a total of 440 samples. The No Change class was subsampled from 

pixels where the change-point algorithm revealed no transition. We visually identified the correct 

class on all images and labelled the pixels with the class value. After estimating the error matrix 

from raw sample counts, we weighted the matrix cells with the total area computed for the two 

classes to estimate the accuracy of area change. 

We used the density-based clustering technique DBSCAN (Ester et al., 1996) to spatially 

aggregate pixels within a three-year period as change objects. DBSCAN joins spatially separated 

change pixels and removes spurious change pixels in regions with low pixel density. We set a 

minimum of four pixels and a maximum of 150 m to form a cluster of abruptly disappeared lake 

pixels. For all outburst candidates, we visually checked the corresponding images for sediment tails 

downstream of disappeared lake areas. For newly detected GLOFs, we gathered the information as 

in Table 2.1 and grouped the events into two categories based on our degree of confidence. 

Figure 2-5: Example of pixel time series with a change from water to land and sediment for Sabai Tsho 

GLOF, October 1998. A) Raw time series of estimated membership probability for the five land-cover classes. 

Note the differing number of observations in three-year intervals at the bar on top. B) Filtered pixel time series 

results of a change-point algorithm with different values of k (see text). 
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2.4. Results 

2.4.1. Accuracy of land cover maps 

The best models from 258 spatial cross-validation runs had a median weighted log loss of 

0.1098 for Landsat TM/ETM+, and 0.0868 for Landsat OLI. According to this loss function, the two 

RF models would assign a class-membership probability of 0.896 (TM/ETM+) and 0.917 (OLI) for a 

particular observation. The estimated error matrices (Table 2.4 and Table 2.5) from hard land cover 

classes indicate a high overall accuracy of 91% (TM/ETM+) and 91% (OLI). The Water class is 

characterized by a comparable (good) UA and PA for TM/ETM+ (0.931/0.901) and OLI 

(0.929/0.945), confirming a high separability of water from all other land cover classes. Both 

classifiers showed their lowest performance for the Cloud class, mainly because of confusion with 

the Land & Sediment class. While PA and UA for Ice & Snow were similar, the results for Land & 

Sediment and Shadow diverged between the two classifiers. The number of samples per class in the 

training and test tiles differed between OLI and TM/ETM+, causing different sample sizes in the 

error matrices (Table 2.4 and Table 2.5). 

Table 2.4: Error matrix for mapped (columns) and predicted (rows) land cover samples, as well as 

Producer’s (PA) and User’s (UA) accuracy for all land cover classes as discretisation of fuzzy to hard 

Landsat TM/ETM+ classification. The accuracies were highest for the water class (blue) and lowest for the 

cloud class (red)  due to confusion with the land & sediment class. 

 Reference 

P
re

d
ic

ti
on

 

 Water Land & Sediment Ice & Snow Cloud Shadow Total PA UA 

Water 201 2 8 0 5 216 0.931 0.901 

Land & 
Sediment 

0 560 16 40 19 635 0.882 0.927 

Ice & Snow 1 6 585 10 27 629 0.930 0.927 

Cloud 5 29 10 211 6 261 0.808 0.808 

Shadow 16 7 12 0 681 716 0.951 0.923 

Total 223 604 631 261 738 2457   

 

Table 2.5: Error matrix from mapped (columns) and predicted (rows) land cover samples, as well as 

Producer’s (PA) and User’s (UA) accuracy for all land cover classes as discretisation of fuzzy to hard 

Landsat OLI classification. 

 Reference 

P
re

d
ic

ti
on

 

 Water Land & Sediment Ice & Snow Cloud Shadow Total PA UA 

Water 171 3 2 0 8 184 0.929 0.945 

Land & Sediment 0 691 6 6 7 710 0.973 0.857 

Ice & Snow 1 9 292 4 9 315 0.927 0.945 

Cloud 3 74 7 395 1 480 0.823 0.975 

Shadow 6 29 2 0 218 255 0.855 0.897 

Total 181 803 307 405 243 1943   
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2.4.2. Optimal time steps for change-point detection 

For the eleven reference GLOFs, the change point algorithm showed decreasing mean success 

rates with increasing number of consecutive observations after noise removal (Figure 2-6-A). 

Success rates were highest for k = 2 (85%), then stepped towards a plateau for k ∈ [3,4,5] (76-73%) 

and dropped below 50% for k >= 8. The rate of additionally detected change pixels (Figure 2-6-B) 

fell more steeply, showing a distinct kink at the transition to k = 3. We seek to maximize the rate of 

correctly detected change pixels, while minimizing the rate of additionally detected change pixels. 

We propose an optimum number of k = 3 time steps for change detection owing to the high rate of 

detected GLOF pixels and, at the same time, to the moderate rate of additionally detected pixels in 

the corresponding tiles. 

 

 

2.4.3. Accuracy of water change maps 

Considering k = 3 time steps, our algorithm mapped 0.18% of the total area in the eleven 

GLOF tiles as a change from Water to Land (Table 2.6). The error matrix of the raw sample counts 

from the strata Water to Land shows that 70 out of 220 change pixels did not change. Area-weighted 

sample fractions had an overall accuracy of 99% (Table 2.7). The target class Water to Land class 

had a UA of 67% and a PA of 12%, while the No Change class had UA and PA of >99%. 

  

Figure 2-6: A) True positive rate expressed as the rate of detected change pixels by window size for all 

reference GLOFs; B) Rate of additionally detected change pixels within the GLOF tile expressed as the 

number of additionally detected pixels detected pixels divided by the number of all valid pixels per 

GLOF tile. 
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Table 2.6: Error matrix for a total of 440 stratified samples randomly collected from the land cover change 

maps of the eleven GLOF tiles. Water to Land is the change between the classes indicating a GLOF; No 

Change includes stable land cover of Water and Land, as well as all other changes in classes Cloud, Shadow and 

Ice & Snow. Map Area refers to the sum of all pixels of the change classes multiplied by a pixel size of 900 m². Wi 

is the proportion of the area mapped as change class i, divided by the total area. 

P
re

d
ic

ti
o

n
 

Reference 

 Water to Land No Change Total Map Area [km²] Wi 

Water to Land 150 70 220 9.532 0.002 

No Change 2 218 220 5246.078 0.998 

Total 152 288 440 5255.61 1 

 

Table 2.7: Estimated error matrix based on raw sample counts from Table 2.6. Cell entries of the change 

classes Water to Land and No Change represent the estimated proportion of area calculated as the product of the 

raw sample fraction and class weights Wi given in Table 2.6. 

P
re

d
ic

ti
o

n
 

Reference 

 Water to Land No Change Total UA PA Overall 

Water to Land 0.0012 0.0006 0.0018 0.6667 0.1165 0.9903 

No Change 0.0091 0.9891 0.9982 0.9909 0.9994 
 

Total 0.0103 0.9897 1 
   

 

2.4.4. Detection of GLOFs 

The change point algorithm classified 38,009 change pixels in 68 image tiles. After spatial 

aggregation to candidate objects with DBSCAN, we investigated the images for sediment tails 

downstream, successfully identifying ten of the eleven reference GLOFs. For nine of the eleven 

reference GLOFs, our algorithm correctly detected >78% of the pixels that we had manually mapped 

as change pixels (Figure 2-6-A). The 2009 GLOF from Tshojo Glacier, Bhutan, was detected with a 

success of 30%, whereas the 2013 outburst from Lake Chorabari, India, remained undetected. The 

lake changes predicted by our detection algorithm agree well with independent manual mapping 

(Figure 2-7) to less than two pixels in width. 



Detecting Himalayan Glacial Lake Outburst Floods from Landsat time series 

35 

 

The change-point algorithm identified ten previously unreported GLOFs (Table 2.8), with nine 

of them in the central Himalayas and one in the Nyainqentanglha Mountains (Figure 2-8). Seven of 

these newly detected lake sources had distinct sediment tails downstream (Figure 2-10-A and B), 

which were more difficult to identify for three medium-confidence locations (Figure 2-10-C). We 

could identify outbursts from lake change maps involving as few as eight pixels (7,200 m², Table 

2.8-H). We also detected a lake upstream of Luggye Tsho (Bhutan, Table 2.8-G) that had two 

outbursts with a major event in 1991, followed by refilling and a second minor event in 2010. We 

find that our method underestimates lake area changes by 9.4% on average; most of the lakes 

showed partial drainage (Table 2.8). Drained lakes areas of the newly detected GLOFs are below 

120,000 m², corresponding to half of the maximum size of previously documented GLOFs (Figure 

2-9). 

Figure 2-7: Glacial lake outbursts from A) Gangri Tsho III in 1998, B) Tsho Ga in 2009 and C) Ranzeria Co 

in 2013, showing the last noise-free image before (left panels) and the first noise-free image after the 

event (middle and right panels). The appearance of sediment tails downstream is among our key criteria for 

detecting GLOFs. The post-GLOF image from Tsho Ga shows artefacts from the failure of the scan-line corrector 

of Landsat ETM+. 
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Figure 2-8: All reference GLOFs (Numbers 1-11) and newly detected GLOFs (letters A-J). 

Figure 2-9 Comparison of drained lakes areas linked to previously documented (reference; 

Table 2.1) and newly detected GLOFs in a training area covering ~10% of the HKH. Blue bars 

give intervals between noise-free images for newly detected GLOFs. 
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Table 2.8: Previously unreported GLOFs from 1988 to 2016. ID corresponds to labels in Figure 2-8. Elevations 

were extracted from SRTM data. Type of drainage is either complete (C) or partial (P). Column sums are given by 

∑, and column means by µ.  

 

2.5. Discussion 

2.5.1. Data quality 

The success of our processing chain for automatically detecting past GLOFs in the HKH rests 

on a number of assumptions and simplifications. Time-series analysis requires co-registered Landsat 

imagery that we assumed to be sufficiently honoured by consistently using L1T imagery. Precise pixel 

alignment is most relevant for partial drainage with flow tracks only several pixels wide (Table 2.1 

and Table 2.8). The resampling of overlapping Landsat scenes to the master projection (UTM Zone 

45N) may also shift pixels by up to one pixel width, but this error does not negatively affect our 

change detection. We rarely observed such artefact offsets of lake shorelines that the change point 

algorithm interpreted as change events from water to land, causing an overestimation of change 

events. However, nearest neighbour is the only interpolation method for image resampling that 

preserves the original digital numbers (Parker et al., 1983). Other techniques such as cubic 

convolution or spline interpolation would blur the distinct transition between land and lake (Parker 

et al., 1983), compromising our ability to detect minor GLOFs. 

 

ID Country Long 

[°] 

Lat 

[°] 

Elevation 

[m a.s.l.] 

Degree of 

confidence 

Area change 

manually 
mapped 

[m²] 

Area change 

predicted by 
CPA 

[m²] 

Relative 

difference 
manual 

vs. 
predicted 

[%] 

Maximum age Minimum 

age 

Difference 

between 
noise free 

images 

Type of 

drainage 

A China 85.48 28.66 5,196 high 48,600 
 

36,900 -24.1 1995-11-01 1996-
10-02 

336 P 

B China 86.45 27.93 5,192 medium 109,800 72,900 -33.6 1992-09-22 1992-11-
01 

40 P 

C Nepal 86.71 27.95 4,730 medium 
to high 

107,100 107,100 0 1993-11-20 1994-
08-19 

272 C 

D Nepal 86.78 27.96 5,015 high 13,500 
 

10,800 -20.0 1998-11-02 1999-
08-01 

272 C 

E Nepal 86.84 27.8 5,309 medium 44,100 41,400 -6.1 2006-10-07 2008-

09-26 

720 P 

F China 90.23 28.28 5,301 high 115,200 136,800 +18.75 2007-11-21 2008-

09-20 

304 P 

G Bhutan 

(1st) 

90.33 28.1 4,706 high 57,600 52,200 -9.4 1990-11-14 1991-

09-30 

320 P 

 (2nd)   4,706 high 23,400 20,700 -11.5 2009-11-18 2010-
10-04 

320 P 

H Bhutan 90.42 27.90 5,142 high 11,700 7,200 -38.5 1997-11-01 1998-11-
04 

368 P 

J China 94.32 30.69 4,117 high 18,000 21,600 +20.0 2002-10-24 2003-
10-11 

352 P 

      ∑ = 
441,900 

∑ = 
400,500 

µ = -9.4   µ = 330  
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2.5.2. Quality of fuzzy land cover maps 

We chose a RF classifier because it is flexible, easy to use, robust against overfitting, while 

offering soft class membership estimates that express some of the uncertainties in the data. 

Moreover, RF performed robustly on comparable or smaller training data sets than ours (Rodriguez-

Galiano et al., 2012). We avoided simpler and more transparent (parametric) classifiers, as these 

often perform worse in land-cover classification (Waske and Braun, 2009; Xu et al., 2014). 

Alternatives such as Support Vector Machines and Artificial Neural Networks have no or weakly 

Figure 2-10: Examples of newly detected GLOFs with high confidence (A and B) 

and medium confidence (C). Note the bright reflectance of sediments from the 

partially drained lakes in panels A and B (see Table 2.8-A and F). Panel C shows a 

distinct decrease of lake area, but uncertain outburst path. The change in colour of the 

lake downstream could imply a change in sediment concentration as an indicator for the 

GLOF event. 
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justified probabilistic output, while algorithm parametrization becomes less intuitive (Lippitt et al., 

2008). Future work might compare the performance of different classifiers in our workflow, 

although such benchmarking depends heavily on the choice of data (Belgiu and Drăguţ, 2016). The 

error matrices (Table 2.4) indicate that confusing Clouds with Land is the most prominent 

classification error. Even a penalization could not fully avoid misclassifications. (Foga et al., 2017) 

suggested masking clouds from images with CFmask, but our tests with CFmask merely confirmed 

the known issue of confusing clouds with bright sediment surfaces. A possible solution might involve 

first predicting land cover on training images, followed by updating the classifier with samples from 

misclassified pixels along the lines of reinforcement learning. Collecting training data is the most 

labour-intense part in our processing chain, though it remains doubtful whether adding thousands 

of new training data would substantially increase our classification accuracy (Zhu et al., 2016). 

Spatial cross-validation with bootstrapping improves the performance of the RF classifier in diverse 

geographical settings, and is promising for transferring our approach to the whole HKH region. 

 

 

2.5.3. Challenges of change-point detection 

Calculating likelihoods in the change point algorithm assumes identically and independently 

distributed time steps. However, pixel time series involving multiple observations per year are 

temporally correlated and not equidistant due to noise. Other studies on change-point detection 

visually selected only one suitable image per year (Pflugmacher et al., 2012) or generated annual to 

Figure 2-11: Period in years between clear images before (red) and after (cyan) the reference GLOFs. 
Numbers at the end of the bars indicate the number of unsuitable images due to noise induced by clouds, 
shadows or lake freezing. 
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five-year image composites (Griffiths et al., 2014; Schroeder et al., 2011), likely concealing GLOFs 

within certain seasons (as for Sabai Tsho in September 1998 or Luggye Tsho in October 1994). Data 

availability for the reference GLOFs suggests that four to seven years without any clear view of the 

lakes are common (Tsho Ga and Ranzeria Co), and that high overpass rates (Gangri Tsho III) do not 

necessarily increase the chance of acquiring suitable images (Figure 2-11). 

 

The highly varying data availability in the HKH region led us to develop a change-point 

algorithm that differs from previously proposed methods; for example, for boreal environments 

comparable data gaps are less frequent (Hermosilla et al., 2016). Choosing k = 3 time steps of 

consecutive observations for computing the likelihoods of Water and Land is one of the few empirical 

steps in our processing chain, and may need further testing for larger areas. Our processing chain 

substantially decreases the influence of user-dependent decisions compared to other change-point 

algorithms that depend on a wide range of empirical parameters (Jamali et al., 2015; Kennedy et al., 

2010). With the current parameter setting, we seem to overestimate the number of change pixels 

(Table 2.6), causing low PA of changed area (Table 2.7). Increasing k may decrease time-consuming 

visual validation, but also increase the risk of overlooking GLOFs. By contrast, any automated 

detection becomes difficult with less than three consecutive observations. The 2013 GLOF from Lake 

Chorabari, India, remained undetected because no noise-free image was available between lake 

filling and drainage (Figure 2-12). 

Figure 2-12: Noise-filtered pixel time series from Lake Chorabari (Table 2.1-1), extracted from yellow 

location pixel in top-row panels. The algorithm correctly detected several changes from water to land (stars), 

but missed the GLOF because of noisy data in that year. A higher number of noise-free observations per year 

(see grey-shaded bar) allows better change detection. The lake had appeared and disappeared several times 

before the GLOF. 
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Future work may involve a more flexible handling of time steps such that k becomes more 

(less) sensitive in regions where the number of observations in the pixel time series is low (high). 

The Chorabari time series also demonstrates how glacial lakes change their size without producing 

outburst floods. Desiccation, infilling, or subsurface drainage are processes that shrink or remove 

proglacial lakes in the HKH. Similarly, ponds on debris-covered glaciers can grow and shrink 

annually (Miles et al., 2017; Watson et al., 2016), though these and other, monsoonal, changes are 

beyond the scope of this study, given the seasonal preference of our satellite imagery. 

Finally, determining whether a lake has drained catastrophically remains a time-consuming 

interactive step at the end of our processing chain. In most cases, Landsat imagery was our only data 

source for identifying tell-tale sediment tails. The resolution of Landsat data is often insufficient to 

reveal details about sediment dynamics in the outburst paths. In this context, the newly available 

Sentinel-2 data improve the situation for detecting GLOF events, offering a higher spatial resolution 

(up to 10m) and repeat rate of acquisition. Combining multi-sensor and multi-resolution datasets 

have become popular to map high-mountain glacial outlines and flow velocities (Holzer et al., 2015; 

Kääb et al., 2015; Shukla et al., 2010), but may also unlock more regional detail of glacial lake 

dynamics and resolve more, probably smaller events. Other drainage mechanisms such as vertical 

drops in lake level or the emptying of subglacial water pockets elude our analysis of optical imagery, 

but may be resolved with laser altimetry or radar techniques (Smith et al., 2009; Wingham et al., 

2006). In any case, the ten newly detected GLOFs redefine the lower envelope of their potential 

activity in the HKH region. 

 

2.6. Conclusions 

Our newly developed processing chain allows a robust retrospective detection of glacial lake 

outburst floods (GLOFs) from Landsat time series in the Hindu Kush Himalayan (HKH). Fuzzy land-

cover classification with Random Forests and a likelihood-based change point algorithm promise 

high accuracies in detecting independently documented GLOFs. We successfully detected ten of 

eleven reported GLOFs, as well as ten previously unreported ones. Though we analysed only 10% of 

the HKH, we were able to expand the current GLOF inventory by 91% for the past three decades. 

Ubiquitous cloud, ice and shadows in the HKH lead to data gaps that prohibit a comprehensive 

tracking of glacial lakes at regular intervals. We used shrinking lakes and exposed sediment tails as 

key indicators for GLOF detection that we time-stamped with a change-point algorithm that 

computes the likelihood of change from three consecutive observations of water to land. Thus 

exploring all valid observations in the stack of land cover maps is a novel approach for detecting 

changes in pixel time series and holds promise for mountainous environments with patchy Landsat 
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coverage. Data gaps and the limits of detection caused by 30 m resolution Landsat imagery call for 

multi-sensor and multi-resolution approaches including higher resolution imagery such as Sentinel-

2 for future regional studies on GLOF detection. We robustly configured our processing chain using 

techniques of spatial-cross validation with bootstrapping for classifier training such that our 

methods are transferable to the whole HKH and mountain ranges elsewhere. The detection of ten 

previously unreported GLOFs confirms our initial hypothesis that the existing GLOF inventories 

underestimate significantly the number of GLOFs in the Himalayas. We thus set the basis towards a 

more complete GLOF inventory for the HKH, and towards objectively and systematically filling the 

gaps in the hitherto censored chronology of past GLOFs. 
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Shrinking glaciers in the Hindu Kush-Karakoram-Himalaya-

Nyainqentanglha (HKKHN) region have formed several thousand 

moraine-dammed glacial lakes (Ives et al., 2010; Nie et al., 2017; 

Schwanghart et al., 2016b), some of them having grown rapidly in 

past decades (Nie et al., 2017; Wang et al., 2015). This growth 

might promote more frequent and potentially destructive glacial 

lake outburst floods (GLOFs) (Harrison et al., 2018; Huss et al., 

2017; Richardson and Reynolds, 2000). Testing this hypothesis, 

however, is confounded by incomplete databases of few reliable, 

though selective case studies. Here we present a consistent 

Himalayan GLOF inventory derived automatically from all 

available Landsat imagery since the late 1980s. We more than 

double the known GLOF count and identify the southern 

Himalayas as a hotspot region, compared to the rarer affected 

Hindu Kush-Karakoram ranges. Yet the average frequency of 1.3 

GLOFs per year has no credible posterior trend despite reported 

increases in glacial lake areas in most of the HKKHN (Gardelle et 

al., 2011), so that GLOF activity per unit lake area has decreased 

since the late 1980s. We conclude that learning more about the 

frequency and magnitude of outburst triggers rather than solely 

focusing on rapidly growing glacial lakes might improve appraisals 

of GLOF hazard. 
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3.1. Main article 

Atmospheric warming and changing precipitation patterns will substantially change the 

contribution of glaciers to river runoff in the Himalayas and adjacent mountain belts within the next 

decades (Huss and Hock, 2018; Lutz et al., 2014). Terminal moraines and debris at the tongue of 

downwasting glaciers may trap meltwater, which is an immanent natural hazard if suddenly 

released in potentially destructive outburst floods (Richardson and Reynolds, 2000). Individual 

GLOFs in past decades attained runout distances of >120 km, causing up to hundreds of fatalities, 

destroying bridges and hydropower schemes, and locally causing channel incision and aggradation 

(Osti and Egashira, 2009; Richardson and Reynolds, 2000). Judging from Landsat imagery, which 

offers the longest continuous satellite record for the HKKHN since the late 1980s, several thousand 

moraine-dammed glacial lakes exist in the HKKHN today (Ives et al., 2010; Nie et al., 2017; 

Schwanghart et al., 2016b), being rare in the Karakoram, but abundant in the southern HKKHN 

(Gardelle et al., 2011). Since 1990, 401 new glacial lakes formed in the Western, Central and Eastern 

Himalayas, corresponding to an increase of 56.4 km² (+14.1%) in total area (Nie et al., 2017). Very 

large or rapidly growing glacial lakes have traditionally attracted hazard and risk assessments as 

these lakes may unleash exceptionally large flood volumes (Fujita et al., 2013; Wang et al., 2015). 

Recent approaches also account for lakes growing in loose debris or behind unconsolidated moraine 

dams, and for whether calving glacier ice, avalanches, landslides or rainstorms could potentially 

trigger outburst floods (GAPHAZ, 2017; Rounce et al., 2017). GLOFs from moraine-dammed lakes 

Figure 3-1: Elevation gap between meltwater areas and population 

density. a, Unchanged meltwater areas (Pekel et al., 2016; Methods) in a 3-km 

buffer around glaciers and b, estimated population density from the 

LandScan™ (2014) Global Population Database in a 10-km buffer around 

glaciers. Thick black line is the median, and grey box is the interquartile range 

of lake elevation with reported outbursts (Figure 3-2). 
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have drawn an increasing research interest over the past decades (Emmer, 2018), motivated by the 

hypothesis that a growing number and area of glacial lakes may raise GLOF frequency in the near 

future (Richardson and Reynolds, 2000). Counterintuitively, first-order global compilations on 

historical GLOFs dating back to the 19th century and beyond, indicate fewer GLOFs in past decades 

(Carrivick and Tweed, 2016; Harrison et al., 2018). Objectively estimating trends in GLOF frequency 

is challenging as many lakes form in terrain with limited access, making fieldwork impractical. In 

the HKKHN, outburst floods from glacier lakes initiated mainly between 4,500 and 5,200 m a.s.l., 

and some attenuated rapidly (Schwanghart et al., 2016b), possibly escaping notice in human 

settlements few thousand vertical meters below (Figure 3-1). Reliable reports of 40 GLOFs since 1935 

are selective. We mapped these GLOFs, originally compiled by regional initiatives, highlighting 32 

cases in the Central and Eastern Himalayas (Ives et al., 2010; Nie et al., 2018) in contrast to very few 

cases in the north-western Hindu-Kush-Karakoram and the Nyainqentanglha Mountains (Figure 

3-2a, Supplementary Table 7.1). We speculate that these 40 reports preferentially covered large or 

destructive cases, which makes assessing their frequency difficult. In trying to account for this 

reporting bias, our objective is to estimate GLOF frequency and its changes from a systematic 

inventory covering the entire HKKHN. 

We developed a Random Forest model for classifying land cover in Landsat images, and used 

a change-point analysis that successfully identified 10 out of 11 previously reported test cases (Veh 

et al., 2018; Methods). The analysed imagery covers the late 1980s to 2017, an interval that is 

conventionally used to study the response of natural hazards to climate change. Our analysis focuses 

on lakes dammed by moraines, but excludes water stored in subglacial pockets or seasonal and 

ephemeral water bodies that the optical images cannot resolve.  

Systematically mining 8,210 Landsat images across the entire HKKHN, we added 22 newly 

detected GLOFs to the 17 GLOFs that had been reported since the beginning of the Landsat era in the 

late 1980s (Figure 3-2a, Supplementary Table 7.2). We thus more than doubled the existing GLOF 

count to a total of 39 cases in the past three decades, with most of the newly found GLOFs clustering 

between the Central Himalayas and the Nyainqentanglha Mountains (Figure 3-2a). Our analysis thus 

consolidates the regional contrast between low GLOF abundance in two northern regions (two new 

cases in the Hindu Kush-Karakoram, none in the Western Himalayas) and high GLOF abundance in 

three southern regions (20 new cases for the Central, Eastern Himalayas and Nyainqentanglha 

Mountains).  
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A swath analysis along the HKKHN (Figure 3-2b) reveals that the regional GLOF pattern 

correlates with the abundance of meltwater areas (Spearman’s correlation coefficient ρ = 0.87) and 

the change of meltwater occurrence intensity (Pekel et al. 2016; see Methods), calculated as the 

difference between two epochs before and after the year 2000 (ρ = 0.77). Glacier cover (ρ = –0.18) 

and changes in mass balance (ρ = 0.26) are only weakly correlated with the number of GLOFs per 

swath (Arendt et al., 2015; Brun et al., 2017). The fraction of meltwater areas in the Central, Eastern 

Himalayas, and Nyainqentanglha Mountains is three to six times higher than that in northern basins 

Figure 3-2: Revised map of Himalayan GLOFs. a, Map of reported historic and newly detected GLOFs in five 

major drainage basins in the HKKHN in a 3-km buffer zone around glaciers. Insets show water change intensity 

for 1984-1999 and 2000-2015 of pixels classified as water at least once in one of these two periods (Pekel et al., 

2016). All basins had posterior distributions with credible non-zero changes in meltwater areas. b, Statistics as 

above including present glacial cover (Arendt et al., 2015) and mass balance (Brun et al., 2017) from 2000-2016 

(top bars), and GLOF frequency for 55 swaths (50 km × 700 km; see example at left figure margin in Figure 3-2). 

Fractions per swath are normalised so that 1 (or -1 for glacial mass balance) is the observed maximum. Blue line 

calculated from the spikes at zero in a; orange line is the sum of meltwater change intensity. 
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(Figure 3-2). The Western Himalayas have some of the highest glacier melt rates (Brun et al., 2017) 

and meltwater-dependent runoff along the HKKHN (Kaser et al., 2010; Lutz et al., 2014), but GLOF 

abundance is low. The anomalously stable or advancing glaciers in the Karakoram Mountains 

(Gardelle et al., 2012) currently offer limited space for moraine-dammed lakes to form. Yet, glacier 

surges (Quincey et al., 2011) can locally form temporary ice dams and release GLOFs as observed at 

Kyagar or Khurdopin glacier during our study period (Hewitt and Liu, 2010; Round et al., 2017). 

Only three of the 39 previously known and newly detected GLOFs originated from lakes that 

formed in the Landsat era, while nine lakes had been growing before they burst out. Expanding lake 

area alone thus did not warrant a high susceptibility to GLOFs. Yet, glacial lakes can grow again after 

an outburst and release more subsequent GLOFs, such as at Lakes Ayaco and Zhangzangbo, or a 

newly found GLOF in Bhutan that originated from the same lake location in 1991 and 2010 

(Supplementary Table 7.2). Eight of the newly detected GLOFs occurred less than 16 km from 

previously known ones, but have gone unnoticed despite this proximity and a similar size. The 

posterior distributions of estimated mean flood volumes of new and GLOFs reported since the 1980s 

do not differ credibly (Figure 3-3; Supplementary Figure 7-3), indicating that large floods can still 

occur unnoticed today if not systematically monitored. Mean flood volumes of GLOFs predating the 

Landsat era were credibly larger, possibly because records of larger floods more likely entered 

Figure 3-3: Population density, impact tracks, and estimated flood volumes of GLOFs. a, Red bubbles 

are 21 GLOFs detected in this study and four GLOFs from other remote sensing studies (Nie et al. 2018; 

Komori et al., 2012; Wang et al., 2011) blue bubbles are 15 previously reported GLOFs with mappable 

impact tracks and pre- and post-GLOF lake sizes. Population estimate is from the LandScanTM (2014) Global 

Population Database in a 500-m corridor. Thick lines are medians of new (Mn) and previously reported (Mr) 

GLOFs. Estimated zero population values are set to 1 due to logarithmic scale. b, Boxplots of flood volumes 

from newly detected (red) and previously reported GLOFs during and before the Landsat era (blue). Boxes 

span interquartile range; medians are thick black lines; whiskers encompass 1.5 times the interquartile range; 

circles are outliers. A Bayesian ANOVA shows no credible difference in mean GLOF volumes between newly 

found and previously known cases during the Landsat era. 
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historic records. Besides flood volume, however, local population density, geomorphic impacts and 

associated damage may also influence reporting. To test this notion, we mapped traces of erosion 

and sedimentation by each GLOF in channels downstream, and compared these individual impact 

tracks with data from the LandScan™ (2014) Global Population Database. We find that newly found 

GLOFs had generally shorter impact tracks than previously reported ones and mostly affected river 

reaches with lower population density (Figure 3-3). Reports of Himalayan GLOFs thus largely favour 

damaging events: only twelve out of 40 published lake outbursts had caused no appreciable damage 

(Supplementary Table 7.1). Six newly detected GLOFs, for instance, drained into a larger lake further 

downstream, showing that large lakes can buffer impacts from smaller GLOFs. 

From our revised database of 38 GLOFs between 1988 and 2017, we obtain an average rate of 

1.3 GLOFs per year. Neither this overall nor the basin-wide GLOF frequencies in the Eastern 

Himalayas, the Central Himalayas or the Nyainqentanglha Mountains have changed credibly over 

these past three decades (Figure 3-4; Supplementary Figure 7-3); the HKKHN-wide trend is –

0.0006+0.0415/–0.0394 yr–1 (95% highest density interval). Though remaining unchanged over the past 

three decades, the GLOF rate of 1.3 per year is the highest reported anywhere in the HKKHN. Our 

rate estimate differs from previous work proposing a global decrease in GLOF activity since the 1970s 

(Harrison et al., 2018) or the mid-1990s (Carrivick and Tweed, 2016), most likely because these 

studies considered selective reporting or detection negligible. The fraction of lakes that released 

GLOFs remained at ~0.7%, regardless of whether these lakes existed before or formed after 1990 

(Nie et al., 2017). Yet the fraction of GLOFs per unit meltwater area has declined since 1990 (Figure 

Figure 3-4: Unchanged GLOF frequency over the past three decades. Grey histogram in lower panel shows 

annual GLOF frequency with posterior means µall and trends tall estimated from Bayesian robust linear 

regression. Trends per basin (Figure 3-2a) are for the Central and Eastern Himalayas (tCH, tEH) and the 

Nyainqentanglha Mountains (tNQ). Upper panel shows GLOFs with known dates as dots and newly detected 

GLOFs as bars spanning the intervals between suitable Landsat images. For these intervals, we assumed that 

each day was equally likely for the outburst date and added the probability mass of potential days to the number 

of dated cases to calculate the annual GLOF frequency. 
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3-2), mainly because the expansion of few large moraine-dammed lakes dominated the total increase 

in meltwater area (Song et al., 2017; W. Wang et al., 2015). Even the most pronounced increase of 

meltwater areas in the southern Himalayas had no commensurate increase in GLOF activity (Figure 

3-4). We infer that climate-driven rates of glacier melt and lake expansion may be unsuitable 

predictors of contemporary outburst potential, consistent with findings from the Patagonian Andes 

(Wilson et al., 2018). However, GLOF activity may lag behind glacier decay and lake growth that 

could have begun already at the end of the Little Ice Age (Harrison et al., 2018), an effect that our 

study period cannot cover. 

An unchanged GLOF frequency may reflect some degree of resilience to climate-driven 

triggers, however. Calving glaciers and ice avalanches are the most frequently reported triggers for 

GLOFs (Nie et al., 2018), while elevated hydraulic pressure from sudden meltwater input or overspill 

from rainfall may exceed the shear resistance of moraine dams (Worni et al., 2012). The triggers of 

our 22 newly identified outburst floods remain unknown, but 16 of them came from pro- or 

supraglacial lakes within 300 m from their parent glaciers. With lakes gradually losing contact to 

their parent glacier, ice calving and avalanches become less relevant triggers (Nagai et al., 2017). 

This decoupling could explain why GLOF frequency has not increased with total meltwater area or 

the number of moraine-dammed lakes. Unless glacial lakes expanded substantially into the 

trajectories of avalanches and landslides, the growth of Nepal’s largest lakes, for example, has only 

marginally changed their outburst hazard (Rounce et al., 2017). The projected average warming of 

2.1 ± 0.1°C in Himalayan glacier regions until the end of the 21st century (Kraaijenbrink et al., 2017) 

will likely form new lakes (Linsbauer et al., 2016), and destabilise ice cores in moraines and 

permafrost in rock walls surrounding glacial lakes (Gruber et al., 2017; Haeberli et al., 2017). 

Whether and how these changes will alter GLOF frequency is open to future research, considering 

also the role of earthquakes and monsoonal storms triggering landslides and snow avalanches 

(Ballesteros-Cánovas et al., 2018). For example, severe ground shaking during the 2015 Mw 7.8 

Ghorka earthquake did not trigger any GLOF in the Nepalese Himalayas, though nine landslides 

directly hit glacial lakes (Kargel et al., 2016). Finally, new lakes could have formed in stable bedrock 

depressions resistant to most GLOF triggers and hence less prone to outburst, similar to the 

Cordillera Blanca and the European Alps (Buckel et al., 2018; Emmer et al., 2016a). Desiccation, 

siltation, or subsurface drainage may shrink or obliterate lakes, though without diagnostic sediment 

tails from outburst floods. All major Himalayan basins also had distinct losses of meltwater area 

(Figure 3-2a), and 74 glacial lakes have disappeared in our study period without evidence of an 

outburst (Nie et al., 2017).  
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Our regional assessment emphasises that it is vital to learn more about the past and future 

frequency of such triggers to better understand controls on GLOF frequency. Characterizing 

succinctly the seismic, geomorphic, and glaciological setting of meltwater lakes may improve our 

understanding and predictions of GLOF frequency. Triggers of GLOFs may be difficult to derive on 

regional scales from Landsat imagery, but new generations of optical and radar satellite sensors and 

in-situ measurements push the way forward. Given that 20 out the 22 newly found GLOFs occurred 

in the monsoon season, our search algorithm is robust against data gaps due to cloud cover 

(Supplementary Figure 7-2). Yet higher resolution could shed light on potentially unobserved cases 

with released water volumes or lengths of sediment tails beyond the current limits of detection. Our 

method is readily applicable to other mountain belts with similar Landsat coverage, and thus allows 

objective comparisons between regional climate change and GLOF frequency. Multi-criteria 

guidelines may help to systematically categorise individual lake hazard, moving beyond the 

traditional approach of mapping lake expansion (GAPHAZ, 2017; Rounce et al., 2017). We conclude 

that our regional and objectively derived inventory adds systematic insights on the regional and 

temporal patterns of GLOFs in the HKKHN, and invite more focus on the triggers of this prominent 

Himalayan hazard. 
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3.2. Methods 

Landsat data and preprocessing. Our study area comprises a 3-km buffer around all HKKHN 

glaciers in the Randolph (version 5.0) and ICIMOD glacier inventories (Arendt et al., 2015; 

Bajracharya et al., 2011). We downloaded 8,210 images of Landsat TM, ETM+ and OLI images from 
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the EarthExplorer web portal (earthexplorer.usgs.gov), limited to <60% cloud cover and time 

stamps between September and November to avoid excess cloud cover during the South Asian 

summer monsoon and snow or ice cover in winter. Landsat Thematic Mapper (TM) imagery covers 

the Nyainqentanglha Mountains since 1986 and the Western Himalayas since 1994 (Supplementary 

Figure 7-1). Due to Landsat’s commercial on-demand service until the mid-1990s and the lack of an 

on-board storage (Markham et al., 2004), image coverage over the HKKHN was irregular until the 

21st century (Supplementary Figure 7-1). With the launch of the Enhanced Thematic Mapper (ETM+) 

in 1999, annually available imagery increased notably, but the failure of the Scan Line Corrector 

(SLC) in 2003 caused data loss of ~22% in ETM+ images (Wulder et al., 2012). Data availability 

shows another distinct kink in 2012 with the shutdown of Landsat TM, but improved one year later 

when the Landsat Operational Land Imager (OLI) was launched (Wulder et al., 2016). Any single 

pixel in our study area was overpassed 180 times on average during our study period, while the 

longitudinally overlapping orbits had a maximum of 449 views on any pixel (Supplementary Figure 

7-1). 

The images follow the USGS Collection-1 Tier 1 processing routines with terrain and precision 

correction with an image-to-image tolerance of <12-m radial root mean square error (RMSE) during 

geo-registration (USGS, 2018). The oblique semi-circular stretch of the HKKHN across six UTM 

zones (42N-47N) required re-projecting all images to an Oblique Mercator projection that minimizes 

projection distortions. The projection parameters were calculated using the coordinates of a 

discretised fourth-order polynomial fit through all glacier centroids along the HKKHN. We used a 

cubic convolution kernel to resample all images to 25-m pixel resolution using a Hotine Oblique 

Mercator projection routine as implemented as EPSG code 9812 in the Geospatial Data Abstraction 

Library (GDAL) (International Association of Oil & Gas Producers, 2016). All images were split 

subsequently into 940 tiles of 25 km × 25 km that covered the extent of our study area. 

Summary of GLOF detection. The HKKHN is one of the most challenging regions for reliably 

detecting surface water bodies, discriminating them from other land-cover types, and tracking their 

changes over time (Veh et al., 2018). From a potential 16-day Landsat revisit cycle, annually available 

imagery narrows down to few (or even no) suitable scenes between September and November due 

to frequent post-monsoonal cloud cover in early autumn and lake freezing towards winter. We 

successfully trained, tested and validated a processing chain for GLOF detection in four spatially 

independent subsets in the Western, Central, Eastern Himalaya and Nyainqentanglha Mountains, 

comprising ~10% of the HKKHN (Veh et al., 2018). Here we show the application to the complete 

Himalayan range. In our customised workflow, we trained a Random Forest model to generate fuzzy 

land-cover maps containing the probabilities for the classes labelled as water, clouds, shadows, ice, 
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and land for each image tile. Our land cover maps had an overall accuracy of 91%, meeting our goal 

of robustly detecting water with a user’s and producer’s accuracy >90% for different Landsat 

sensors. Lakes decrease in area during GLOFs, involving an abrupt change from the classes ‘water’ 

to ‘land’ in our land-cover maps at the pixel scale. We defined a probability >0.5 for the classes 

‘cloud’, ‘shadow’ and ‘ice’ as noise, and removed these observations from the pixel time series. For 

the remaining observations in the time series, we approximated the likelihood of change 𝑝(𝐶) by 

multiplying the likelihoods of belonging to the ‘water’ and ‘land’ class before and after each time step 

𝑖: 

𝑝(𝐶) =  ∏ 𝑃𝑖(𝑤) ∏ 𝑃𝑖(𝑙)

𝑖+3

𝑖

𝑖−1

𝑖−3

 (1) 

where 𝑃(𝑤) is the probability of belonging to class ‘water’ for three time steps before i, and 

𝑃(𝑙) is the probability of belonging to the class ‘land’ for three time steps after 𝑖. The likelihood of 

change 𝑝(𝐶) at time step 𝑖 must exceed a specified threshold 𝑇(𝐶) to qualify as a change point. We 

set the threshold as 

𝑇(𝐶)  = 0.56 (2) 

where 0.5 is the random chance of belonging to a given class, and the exponent is the 

bandwidth of the change-point algorithm. Thus, our algorithm requires only six noise-free 

observations in a time series of pixels that can have a gap of several years. Hence the algorithm is 

robust against data gaps arising from the persistence of cloud, haze, snow, ice and shadow in Landsat 

images (Supplementary Figure 7-2). We set a lower limit of detection to clusters of six pixels, i.e. 

3,750m², that simultaneously record a change event in their time series. We compared automatically 

detected with manually mapped change pixels for eleven known GLOFs, documenting >78% 

correctly detected pixels for nine cases, 30% for one case, and the case of Lake Chorabari 

(Kedernath) in 2013 remaining undetected (Veh et al., 2018). For tagging previously unknown 

GLOFs, we visually assessed Landsat images for tracks of geomorphic impact along channels and 

floodplains downstream of shrunken or disappeared water bodies. We term these GLOF impact 

tracks sediment tails, which are recorded by linear clusters of bright pixels that stand out from those 

of darker unaffected channels and valley floors. Consistent with field-based GLOF studies, we find 

that these sediment tails remained clearly visible also on Landsat images for years to decades after 

the lake outbursts. These persistent sediment tails below drained moraine-dammed lakes are thus a 

key diagnostic for detecting GLOFs in areas with longer data gaps. 
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Mapping change of meltwater areas. Abundant image noise and data gaps (Supplementary 

Figure 7-1, Supplementary Figure 7-2) in the HKKHN limit the production of annual maps of glacial 

lakes. We therefore assessed the long-term change of surface water in the HKKHN with the global 

map of surface water change (Pekel et al., 2016) (https://global-surface-water.appspot.com). Each 

pixel in this map marks the change in water occurrence intensity between two epochs (16 March 

1984 to 31 December 1999, and 1 January 2000 to 10 October 2015) extracted from all available 

Landsat images. Only pairs of months with valid observations in both epochs were considered to 

calculate the occurrence difference between epochs. The average of all paired differences yields a 

map showing the intensity of change on surface water occurrence. We refined this dataset, clipping 

it to a 3-km buffer around glaciers and excluding all pixels from mountain rivers and streams on 

glaciers, as well as misclassifications mainly in terrain-shaded areas. All remaining pixels were 

assumed to relate to glacial meltwater and therefore termed meltwater areas. The histograms in 

Figure 3-2a show the full distribution of pixels within each basin where meltwater occurred more 

(1% to 100%), less frequent (-100% to -1%), or remained invariant (0) between the two epochs. 

Outburst parameters of GLOF inventories. Our inventory on documented GLOFs contains 

cases with reported dates (day, year or specific period), location and, if available, damage. Following 

our visual image interpretation, some previously reported GLOFs, e.g. from Lake Kabache (Ives et 

al., 2010) or Lake Jialongco (Liu et al., 2013) were more likely debris flows as these floods originated 

from other sources upstream, and thus excluded from our historic GLOF inventory. For newly found 

and previously documented GLOFs, we digitised the corresponding lake areas from those Landsat 

images directly pre- and post-dating the outburst using ArcMap 10.5. We used the same scheme for 

historic GLOFs in the pre-Landsat era, where we added georeferencing information from Landsat 

images to 47 declassified black-and-white spy imagery (KH-4, -7, and -9) with an approximate 

spatial resolution of 20 to 30 feet (six to nine metres; lta.cr.usgs.gov/declass_1; 

lta.cr.usgs.gov/declass_2). The empirical relationship between lake area and volume (Cook and 

Quincey, 2015) was used to estimate pre- and post-GLOF lake volumes that we scaled to total flood 

volumes from their difference. In Figure 3-3, we show first-order values from the literature; our 

estimates were used only for floods with unknown flood volume. We furthermore manually digitised 

the centreline and the footprint of GLOF impact tracks from post-event Landsat images to calculate 

the length and area of impact tracks. The data in Figure 3-3a are a subset from reported cases for 

which we had complete information on pre- and post-GLOF lake areas and the lengths of the impact 

tracks (Supplementary Table 7.1). Lake elevations were extracted from the ALOS World 3D 30m V1.1 

digital elevation model (eorc.jaxa.jp/ALOS/en/aw3d30/index.htm). 
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Differences in meltwater areas, GLOF size, and frequency. We used a one-way Bayesian 

ANOVA (which is the Bayesian variant of a t-test) to predict whether estimated (log-transformed) 

GLOF volumes differed credibly between reports predating the Landsat era (pre-1988) and after, and 

also between GLOFs documented in the Landsat era and our newly detected ones. The model 

estimates from the data the common mean over all groups of a nominal predictor xi, and deviations 

from this common mean for each group. Our model setup had a normally distributed metric output 

(GLOF volume) 𝑦~𝒩(𝜇𝑖 , 𝜎−2) with mean 𝜇𝑖 = 𝑎0 + 𝑎[𝑥𝑖] and precision 𝜎−2, where 𝜎~𝒰(1,10) is 

uniformly distributed, and i is a group index. We set the hyperparameter 𝑎0~𝒩(0,0.001) and 

similarly assumed normal distributions for the group weights 𝑎 ~ 𝒩(0, 𝜎𝑖
−2) with 𝜎𝑖 being gamma 

distributed with shape 𝑠 = 1.01005 and rate 𝑟 = 0.1005, so that it has mode = 0.1 and standard 

deviation = 10. We also used this Bayesian ANOVA to check for credible non-zero changes in 

meltwater areas (Pekel et al., 2016) (Figure 3-2). To check whether annual GLOF frequency has 

changed during the Landsat period, we used a Bayesian robust linear regression, using a t-

distributed target variable (annual GLOF frequency) to account for possible effects of outliers: 

𝑦 ~ 𝑡(𝜇, 𝜏, 𝜐), where the mean 𝜇 = 𝑏0 + 𝑏1𝑥 is a linear combination of input 𝑥 (year) with intercept 

𝑏0 ~ 𝒩(0, 10−12) and slope 𝑏1 ~ 𝒩(0, 10−12); gamma distributed precision 

𝜏 ~ Gamma(0.001,0.001) , here with equal shape and rate parameters; and 𝜐 degrees of freedom. 

Lower values of 𝜐 are more robust to outliers, emphasising the tails of the t-distribution. We found 

that using 𝜐 ∈ [0.001, 100] hardly changed the posterior of the regression slope 𝑏1. We numerically 

approximated all posterior distributions with a Markov Chain Monte Carlo sampling scheme 

implemented in the JAGS language (implemented in the package ‘rjags’ in the statistical 

programming software R) with three parallel chains of 100,000 iterations and a burn-in of 1,000 

steps, and report here for the converged chains only the most relevant posterior distributions and 

their 95% highest density intervals. 
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Sustainable development in the Himalayan region largely 

depends on how glaciers respond to atmospheric warming 

(Kraaijenbrink et al., 2017). Meltwater lakes have grown in size 

and number in past decades (Nie et al., 2017), and raised widely 

publicised concerns about more frequent, potentially 

destructive glacier lake outburst floods (GLOFs) (Harrison et al., 

2018). More than 5,500 meltwater lakes dot the Himalayas 

today, and their number could nearly triple if glaciers 

disappeared. Yet regional projections of future flood hazards 

largely ignore the role of GLOFs. We use a Bayesian extreme-

value model to estimate a current 100-year GLOF peak 

discharge of 20,600+2,200/–2,300 m³ s-1 in the greater Himalayan 

region, drawing on 0.3 trillion scenarios of likely dam-breach 

rates and outburst volumes. The GLOF hazard in terms of this 

return level could double to 41,700+5,500/–4,700 m³s-1 on average 

in the worst-case scenario of completely ice-free Himalayas, and 

even triple in the Karakoram mountains. We conclude that 

glacier melt alone could raise the risk from Himalayan GLOFs 

two- to threefold, even if the annual GLOF rate, vulnerability, 

and exposure were to remain unchanged. 
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4.1. Main article 

Monsoonal floods are amongst the most destructive natural disasters in the Himalayas, and 

put the livelihoods of 240 million people at risk (Wester et al., 2019). Regional projections for the 

Indus, Ganges, and Brahmaputra rivers that drain most of the mountain belt, hold that flood 

frequencies will rise noticeably in the 21st century (Hirabayashi et al., 2013; Wijngaard et al., 2017). 

Such prognoses have largely disregarded episodic but potentially destructive floods that arise from 

the sudden emptying of meltwater lakes in Himalayan headwaters. In the past, such glacier lake 

outburst floods (GLOFs) have had discharges that surpassed hydro-meteorological discharges by 

orders of magnitude (Cenderelli and Wohl, 2001; Cook et al., 2018; Osti and Egashira, 2009). Lakes 

dammed by glacier moraines are particularly susceptible to outburst, triggered by ice or debris 

falling into the lake, strong earthquake shaking, internal piping or overtopping waves that exceed 

the shear resistance of the dam (Richardson and Reynolds, 2000). These triggers mostly happen 

unrecorded in remote terrain, eroding the impounding barriers within minutes to hours, and 

releasing sediment-laden floods that may travel >100 km downstream (Richardson and Reynolds, 

2000). With little to no warning, communities and infrastructure downstream are often unprepared, 

and suffer loss of human lives and livestock, and damage to roads, buildings, and hydropower 

facilities (Allen et al., 2016; Watanabe and Rothacher, 1996). An objective and reproducible hazard 

assessment of such dam-break floods is key to human safety and sustainable development, and 

repeatedly emphasised in research and media coverage of atmospheric warming, dwindling glaciers, 

and growing meltwater lakes. GLOFs have gained growing attention in the Himalayas (Harrison et 

al., 2018; Nie et al., 2018), where these disasters have had the highest death toll worldwide (Carrivick 

and Tweed, 2016). Whether lake outbursts will become more frequent with atmospheric warming 

remains an open question, however. A global temperature rise of 1.5 °C could melt half of the 

Himalayan glacier mass until the end of the 21st century (Kraaijenbrink et al., 2017). Hence the 

thousands of Himalayan glacier lakes today (Nie et al., 2017) are likely to increase in number as 

presently ice-covered basins gradually become exposed and fill with meltwater (Linsbauer et al., 

2016). Yet the average rate of GLOFs in the greater Himalayan region has remained unchanged in 

the past three decades (Veh et al., 2019), showing that rapid growth of glacier lakes alone is an 

unsuitable predictor of GLOF activity. This recognition reveals little about the current Himalayan 

GLOF hazard, let alone how this may change in the future. The high alpine conditions limit detailed 

fieldwork such that researchers have inferred GLOF characteristics mainly from the geometry of ice 

and moraine dams, the probability of avalanches or landslides entering a lake, or the water volumes 

released by outbursts (Emmer and Vilímek, 2013; Fujita et al., 2013; X. Wang et al., 2012). 

Increasingly detailed digital topographic data and satellite imagery allow measuring these variables, 



Current and future hazard of Himalayan meltwater floods 

57 

 

but ranking key diagnostics for GLOF hazard appraisals has followed no common standard (GAPHAZ, 

2017). While most research has been concerned with identifying glacier lakes that are most prone to 

outburst, we address instead the immediate physical consequence in terms of peak discharge Qp [m3 

s–1]. Guided by work on earthquakes, landslides, wildfires or floods, we express GLOF hazard using 

the frequency and magnitude of Qp in a given area and period. We predict average return periods of 

Qp from 0.3 trillion scenarios of physically plausible dam-breach rates and meltwater volumes 

released for glacier lakes in the greater Himalayan region. This number of simulations ensures that 

we have enough samples for fitting an extreme-value distribution to the simulated range of Qp for 

each lake. Taking into account varying GLOF frequencies, we stack these simulations to predict GLOF 

hazard in terms of the 100-year peak discharge Qp100 for both the contemporary lake cover and the 

worst-case scenario of completely ice-free Himalayas (Methods). 

We apply this simulation to the greater Himalayan region, including the mountain ranges of 

the Himalayas, Hindu Kush, Karakoram, Nyainqentanglha, and Hengduan Shan (Figure 4-1). From 

a manually mapped lake inventory (Zhang et al., 2015) and high-resolution maps of surface water 

(Pekel et al., 2016), we acquired a sample of 5,565 meltwater lakes >0.02 km² within 3 km of glacier 

margins between 2009 and 2015 (Methods). These lakes cover ~724 km², and are largest in the 

Eastern Himalayas and the Hengduan Shan (Figure 4-1). The ongoing shrinkage of >45,000 glaciers 

(Arendt et al., 2015) in these mountains may form new lakes where cirques, bedrock hollows, and 

Figure 4-1: Present and projected future glacier lakes in the Himalayas. a, Size of pie charts is scaled to the 

summed area of present and projected lakes within 3 km of glaciers (Arendt et al., 2015) in 1° × 1° bins for the 

worst-case scenario of completely ice-free Himalayas. b, Location of the Himalayas between the Indian 

subcontinent and the Tibetan Plateau. c, Histogram of present and projected glacier-lake areas. 
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overdeepenings from subglacial erosion trap meltwater. We modelled the location and maximum 

size of such future lakes by subtracting the estimated ice thickness of all Himalayan glaciers >0.4 

km² from digital ice-elevation data (Methods). We consider the worst case scenario, in which all 

presently ice-covered depressions fill to the brim with water in the future, which could form nearly 

9,500 new lakes >0.02 km² that could store up to 123 km³ of water in total. A completely ice-free 

greater Himalayan region might have three times more lakes covering five times more area than at 

present, and these projected lakes could grow largest in the Karakoram, Western, and Central 

Himalayas (Figure 4-1). 

We used a physically motivated model to predict Qp from the product of flood volume and 

dam-breach rate η (Supplementary Figure 7-4). Using data of 63 dam breaks from a wide range of 

topographic settings, we ran a robust Bayesian regression to obtain credible distributions of Qp for 

each present or future lake in our study region. We calculated flood volumes for each meter drop in 

lake level and used the predictive posterior to compute Qp for 100 physically plausible breach rates, 

deriving 105-108 posterior samples of Qp for each lake. Thus predicted peak discharges span more 

than six orders of magnitude (Figure 4-2). Based on a mean posterior rate of 1.26 GLOFs yr-1 over 

the past three decades (Veh et al., 2019), we estimate a contemporary Qp100 of 20,500+2,200/–2,300 m³ 

s-1 (Supplementary Table 7.3) across all mountain ranges. Regionally differing GLOF rates cause 

variation in Qp100 (Figure 4-3). Correcting for this variation, we can explore how—for a fixed 

frequency—GLOF hazard changes as function of lake-size distribution (Figure 4-4): we find that, for 

Figure 4-2: Frequency densities of simulated GLOF peak discharge Qp for present and future 

Himalayan meltwater lakes. Colour-coded numbers are numbers of present lakes (blue), projected lakes 

(orange), and the pooled estimate of present and projected lakes (dark orchid) in a, the entire study area and 

b-h, its seven subregions. Black ticks are 15 reported estimates of Qp from moraine-dammed lakes in the 

study area since 1935. 
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example, GLOF hazard in the Eastern Himalayas, which currently have most lakes and the highest 

GLOF activity in the past three decades (Veh et al., 2019), is more than 40% higher than the overall 

estimate. In contrast, the Western Himalayas had only one known outburst from moraine-dammed 

lakes in the past 30 years, while the rate-adjusted Qp100 there is still about 40% below that of the 

overall study area. Assuming that the annual GLOF rate remains constant, the changing size 

distribution of meltwater lakes in an ice-free scenario (and disregarding all present lakes) alone 

could raise Qp100 to 41,800+5,500/–4,700 m³ s-1, essentially doubling the current GLOF hazard. If all 

current lakes survived until all Himalayan glaciers were gone, Qp100 would lie between these two 

end-member scenarios, though still at about 150% of the current estimate (Supplementary Table 

7.3). All these projected changes in Qp100 involve the highest increase in GLOF peak discharges in the 

Karakoram mountains (Figure 4-2, Figure 4-3). 

We offer a consistent and reproducible estimate of present and future GLOF hazard in the 

Himalayas. Our Bayesian prediction of Qp explores the parameter space of plausible breach depths, 

breach rates, and associated flood volumes for any given lake, with up to hundreds of millions of 

outburst scenarios per lake. Thus predicted peak discharge allow a flexible and extendable hazard 

assessment (Rounce et al., 2016) that can accommodate changes in mean annual GLOF rates. 

Assuming that lakes will occupy all available topographic niches in ice-free Himalayas, our results 

Figure 4-3: Present and future 100-year peak discharges from GLOFs in the greater Himalayan region. 

Circles on map are present meltwater lakes with colours and radii scaled to the modes of the predicted 

distributions of Qp for each lake. Insets show return periods of GLOF peak discharge for the entire study area 

(lower left) and its seven subregions. Curves are estimated GLOF return periods and numbers are the 100-year 

flood discharge for present lakes (blue) and projected future lakes (grey), assuming that the current GLOF rate 

per region (brown) remains unchanged. Thick lines are means of 200 simulations (thin lines) drawing on 

sampled time series of 10,000 years each. Black ticks are average return periods estimated for historic GLOFs 

since 1935. 
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show the upper physical limit to future GLOF hazards. We identify the Hindu Kush, Karakoram, the 

Nyainqentanglha, and Hengduan Shan as potential hotspots with roughly twofold increases in future 

GLOF hazard, and robustly confirm previous notions for these regions (Prakash and Nagarajan, 

2017; W. Wang et al., 2012). 

Our regional estimates of GLOF return periods are consistent with the frequency of 15 reported 

GLOF discharges since 1935 (Figure 4-3). According to our estimates, the highest (15,920 m³ s-1 from 

Lake Zhangzangbo, China, in 1981) (Xu, 1988) had an average return period of about 75 years in the 

greater Himalayan region; the second highest peak discharges of ~10,000 m³ s-1 from Sangwang Co 

(1954) and Tam Pokhari (1998) were 45-year events (Osti and Egashira, 2009). Yet reports of Qp 

rely largely on estimates from rating curves, eyewitness accounts, or measurements several 

kilometres downstream of the failing dams, thus compromising detailed, site-specific validation of 

our regional predictions. These uncertainties cause some of the scatter in the data that we based our 

model on (Supplementary Figure 7-4). However, our modelling approach explicitly propagates these 

uncertainties and robustly estimates Qp from the distribution of meltwater lake areas in the entire 

Himalayan region. In the simplest case, we can resort to using this distribution of meltwater lake 

areas as a proxy of GLOF size conditional on outburst (Supplementary Figure 7-5). Lake area and 

volume will remain key determinants of GLOF hazard, regardless of whether we use alternative 

discharge rating curves (Supplementary Figure 7-5, Supplementary Figure 7-6), more elaborate 

numerical dam-breach simulations (Westoby et al., 2015), or any other metric of flood potential 

(Fujita et al., 2013). 

Figure 4-4: Regional estimates of Qp100 as fractions of the current Qp100 in the study area. All estimates 

use a fixed mean rate of one GLOF per year to correct for regional differences in historically recorded GLOF 

frequencies (see Methods). This correction method highlights the effects of varying lake-size distributions in 

each region. 
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Clearly, not all exposed overdeepenings in ice-free Himalayas may fill completely with water. 

Especially melting debris-covered glaciers will also contribute sediment, while premature dam 

failure, siltation or seepage similarly reduce the capacity to store water. Such processes likely reduce 

our predicted Qp for shallower lakes, but contribute less to deeper lakes for which our breach 

scenarios accounted for a broader range of lake depths and flood volumes. In our simulations, all 

lake-level drops may occur equally likely, which is consistent with data from reported natural dam 

breaks (O’Connor and Beebee, 2009). To this end, we allowed for twice the range of documented 

breach rates to account for effects of failure mechanisms that may have remained unobserved. In 

our predictive model, each lake is equally likely to sudden outburst. Given more data about trigger 

and dam-failure mechanisms (GAPHAZ, 2017), our mixture model (Methods) is flexible enough to 

assign weighted outburst probabilities to the lakes. 

In summary, our estimates of Himalayan GLOF hazard are snapshots prone to change. Both 

the number of glacier lakes and the annual GLOF rate could be undetectably higher, but are 

straightforward to change in our model. We conclude that the contemporary GLOF hazard in the 

greater Himalayan region could double because of sustained glacier melt, even if average GLOF 

frequency remained unchanged (Veh et al., 2019). In consequence, GLOF risk would also double in 

warmer Himalayas even if the vulnerability and exposure of downstream communities and 

infrastructure remained constant. Given the rapidly growing population, infrastructure, and 

hydropower projects in the Himalayas (Schwanghart et al., 2016b; Wester et al., 2019), our results 

quantify to first order the purely climate-driven contribution to GLOF hazard and risk.  

Our predicted trajectories of future GLOF hazard and risk motivate a more dynamic 

assessment based on regular updates of outburst frequency and lake-size distribution. In this spirit, 

we offer a practical tool that is compatible with flood routing models, design codes, and hazard 

mitigation. Our appraisal of GLOF hazards complements projections of meteorological flood hazards 

in a warming climate for the sparsely instrumented Himalayan drainage network. Atmospheric 

warming is projected to increase mean daily and annual discharges in the Indus, Ganges, and 

Brahmaputra rivers only by few percent in this century (Lutz et al., 2014; Nepal and Shrestha, 2015), 

though the return periods for a given flood stage might drop by 50-90% in these rivers in the 21st 

century. Extreme runoff in headwaters (Wijngaard et al., 2017), and GLOFs in particular 

(Schwanghart et al., 2016b), has eluded such projections, and we show that changes to flood hazards 

and risk due to glacier melt require urgent attention in these projections. 
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4.2. Methods 

Mapping present glacier lakes. We use ‘glacier lake’ and ‘meltwater lake’ synonymously for 

water bodies fed by snow and ice within 3 km of 45,583 glaciers in seven regions defined by the 

Randolph Glacier Inventory (RGI) 5.0 (Arendt et al., 2015). We slightly modified the RGI outlines of 

the Central and Eastern Himalayas to include glaciers facing towards the Tibetan Plateau. We 

updated an inventory of 3,066 glacier lakes that were manually mapped from Landsat imagery 

between 2009 and 2011 in these regions (Zhang et al., 2015). We vectorised all water bodies >0.02 

km² that persisted for at least two months between October 2014 and 2015, as classified in a high-

resolution grid of global surface water (https://global-surface-water.appspot.com/). We excluded 

supraglacial ponds, and allowed for lakes protruding by up to 80% onto glacier boundaries, given 

that some glaciers were mapped as early as 1998. We removed water in rivers, channels, and 

floodplains with the masks from the Global River Width from Landsat (GRWL) data version 01.01 

(https://doi.org/10.5281/zenodo.1297434). The GRWL stream network mostly covers higher-order 

channels, so that we removed river water pixels and other misclassified water bodies in headwaters 

manually. 

Our automatically generated inventory contains 4,864 glacier lakes, and 76% of the 3,066 

manually mapped lakes (Zhang et al., 2015). Omission errors were largest for small lakes, and half 

of the missed lakes were <0.032 km², due to the Landsat’s sensor resolution (30 m), geometric pixel 

accuracy, mixed pixels, and natural oscillations of lake size (Supplementary Figure 7-7). Hence our 

lake inventory offers a conservative estimate of lake area. The median relative difference between 

automatically extracted and manually mapped lakes is –28%, but improves to –2% if accounting for 

half a pixel error for the manually mapped lakes (Zhang et al., 2015) (Supplementary Figure 7-7). 

We merged both inventories with the manually mapped lakes as the master, and added all non-

overlapping, automatically extracted lakes, obtaining a final set of 5,565 glacier lakes. 

Modelling future glacial overdeepenings. To estimate the size and distribution of glacier 

overdeepenings, we used gridded ice-thickness estimates from the GlabTop2 model for 16,140 

glaciers >0.4 km² (http://mountainhydrology.org/data-nature-2017/). These data are based on the 

RGI glacier outlines, SRTM topography captured in 2000, and model assumptions of basal shear 

stress and local slope (Frey et al., 2014; Linsbauer et al., 2016). By subtracting the modelled ice 

thickness from the SRTM topography from, we obtain a first-order estimate of a completely ice-free 

Himalayan landscape. We smoothed DEM artefacts in this raw bedrock topography with a 5×5 

median filter, filled all overdeepenings with a lake-fill algorithm, and thus obtained 9,871 

overdeepenings >0.02 km². Local interpolation errors and SRTM data gaps form crater-like 

depressions that grossly overestimate parts of some depressions. Hence, we derived a volume-area 
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relationship from a global sample of 49 glacier lakes (Cook and Quincey, 2015) with a Bayesian 

robust linear regression, and removed 127 depressions with volumes outside the 95% highest density 

interval, as well as those <1 m deep (Supplementary Figure 7-8). We thus identified 9,479 

depressions that could fill with meltwater in completely ice-free Himalayas. 

Estimating peak discharge. Walder and O’Connor (1997) proposed a physically motivated 

model that predicts peak discharge during natural dam failure, based on the breach rate, breach 

depth, and volume of water released. They compiled data from 63 observed natural dam breaks in 

diverse settings, and found that the largest values of Qp arise from dam breaches that fully develop 

before the lake level drops substantially. Such ‘large’ impoundments involve either large lake 

volumes relative to the breach depth or very rapid dam failure. In contrast, mountain valleys mostly 

store smaller volumes even behind high dams, so that peak discharge often occurs prior to complete 

dam incision (Walder and O’Connor, 1997). These two end members make up an asymptotic 

response of dimensionless peak discharge Qp* when plotted against the dimensionless product η of 

lake volume and breach rate (Walder and O’Connor, 1997) (Supplementary Figure 7-4). From 

equations for critical flow, Walder and O’Connor inferred a model with the two key components 

dimensionless peak discharge 𝑄𝑝
  ∗ = 𝑄𝑝𝑔−1 2⁄ ℎ−5 2⁄  and  𝜂 = 𝑉0

  ∗ 𝑘∗, where 𝑉0
  ∗ = 𝑉0ℎ−3 is the 

dimensionless flood volume, 𝑘∗ = 𝑘𝑔−1 2⁄ ℎ−1 2⁄  is the dimensionless breach rate, 𝑔 is the 

acceleration by gravity [m s-2], ℎ is the breach depth [m], and 𝑉0 is the released water volume [m³]. 

The breach rate 𝑘 [m s-1] subsumes lithologic conditions, the erodibility of the outflow channel, and 

the breach and downstream valley geometry, and has reported range of 2.5 orders of magnitude. 

The capped values of Qp* express the model’s idea that breach conditions primarily control peak 

discharge such that outflow deceleration or downstream ponding limit any further increase in 

discharge for a given breach geometry (Supplementary Figure 7-4). 

Applying this model to larger datasets requires dealing with a substantial variance of Qp* for 

a given η, and the poorly defined transition to the asymptotic behaviour at 0.6 < η < 1, where data 

density is highest (O’Connor and Beebee, 2009). We learned a Bayesian robust piecewise regression 

model from the data on 63 dam breaks to capture the uncertainties of Qp. We standardised the data 

and used a Hamiltonian Monte Carlo sampler (implemented in the STAN programming language; 

http://mc-stan.org/) with five parallel chains and 2,000 runs to produce marginal posteriors with 

effective sample sizes >4,000 each. The model has a linear trend and a constant separated by a break 

point assuming a Student t-distributed noise with 10 degrees of freedom to be robust against data 

outliers and a half-Cauchy prior on the scale parameter. Our prior on the breakpoint location was a 

truncated Gaussian  𝒩(−0.1, 0.1) on the interval [−1, 0.5] informed by ref. (Walder and O’Connor, 

1997). Having checked for convergence, we used 5,000 piecewise models from the 95% highest 

http://mc-stan.org/
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density interval (HDI) of the posterior predictive distribution to estimate Qp* for any given η of 

present and projected lakes in the Himalayas (Supplementary Figure 7-9). Values of η from single 

lakes encompass 100 physically plausible values of k based on a log-normal fit to reported breach 

rates (Walder and O’Connor, 1997), discretised breach depths h at 1-m steps and the associated flood 

volumes V0. We finally cast Qp* back into dimensional form to obtain physically plausible 

distributions of Qp for each lake. For multiple lakes in a given region, we used a mixed distribution, 

assigning equal weights 𝑤𝑖 to the posterior distribution of Qp for each lake in our inventory, under 

the constraint that ∑ 𝑤𝑖 = 1𝑛
𝑖=1 . 

To estimate the return periods of GLOF peak discharge (conditional upon lake outburst), we 

used a Bayesian Poisson-Generalised Pareto (PGB) model (Silva et al., 2017) that learns both the 

average return period of lake outbursts and their associated Qp. We assume that the annual average 

rate λ of GLOFs is Poisson distributed (and thus randomly distributed in time) with a peak discharge 

taken from a Generalised Pareto distribution with a specified lower threshold. The assumption of a 

Poisson process is largely consistent with the history of reported GLOFs from moraine-dammed 

lakes in our study area. From 38 GLOFs in the past 30 years (1988-2017; Veh et al., 2019), we 

obtained a posterior annual rate of λ = 1.26 yr-1 that we used to simulate 10,000 years of data from 

the mixed posterior predictive distribution, and to fit the PGB model with a Markov Chain Monte 

Carlo sampler implemented in the package extRemes (Gilleland and Katz, 2016) in the statistical 

programming language R. We tested the sensitivity of the predictions to varying thresholds and used 

the 80th percentiles of the data as thresholds eventually, adjusting regional estimates by the 

appropriate regional values of λ. We repeated this sampling scheme 200 times for all Himalayan 

regions, and report the median from all estimated, average return periods and their 95% HDI. By 

design of our extreme-value model, changes in frequency directly change return periods. For 

example, a doubling of GLOF frequency in a given period shortens the return period of this discharge 

level by one half. 
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5. Discussion 

Chapters 2, 3 and 4 aimed at detecting Himalayan Glacial Lake Outburst Floods (Chapter 2); 

quantifying their frequency since the late 1980s (Chapter 3); and appraising the contemporary and 

future outburst hazard from glacial lakes (Chapter 4). I summarize the core findings of these three 

research goals as follows: 

 I developed a robust algorithm to detect automatically Glacial Lake Outburst Floods (GLOFs) 

in the Himalayas and adjacent mountain belts from a time series of Landsat images. With 

this method I generated the first systematic GLOF inventory for the region from 1988-2017. 

 The method was able to more than double the existing GLOF count in the greater Himalayan 

region, and identified the southern Himalayas (mainly of Nepal and Bhutan) as a hotspot of 

GLOF activity in the past 30 years. Both overall and regional GLOF frequencies remained 

unchanged in this period despite ongoing glacier melt and growth of meltwater lakes in most 

of the study area. 

 Finally, I proposed a first objective GLOF hazard appraisal for existing and projected future 

meltwater lakes in the Himalayan region. Estimates of the 100-year GLOF discharge assign 

the highest contemporary GLOF hazard to the southern Himalayas, consistent with the 

highest GLOF rate in the past three decades in that region. Projections show that the highest 

GLOF hazard could migrate towards the Karakoram, if the large glaciers there were to 

undergo severe to complete melting in the future. 

Arguably, the unchanged GLOF frequency is an important, if not the most important, result of 

this thesis, because it questions many previous assumptions on how GLOF activity may respond to 

recently growing meltwater lakes. This counterintuitive finding that GLOF frequency has not 

changed in the past three decades, is directly relevant to my three research questions. It raises 

questions on methodological practice and validation of remotely detected cases; it is essential to 

discuss the response of GLOFs and their triggers to atmospheric warming on regional and global 

scales; and it is key input for quantifying contemporary and future GLOF hazard. In the following 

discussing, I refrain from revisiting the three research questions in sequence, but offer four questions 

that may directly follow from reading Chapters 2-4: 

 

 What are the limits of GLOF detection with Landsat images and could these affect the 

completeness of the GLOF inventory? (Chapter 5.1) 
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 Can we use satellite images to validate, but also to learn from reported and newly 

detected cases? (Chapter 5.2) 

 What are drivers of the regional GLOF pattern in the Himalayas and how does this 

pattern compare with other mountain ranges? (Chapter 5.3) 

 How robustly can this proposed framework estimate GLOF hazard? (Chapter 5.4) 

By answering each of these questions, I first chiefly give an overview to the problem and the main 

contribution from this thesis, before discussing remaining challenges and giving perspectives for 

future research. 

 

5.1. Advances and challenges from a Landsat-based GLOF inventory 

The finding that GLOF frequency remained unchanged in the past 30 years rests on the 

assumption that the change-point algorithm I used does not systematically miss GLOFs by a large 

number, and hence does not underestimate their distribution in time. Chapters 2 and 3 repeatedly 

stress the robustness of this algorithm, so that I offer here more supportive background. 

 

5.1.1. Quantity and quality of Landsat images 

Reliably detecting changes of glacial lakes, and hence outburst floods, in the Himalayas has 

the “difficult[y] to obtain images covering the whole study area in a given year due to the highly 

frequent cloud cover across the region” (Nie et al., 2017). Similar to other studies, I only used Landsat 

imagery outside of the monsoon season (September to November) to increase the chances for 

analysing images with low snow and ice cover in winter, or cloud cover during monsoon in spring 

and summer (Maharjan et al., 2018; Nie et al., 2017). Only four of 27 historical GLOFs with recorded 

dates happened outside of the monsoon season (Figure 5-1; Nie et al., 2018), so that the next 

available, cloud-free Landsat image after an outburst may come, in some cases, more than a year 

later. Yet these cases were robustly detected nevertheless. I emphasize that I designed the algorithm 

specifically to bridge data gaps such that it requires only six noise-free observations in a time series 

to detect shrinking water bodies. Supplementary Figure 7-2 shows that the algorithm successfully 

extracted 20 of the 22 newly detected GLOFs in the monsoon season, during which there were no 
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useful Landsat images. Furthermore, I found that 

GLOF detection neither depends on a high number 

of available pixels nor on a particularly low fraction 

of noise in the time series. Previously unknown 

GLOFs were detected in any interval in the three 

decades covered, even in the early 1990s when 

image coverage was lower and noise was higher 

than in the 21st century (Supplementary Figure 7-1; 

Supplementary Figure 7-2). Twelve of the 22 newly 

detected GLOFs occurred before 1998, and for that 

period I could use only Landsat 5 imagery. 

Although two Landsat sensors have been operating 

simultaneously since 1999 and thus have been 

offering a tighter coverage, I could not find any 

possibly commensurate increase in detected 

GLOFs. More than half of the newly detected GLOF traces had >50% noise in the images time series, 

and two cases even had >70% image noise. In six cases, the algorithm detected GLOFs over data 

gaps of more than two years (Figure 3-4, Supplementary Table 7.2). The Nyainqentanglha Mountains 

had the least available data and highest noise ratio, but the algorithm successfully detected the 

known cases from Tsho Ga and Ranzeria Co together with six previously unknown cases 

nevertheless. 

 

5.1.2. Limits of detection 

I had given ample thought to design the change-point-algorithm with reproducible and 

validated rules, but different steps of image processing cannot circumvent some remaining caveats. 

One of these issues concerns image co-registration and re-projection. Landsat images offer a high 

geo-registration accuracy of less than half a pixel (<12m) radial root mean square error (USGS, 

2018). But given the extent of my study area, my selection of Landsat images spanned six UTM zones, 

so that re-projection into one coordinate system was inevitable. This procedure can cause smoothing 

of edges and pixel shifts in Landsat images, plausibly adding to image noise at the shore lines of 

some lakes. I found that such spurious changes were not wider than a pixel, and that these changes 

contributed most to the false-positive ratio of the change-point algorithm (Table 2.6). I can rule out 

misidentified cases arising solely from this issue, because I visually cross-checked all change pixels 

in question for sediment tails downstream, regardless of how likely their change was. Another 

Figure 5-1: Seasonal frequencies of historical 

GLOFs in the Himalayas labelled with the 

number of cases per month. Adapted from Nie et 

al. (2018). 
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approach to enhance confidence of true land cover change over image artefacts is to set a minimum 

area above which a change is regarded credible. I chose a threshold of 0.00375 km² or equivalently, 

six Landsat pixels, which is below most previous mapping exercises with Landsat images (Table 1.1), 

and allowed for detecting GLOFs with volumes below the smallest historic cases (Figure 3-3). 

Smaller outbursts could remain hidden in noise, unless no sediment tails appeared 

downstream of the lakes. I visually assessed Landsat or Google Earth images for such impact tracks, 

which involve well-documented signs of incision, reworking, and deposition of sediments in river 

channels (Cenderelli and Wohl, 2003; Cook et al., 2018; Kershaw et al., 2005). These traces of 

geomorphic impact remain visible on the Landsat images for years to decades after the lake 

outbursts. Indeed, many sediment tails from newly detected GLOFs dating back to the 1990s are still 

Figure 5-2: Geomorphic evidence from GLOFs. a, Debris fan downstream of Gongbatongsha Tsho and 

further bank erosion and landslides along the channel downstream during and after the GLOF in July 2016. 

Image is from 24 Oct 2016. b, Debris fan deposited by a newly detected GLOF in 1996 (ID5), remaining visible 

in the image from 5 Oct 2011. c, Debris fan from a GLOF in tributary valley (1992; ID5) entering the trunk valley 

and damming a lake upstream. Image is captured 18 years later on 9 Nov 2010. All images are courtesy of 

Google LLC. 
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present in recent satellite images (Figure 5-2). However, I can envisage three plausible cases for 

undetected GLOF tracks, assuming that the released flood volume (or equivalently the shrunken lake 

area) is below the resolution of my algorithm: (1) the first few kilometres downstream of a breached 

lake were already extensively reworked or active prior to the moraine-dam breach, so that erosion 

and deposition from the new flood pulse would not become apparent as a distinct change in contrast 

in satellite images; (2) the breach geometry favoured a slow or gradual release of the water volume, 

so that flood waves had insufficient energy to overspill or erode the channel banks downstream; (3) 

the downstream channel is cut largely into bedrock, so that only minor amounts of sediment can be 

entrained or deposited along the channel reach. Yet, such scenarios are unlikely for the first 

kilometers in Himalayan river channels, where steep hillslopes add debris to confined valley floors, 

promoting high flow depths and velocities for the released water masses (Korup and Tweed, 2007). 

The 2016 GLOF from Gongbatongsha Tsho, Nepal, for example, had the smallest reported flood 

volume (1.1 × 105 m3), but caused bank erosion, landsliding, and an increase of the mean active 

channel width from 29.5 ± 3 m to 41.3 ± 3 m in the river over >40 km (Cook et al., 2018). My 

algorithm could successfully map this event from Landsat images (Figure 5-2a). Where flood waves 

enter alluviated reaches, GLOF sediments disperse rapidly and form large and highly reflective debris 

fans that clearly stand out from older deposits (Figure 5-2b,c).  

Given all these diagnostics of algorithm performance and visual image interpretation, how 

complete is this updated GLOF inventory then? Only the GLOF from Kedarnath, India, in 2013 (Allen 

et al., 2016; Das et al., 2015) remained undetected, since the lake filled and burst out during a 

persistent period of cloud cover (Figure 2-11). Given 10 out of 11 successfully detected test cases, I 

assume that my inventory could roughly miss 10% of all GLOFs in the greater Himalayan region 

during the past three decades, but a more detailed estimate of missed cases remains elusive. Clearly, 

a complete GLOF inventory is beyond reach, and the demand for such an inventory cannot 

circumvent the need for defining a minimum threshold in terms of what qualifies as a GLOF. 

Nonetheless, I can warrant that my inventory is systematic and consistent above the chosen 

thresholds, and based on objectively reproducible and validated rules. Even if accepting that a 

complete GLOF inventory is beyond reach, using these simple rules allowed me to more than double 

the previously known GLOF count in the study region despite many years of satellite-based enquiry 

into this cryospheric hazard. 

 

5.1.3. The minimum size of a GLOF from a hazard perspective 

Discussing potential limits of detection is not merely a methodological detail, but directly 

linked to question of what is the smallest GLOFs we should worry about. Arbitrary lower size 
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thresholds will apply to any detection or mapping method, though practical applications would 

mostly be interested in the minimum size of GLOFs that we need to detect because of their hazard 

potential or geomorphic work. The literature reveals no key descriptors of GLOF sources, such as 

lake area, volume, depth, peak discharge or flood volume, which are part of the formal definition of 

GLOFs. For example, Emmer (2018) stated that GLOFs “describe a sudden release of (part of the) 

water retained in a glacial lake, irrespective of the cause (trigger), mechanism (dam failure or dam 

overtopping) and glacial lake subtype involved”. Figure 3-3 points at the possibility that it was most 

likely a combination of geomorphic impact and the people affected that motivated reports on GLOFs. 

Thus, damaging flows were recorded preferentially, whereas other events may have been noticed 

but not documented. The impact tracks from historic cases had a median length of 32 km and flood 

volumes >5 × 106 m³ (Figure 3-3), which might explain why researchers prioritised large, and in 

particular rapidly growing, lakes in hazard appraisals (Bolch et al., 2011; Prakash and Nagarajan, 

2017; Rounce et al., 2017). However, one important lesson from the Kedarnath disaster in 2013 is 

that Nie et al. (2018) called for considering a wider range of GLOF sizes, specifically lakes >0.05 km², 

in hazard appraisals “given that considerable damages could also be caused by the outburst of smaller 

lakes”. Sticking to this threshold, however, would mean to ignore some 78% (or 23% of the total 

area) of glacial lakes in the Himalayas today (Figure 1-3, Maharjan et al., 2018). This threshold would 

further miss the GLOF from Gongbatongsha Tsho in 2016, which “destroy[ed] the intake dam of a 

hydropower project, the Araniko highway, and numerous buildings” (Cook et al., 2018). This case, 

together with ten newly detected GLOFs with flood volumes of the same order of magnitude, 

demonstrates that hazard assessment must not rely on large and destructive cases only. In this 

thesis, I contributed to quantify the frequency of lower GLOF magnitudes, which will improve hazard 

assessment, at least on regional scales. Half of the GLOFs–both in the newly and the complete historic 

inventory–had estimated flood volumes of <106 m³ and may be at the lower end of potentially 

damaging events (Figure 3-3, Supplementary Table 7.1, Supplementary Table 7.2). Data on these 

smaller and commensurately more frequent flows make hazard appraisal more objective, especially 

in that the data might help us to learn more about the differences between damaging on non-

damaging GLOFs.  
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5.2. Validating and extracting key diagnostics of GLOFs 

5.2.1. Distinguishing GLOFs from other types of flow 

Beyond tracing glacial lake changes and their outbursts, time series of satellite imagery can 

assist in validating historic cases with unknown or debated GLOF sources. In the Himalayas, large 

debris flows or flash floods have often been mistaken for GLOFs (and vice versa) (Nie et al., 2018), 

because these flows share similar characteristics such as sediment concentration and flow velocities. 

Cui et al. (2010) inferred from 18 historical GLOFs in Tibet that “the general, sequential evolution of 

the flows can be described as from proximal GLOFs, to sediment-laden streamflow, to 

hyperconcentrated flow, to non-cohesive debris flow (viscous or cohesive debris flow only if sufficient 

fine sediment is present), and then, distally, back to hyperconcentrated flow and sediment-laden 

streamflow as sediment is progressively deposited”. This spectrum of flows depends on the 

(changing) proportion of sediments in the flows, which in turn affects flow velocity, sediment 

transport capacity, and channel incision and aggradation (Coussot and Meunier, 1996). Previous 

studies thus may have misinterpreted the origin of the flood, if solely relying to field visits several 

kilometres downstream from the source. Such an example are two debris flows in Poiqu River basin, 

China, which Chen et al. (2007) regarded as GLOFs: “On 23 May and 29 June, 2002, two large-scale 

Figure 5-3: Landsat images of the Jialongco debris flow before 

the event (upper image) and after the event (lower image). Arrows 

and ellipsis have the same position in both images. The debris flow 

flushed a gully from the upper left towards the lower right corner of the 

image. Sediment deposition and reworking along the channel clarify 

that this case is no GLOF from the lake in question. 
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debris flows have burst in Chongdui gully and brought tremendous disasters to the hydropower 

station, the China–Nepal Highway, to communication establishment, and so on, resulting in economic 

loss above 7.5 million RMB. The two debris flows might have been caused by glacier thawing and 

moraine dam failure”. Though widely cited later on (Ives et al., 2010; Liu et al., 2013; J.-J. Liu et al., 

2014; Nie et al., 2018), I noticed that Lake Jialongco, the purported source lake of these two cases, 

has never been investigated in more detail. Landsat images show that the debris was already 

reworked and deposited upstream, while the moraine dam appears to be intact in the first image 

following the reported flood date (Figure 5-3). I can maintain that the present inventory of previously 

reported and newly detected cases holds solely cases where impact tracks give direct links to their 

sources. 

 

5.2.2. Flood volumes 

Some historical GLOFs have motivated detailed field work to recalculate flood volumes and 

flow stages (Byers et al., 2018; Cenderelli and Wohl, 2003; Cenderelli and Wohl, 2001; Lamsal et al., 

2015), especially in ungauged headwater basins. What complicates the issue is that data access to 

long-term gauging data from Himalayan rivers is often proprietary. Making such data public could 

aid validating better the discharge of both previously known and newly detected GLOFs. Most 

historical estimates of flood volumes, and some newly detected cases in particular, are likely 

conservative minima, because triggers such as snow and ice avalanches, rockfalls or debris flows can 

add sediment to the released water volume right at the source, while additional sediments become 

entrained along the river channel via flow bulking (Byers et al., 2018; Cook et al., 2018; Kershaw et 

al., 2005). Estimating the contribution of these triggering processes to the total flood volumes is 

challenging, and the net flow bulking is next to impossible to derive from remote sensing images 

alone, especially if noise-free images are captured months after the incident. Without these data, we 

have to resort to the rough information contained in the bright sediment tails in post-event images, 

indicating only above-average flow widths, though without any further robust information on flood 

volume, flow depth or peak discharge.  

 

5.2.3. Impact tracks and geomorphic work 

The digitized impact tracks and lake surfaces provide readily available estimates of flow 

runout and the potential energy released. Inferring empirical relationships from these two 

parameters has been a key element in downstream risk analyses (Hungr, 1995; Rickenmann, 1999), 

but even the accuracy of this simple method suffers from the few available measured field data of 

GLOFs. While runout depends on local channel morphology, the mapped downstream reaches at 
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least provide an envelope estimate of the channel length that is impacted visibly as a function of 

outburst volume. We could in principle apply the same modeling approach that I used for learning 

Qp from η to predict runout of flood volumes and hence offer a practical tool to estimate GLOF risk 

for the many lake volumes stored in inaccessible terrain.  

The 22 new compiled impact tracks together with the compiled historical ones also inform the 

broader picture of geomorphic work by GLOFs. Initial work from Korup and Tweed (2007) on three 

large historic GLOFs (Nare, Dig Tsho and Tam Pokhari) suggests that the farthest active valley-floor 

widening was visible at 13 km downstream. I note that seven newly detected GLOFs had widened 

active channels over longer distances, while the 2009 GLOF from Tsho Ga (China) even left 

geomorphic traces over >70 km. In the Cordillera Blanca, only 5 of 29 reported GLOFs had channel 

impacts beyond 10 km downstream (Emmer, 2017), which was exceeded by 57% of all Himalayan 

cases since 1988. It is vital to test whether the apparent larger runout distances in the Himalayas are 

a consequence from larger flood volumes or from steeper channels. Our understanding of how far 

GLOFs can notably change channels will need more attention in the future, ideally to propose a 

metric of effective channel impact. A recent hypothesis–inferred from a single outburst flood at 

Gongbatongsha Tsho in 2016 (Figure 5-2a)–even states that “GLOF impacts far exceed those of the 

annual summer monsoon, and GLOFs may dominate fluvial erosion and channel-hillslope coupling 

many tens of kilometers downstream of glaciated areas. Long-term valley evolution in these regions 

may therefore be driven by GLOF frequency and magnitude, rather than by precipitation” (Cook et 

al., 2018). This notion is provocative, and perhaps in line with other case studies emphasizing the 

high geomorphic work by Holocene megafloods (Lang et al., 2013; Montgomery et al., 2004), but it 

is also testable. Quantifying the net mass balance of GLOFs in terms of budgeting sediment 

mobilization and export from river channels would ideally build on detailed pre-and post-event 

DEMs of the valley floor (Jacquet et al., 2017). Such repeat measurements will ultimately connect the 

geomorphologic response of GLOFs with hazard assessment, given that flood-induced changes in the 

channel bed can alter flow capacity and hence, potential inundation areas downstream (Slater et al., 

2015). 

 

5.3. Drivers of GLOF frequency on global and regional scales 

Many studies issued largely qualitative or vague predictions or concerns about trends in 

GLOF occurrence, and rarely provided statistical tests to their conclusions. This is not only the case 

in the Himalayas, however. For this mountain belt, Nie et al. (2018) concluded without any statistical 

support “that GLOF hazards increased from 1975 to 1995 and slightly decreased from 1995 to 2015” 

(Figure 1-5). Subjective assertions such as a global “apparent decline in the number of glacier floods 
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recorded from the mid-1990s onwards” (Carrivick and Tweed, 2016) or an “apparent increase in 

frequency of outbursts in the extratropical Andes” (Iribarren Anacona et al., 2015) are common in 

recent work, but rarely supported by objective or formal proof. A wavelet analysis by Harrison et al. 

(2018) on a global GLOF record found “that GLOF frequency increased dramatically and significantly 

around 1930 globally and between 1930 and 1960 regionally”, but also conceded that “the statistics 

of small numbers affect these regional, time-resolved records”. In this thesis, I learned trends of GLOF 

frequency using a Bayesian regression of the annual GLOF count versus time. The Bayesian approach 

is capable of dealing with a small sample size, and thus directly addresses one caveat by Harrison et 

al. (2018). I selected a t-distributed noise in this model to account for possible outliers in the data. 

Thus my trend estimates are robust with respect to individual years of very high or very low GLOF 

abundance, or potentially missed cases. The posterior slope distributions of the regression models 

are centered on zero, and this ambiguity in the model coefficient is credible evidence of an unchanged 

GLOF frequency in the Himalayas (Supplementary Figure 7-2). I found no study–neither on the 

global nor the regional scale–that has postulated an unchanged GLOF frequency. With 20 

additionally detected cases, the updated rate of 1.3 GLOFs per year on average exceeds all previous 

frequency estimates in the Himalayas. Considering GLOFs in the past three decades only, I more 

than doubled the estimate of 0.6 GLOFs yr-1 for the Western to Eastern Himalayas (Nie et al., 2018). 

The 38 Himalayan GLOFs since 1988 are as many as the 38 cases, which Harrison et al. (2018) 

collated worldwide for the same period. Considering the updated Himalayan GLOF count in global 

projections of GLOF frequencies is vital, because Harrison et al. (2018) argued that “[…] the reduction 

in global GLOF frequency after the 1970s (especially in central Asia, HKH […]) is real, because the 

contemporary reporting is likely to be nearly complete given the scientific and policy interest in glacier 

hazards from the late 20th century”. In this thesis, I maintain that the contemporary reporting is 

unlikely to be nearly complete, and that a large fraction of GLOFs has escaped attention. Such 

censoring may not be surprising, though noticeably revises our knowledge about average GLOF rates 

and trends in the greater Himalayan region, and also possibly beyond. 
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5.3.1. Comparing Himalayan with South American GLOF frequencies 

Following a detailed search in the literature, I conclude that the Himalayas had the highest 

total abundance of GLOFs worldwide in the past three decades, and this is partly due to my large 

study area. Comparing my updated inventory with published estimates hence needs to adjust GLOF 

abundance, for example, to the total number of lakes per mountain belt. Only two GLOF inventories 

have covered the past three decades and used similar geomorphic diagnostics to cater for previously 

undetected cases. These databases list five GLOFs in the Cordillera Blanca, Peru, (CB; Emmer, 2017), 

and 25 cases in the Central and Patagonian Andes, Argentina and Chile (CPA; Iribarren Anacona et 

al., 2015; Wilson et al., 2018). Compared to the total lake abundance, Himalayan lakes had the lowest 

GLOFs count: out of 451, 2,170, and 7,314 moraine-dammed lakes in the CB, the CPA, and the 

Himalayas, I compute ratios of GLOFs versus lake abundance of 1.11, 1.15, and 0.52, respectively. The 

frequency of GLOFs compared to the regional sample of glacial lakes seems twice as high in South 

America as in Central Asia, which can have at least two reasons. First, the glaciers in the CPA cover 

Figure 5-4: Glaciers, GLOFs and glacial lakes in South America. a, Glacier cover (pie charts) and glacier 

elevation change rate (red circles), highlighting the four regions mentioned in the text: CB Cordillera Blanca; CA 

Central Andes; NP Northern Patagonia; SP Southern Patagonia. b, Outburst floods from moraine-dammed lakes 

as newly detected by Wilson et al (2018) in orange and previously reported by Iribarren Anacona et al. (2015) in 

red between Southern Patagonia and the Central Andes. SPI/ NPI – Southern/ Northern Patagonian Ice Sheet, 

c, Lake area. d, Increase in lake area. Highlighted IDs are rapidly expanding lakes, discussed in the original 

publication. 

Figures a, are modified after Braun et al. (2019) and b-d, are after Wilson et al. (2018). 
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<30,000 km², so that the study region is 42% smaller than the Himalayas. Assuming a fixed rate of 

missing GLOFs from satellite images, increasing the search range for GLOFs to larger areas such as 

the Himalayas is likely to commensurately raise the number of undetected GLOFs. This omission 

error cumulates with larger study areas. Second, considering the robust performance of the change-

point algorithm, some of the regional difference in the GLOF-to-lake ratio could arise from the 

different orography, glacier cover, climate, and, hence varying response to atmospheric warming in 

the CPA. Mean annual losses of glacier masses in Southern and Northern Patagonia (− 0.79 ± 0.06 

and −0.65 ± 0.07 meters water equivalent per year [m w.e. a-1]) are larger than the estimates from 

the Nyainqentanglha and Bhutanese Himalayas (-0.62 ± 0.23 and -0.42 ± 0.20 m w.e. a−1) (Braun et 

al., 2019; Brun et al., 2017). The total number of glacial lakes in the CPA increased by 43% in the 

past three decades (Wilson et al., 2018), and hence at a much faster pace than the rate of 8% newly 

forming lakes in the Himalayas (Nie et al., 2017). South American glaciers and glacial lakes may thus 

respond more dynamically to climate change than their counterparts in the Himalayas, perhaps 

expressed in the observed higher average frequency of GLOFs per lake. Despite these differences, 

the Andes share several similarities that confirm my findings of regional GLOF drivers in the 

Himalayas (see Figure 1-2, Figure 3-2, Figure 5-4):  

1) regions with the highest glacier cover (Southern Patagonian Ice Field; Karakoram) do not 

host the most glacial lakes per unit area (Northern Patagonian Ice Field; Eastern 

Himalayas);  

2) areas with the highest glacier cover (Southern Patagonian Ice Field; Karakoram) do not 

necessarily have the highest reported GLOF abundance (Northern Patagonian Ice Field, 

Eastern Himalayas);  

3) the fastest growth in glacial lake number and areas (Northern Patagonian Ice Field; 

Eastern Himalayas) is not tied to the largest glacial mass losses (Southern Patagonian Ice 

Field; Nyainqentanglha); 

4) only two lakes in the entire CPA and three lakes in the Himalayas formed and burst out in 

the past three decades;  

5) GLOFs form local clusters (43% of all recorded cases occurred near the Northern 

Patagonian Ice Field; and 63% did in the Eastern Himalayas), while most of the remaining 

study areas had lower GLOF abundance (e.g. one in the Central Andes; one in the Western 

Himalayas). 
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5.3.2. Regional drivers for Himalayan GLOFs 

Such pronounced contrasts of lake and GLOF abundance call for a more detailed discussion on 

drivers that raise regional GLOF frequencies, while other regions seem to be more resilient to GLOFs. 

In this regard, little attention has been paid to why, for example, 39 of all 62 reported GLOFs since 

1935 originated from a set of ~2,200 moraine-dammed lakes in the Eastern Himalayas, but only one 

originated from the ~900 lakes in the Western Himalayas. Therefore, the total lake count per region 

alone appears to be a poor predictor for regional GLOF frequencies. Obviously, GLOFs must be tied 

to one or more local factors, otherwise we would expect GLOFs to occur proportional to the lake 

count per region. 

Our understanding on GLOF drivers currently hinges on the notion that “a trigger mechanism 

such as displacement wave from an ice or rock avalanche, or disintegrating ice-core within the dam is 

normally required” (Richardson and Reynolds, 2000). Yet such triggers have been rarely witnessed 

in the field, fuelling debates on outburst mechanisms for many historic cases. One prominent 

example on contesting GLOF triggers is the failure of Tam Pokhari, Nepal, in 1998, which researchers 

attribute to landslides, while eyewitnesses observed an avalanche entering the lake (Osti et al., 2011; 

Osti and Egashira, 2009). Similar uncertainty applies to the asserted rockfall-induced GLOF from 

Langmale Lake, Nepal, in 2017, because “the rockfall was not actually witnessed by anyone, partly 

because of the heavy fog that covered Saldim Peak that day” (Byers et al., 2018). Nie et al. (2018) 

detected a previously unreported GLOF from Kongyangmi La Tsho (Eastern Himalaya) in 1997 by 

comparing pairs of Landsat images. They speculated that “it is most likely that an ice avalanche 

occurred on the left side of the main glacier and that the mass movement of the ice avalanche plunged 

into the glacial lake, which triggered this GLOF event”. Indeed, steep mountain walls surround the 

source lake, but whether this necessarily warrants an ice avalanche as the most plausible trigger still 

remains conjectural. 

In the previous chapters, I refrained from speculating on triggers of specific (newly detected) 

GLOFs. Gathering information on these from satellite images remains problematic, given that 

monsoonal clouds often veil the site conditions at the time of the dam failure. Even inspection right 

after a GLOF may not readily guarantee to reveal its trigger(s): researchers visiting Lake 

Zhangzangbo three days after its breach in 1981 found blocks of floating ice in the lake, but remained 

uncertain whether these were also the remnants of a triggering ice avalanche (Xu, 1988). The 

challenge of identifying triggers will probably remain for most historic, but also future GLOFs, unless 

rock avalanches or debris flows, for example, leave clear signs of boulders entering the lakes (Byers 

et al., 2018; Hubbard et al., 2005). Given these caveats, I broaden the perspective to the regional 



Discussion 

78 

 

GLOF pattern in the following discussion instead, offering a systematic view on triggers and factors 

that could explain the regionally varying susceptibility to GLOFs. 

 

5.3.2.1. Distribution and age of glacial lakes 

A prominent concept concerning the resilience of lakes to triggers is that–with ongoing glacier 

retreat–lakes pass into a ‘non-glacial’ phase, when the distance to the parent glacier(s) increases and 

the contribution of glacial melt decreases (Emmer et al., 2016a, 2015). Today, 23% of all moraine-

dammed lakes in the Himalayas are >1 km apart from their parent glacier(s), and such “distal” or 

“unconnected” lakes had lower rates of change than lakes with contact to their parent glacier(s) in 

past decades (Khadka et al., 2018; Song et al., 2016). Given that lake areas had grown least in the 

Western Himalayas since 1990 (Figure 5-5), we may thus speculate that glacial lakes are oldest there, 

lying at farer distances from their parent glaciers, and hence being more resilient to outbursts. This 

would confirm one of the earliest notions on GLOF hazard such that outburst susceptibility decreases 

with increasing lake age: “glacier lakes, which occupy old glacier tongue basins of retreating glaciers, 

through valley glaciers and cirque glaciers with old, stabilized end-moraines formed during the 

Pleistocene period are relatively stable and outbursts less likely. On the other hand, glacier lakes which 

are in contact with an active glacier and which are dammed by unconsolidated moraines resulting 

from periods of recent glacier advances in the last 300 years, especially the last "Little Ice-Age" are 

potentially unstable and more prone for outbursts” (Grabs and Hanisch, 1993). 

The proximity to glaciers indeed seems to stimulate lake failure, not least since 16 of 22 newly 

detected GLOFs came from lakes within 300 m from their parent glaciers. Yet, the percentage of 

lakes within this distance (compared to the total regional lake count) is higher in the Western 

Himalayas (38%) than in the Eastern Himalayas (29%), where most historic outbursts occurred. 

Moreover, when and where, or if at all, this Little Ice Age has ended in the Himalayas is less clear, 

given that many glaciers in the Eastern Himalayas have remained at their maximum positions until 

today (Rowan, 2017), while others in the Karakoram are still advancing (Kääb et al., 2012). I roughly 

estimate the ages of Himalayan lakes from a sample of 341 lakes that formed between 1990 and 2015 

in the Western, Central and Eastern Himalaya (Nie et al., 2017). Given a total abundance of 4,950 

lakes in this region today, and ~14 lakes forming on average per year in this period, I would assume 

that Himalayan lakes started to spawn at least 350 years ago. Clearly, this is a minimum estimate, 

considering that anthropogenic warming may have accelerated annual meltwater and lake 
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production in recent decades (Gardelle et al., 2011). Whether the thousands of Himalayan glacial 

lakes today demand more systematic dating of their ages to appraise outburst hazard seems less 

expedient: In the Cordillera Blanca, Emmer (2017) found “no obvious pattern between the age of the 

moraine dams and the timing of the GLOFs“. There, lichenometric ages of ten breached moraine 

dams in the 20th century suggest that these moraines had been abandoned between 1400 and 1980, 

so that GLOFs can follow years to centuries after lake formation. Absolute (and particular ‘young’) 

ages of moraine dams thus remain an ambiguous predictor for GLOF frequency, not least that only 

three GLOFs in the Himalayas emerged and also burst out in the past three decades.  

 

5.3.2.2. Climate and glaciers 

Regional climate and its impact on glacier dynamics are two other factors that have been rarely 

coupled to the regional distribution of GLOFs. In general, the Himalayas act as an orographic barrier 

for the Indian Summer Monsoon, which expresses in a southeast-northwest gradient of precipitation 

(Bookhagen and Burbank, 2010). Precipitation peaks at values of >5,000 mm yr-1 at the foothills 

from the Hengduan Shan to the Eastern (Bhutanese) Himalayas, whereas the regions north of the 

range receive substantially less precipitation (Figure 5-6a). The Karakoram in the North is a 

generally cold and dry region, affected by the Westerlies. There, snowfall has the highest 

contribution to the total annual  

Figure 5-5: Glacial lake expansion in the Himalayas. Adapted from Nie et al. (2017). 
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precipitation along the mountain belt, falling mostly between December and May (Figure 5-6b, 

Maussion et al., 2014). Glaciers in the Karakoram accumulate most of their masses in this period, 

whereas glaciers in the more southern regions (Central Himalayas to Hengduan Shan) gain mass 

from the summer monsoon (June to August) (Figure 5-6g). There, warmer and more humid 

conditions in summer favor glacier ice temperatures closer to the melting point, so that these 

‘temperate’ glaciers can flow rapidly by basal sliding (Su and Shi, 2002). In contrast, glaciers in the 

Karakoram are widely considered (but rarely tested) as ‘cold-based’ glaciers, which flow less 

dynamic by ice creep (Quincey et al., 2011). A well-documented exception from this ‘rule’ are recent 

glacier surges in this region (Figure 5-7), which describe rapid increases in ice velocities driven by 

internal glacier instabilities, as opposed to clear climate signals (Rankl et al., 2014). These surges 

may have eroded moraine dams, which could explain why the Karakoram offers the lowest lake 

abundance (only 6% of all moraine-dammed lakes today), and hence only one of the lowest GLOF 

frequencies in my study region. 

The timing and magnitude of precipitation (Figure 5-6a, c-f), and associated types of glacier 

flow along the Himalayas probably contribute much, if not most, to the striking difference in GLOF 

abundance between southern and northern regions. 95% of all historical GLOFs occurred in the 

southern regions (Central Himalaya to Hengduan Shan) and mostly during spring and summer 

(Figure 5-1), coinciding with a period of both accumulation and melt of snow and ice. The glaciers in 

the Central and Eastern Himalayas have 50-75% of their area below the contemporary equilibrium 

line altitude, where ablation dominates during summer (Figure 5-7; Kraaijenbrink et al., 2017). 

Excessive melt at the glacier termini and drainage of meltwater into lakes could temporally exceed 

the shear resistance of moraine dams and promote their failure. Brittle deformation of the flowing 

glacier mass (crevasses) is visible for many clean-ice glaciers in the southern Himalayas (Xin et al., 

2008) and may enhance calving into lakes at their termini. At the same time, warm air masses during 

summer gradually thaw the frozen surfaces of lakes and moraine dams, making lakes less resilient 

to external impacts. However, this regional link between ablation and the occurrences of GLOFs only 

holds partly, given that Hindu Kush and the Hengduan Shan also have large glacier areas below the 

ELA, but little GLOF abundance. 

Figure 5-6: Precipitation, snowfall, and main accumulation period of glaciers. a, Total annual 

precipitation in the Himalayas as a product of Winter Westerlies and Indian Summer Monsoon (see 

inset); b, Contribution of snowfall to the average amount of annual precipitation. c-f, Seasonal 

precipitation. Capitals are the initials of the months. g, Classification of glacier accumulation regimes 

according to precipitation seasonality. Inset histogram shows the relative occurrence of the classes in 

the map, which refer to preferred season(s) of accumulation. h, Contribution of convective precipitation 

to the total precipitation. All panels are adapted from Maussion et al. (2014). 
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Additionally, some regions in my study area have >20% debris cover on the glacier tongues 

(Figure 5-7). Debris shields the glacier ice from atmospheric warming, so that debris-covered 

glaciers can persist at lower elevations than their clean-ice counterparts and sustain meltwater 

production over much longer time scales (Rowan et al., 2015). With ongoing atmospheric warming, 

most of debris-covered glaciers had thinned at their termini and developed supraglacial ponds. If 

glaciers had gentle slopes (<2°) and low or no flow velocities (Quincey et al., 2007), these ponds 

eventually coalesce, grow in area and deepen to large terminal lakes. Prominent examples for this 

phenomenon are Imja Tsho, Luggye Tsho or Tsho Rolpa, which all expanded by >1 km² in less than 

50 years (Komori, 2008; Sakai et al., 2000; Watanabe et al., 2009). Indeed, lakes in contact to debris-

covered glaciers grew more than unconnected lakes in all southern Himalayan regions since 2000 

(Song et al., 2017), including the Eastern Himalaya (Basnett et al., 2013), Nyainqentanglha (Song et 

al., 2016), and Hengduan Shan (Wang et al., 2017). Growing supraglacial ponds absorb up to 14 times 

more solar energy than their surrounding (Miles et al., 2018b) so that thermal erosion can undercut 

the adjacent ice and form steep cliffs (Watson et al., 2017). These could collapse into the ponds, while 

conduits between ponds have shown to pass >106 m³ water within few hours through the glacier 

(Miles et al., 2018a; Rounce et al., 2017), possibly injecting additional water into lakes at the terminus 

and trigger GLOFs. Yet whether regional debris cover is a good predictor for GLOF activity remains 

unclear: I note that less than half (14) of all 38 GLOFs in the past three decades came from debris-

covered glaciers. Regional debris cover matches with GLOF abundance in the Nepalese Himalayas, 

Figure 5-7: Glacier area and debris-covered glacier area below the Equilibrium Line Altitude (ELA). Data 

are aggregated on a 1° × 1° grid, provided in Kraaijenbrink et al. (2017); http://mountainhydrology.org/data-

nature-2017. Triangles are all 62 historic GLOFs. Surging glaciers are from Rankl et al. (2014) and Dehecq et al. 

(2019). 
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while the Central Himalayas and the Hindu Kush, for example, offer regions with higher debris cover, 

but no GLOFs (Figure 5-7). One plausible reason is that these regions mostly have land-terminating 

glaciers where the interplay of thinning, surface gradient and flow velocity has not (yet) allowed a 

lake to form at the terminal moraine (King et al., 2018). 

I had already outlined that glacial mass losses in the 21st century, expressed as average 

elevation change on glaciers, is most severe in the Western Himalayas and Nyainqentanglha (Brun 

et al., 2017; Figure 1-2). Glacier flow velocities, calculated for the same period, mimic the regional 

pattern of ice thinning (Figure 5-8): slowdown is largest in these two regions, followed by smaller 

reduction in flow speed between Western Nepal and Bhutan, while the stable or mass-gaining 

glaciers in the Karakoram show accelerated glacier flow velocities (Dehecq et al., 2019). Decreasing 

flow velocities suggest lower rates of ice transport towards the terminus, so that I would expect, in 

theory, optimal conditions for lakes to form where glaciers have become stagnant. Assuming that 

lakes grow in contact to retreating glaciers, such regions of low glacier flow velocities could be 

suitable predictors for GLOF activity. Yet, this is apparently not the case, given that glacial lakes in 

Western Himalaya, for example, grew slowest among all other regions in the main Himalayan 

mountain belt since 1990 (Figure 5-5). There, excess meltwater may have punctured moraine dams 

and impeded contemporary lake formation. In any case, this example shows that a general ‘life cycle’ 

of glacial lakes in high mountains (Emmer et al., 2016a, 2015), from glacier advance in the LIA to 

Figure 5-8: Annual glacier velocity anomalies for High Mountain Asia (2000–2017). The centre map shows 

the study area from Dehecq et al. (2019), including eight subregions with glaciers highlighted in cyan. Each 

inset shows a time series of the annual velocity anomaly (change along flow direction relative to the mean 

velocity) for each subregion. Black lines represent the median anomaly, colour bars the interquartile range 

(IQR) and coloured lines the linear trend over 2000–2017. Coverage of observations common to all years (top), 

velocity trend (middle) and velocity trend relative to the mean velocity (bottom), with 68% confidence interval, 

are reported in each inset. Dec, decade. Figure and parts of the caption adapted from Dehecq et al. (2019). 
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subsequent glacier retreat, lake formation behind moraines, and eventual catastrophic breaching is 

challenging, if not impossible to trace in the Himalayas.  

 

5.3.2.3. Regional topography and rainfall 

The topographic relief of the Himalayan mountain range constrains how far moist air masses 

can travel in altitude (Bookhagen and Burbank, 2010; Maussion et al., 2014). This orographic effect 

controls the amount of rainfall in regions where glacial lakes occur, which is vital to consider given 

that the sudden injection of rainwater has triggered lake failure elsewhere (Worni et al., 2012). 

Swath analysis along the strike of the Himalayas show that high-altitude rainfall is controlled by two 

characteristic orographic profiles (Figure 5-9A; Bookhagen and Burbank, 2010): parts of the Western 

Himalayas and the Eastern Himalayas have a one-step, i.e. more steadily rising, topography where 

most of the rainfall occurs at ~1,500-2,500 m a.s.l., and hence rarely reaches the characteristic 

elevation band for glacial lakes at 4,000-6,000 m a.s.l. (Figure 5-9B). Surprisingly, these two regions 

comprise a strongly contrasting GLOF record: the Eastern and the Western Himalaya had the highest 

and lowest historic GLOF count, respectively, so that orographic rainfall seems less appropriate to 

characterize the regional GLOF pattern. The Central Himalayas, in turn, offer a two-step topography, 

allowing moist air masses to travel beyond >4,000 m a.s.l. where glacial lakes preferentially form 

and fail (Figure 5-9C). Large proportions of rainfall in the high-mountains of Nepal occur in 

convective rainstorms (Figure 5-6h). However, my search in literature revealed no evidence that any 

historic GLOF was related to rainfall in this region. Furthermore, 17 GLOFs in the Central and 

Eastern Himalayas occurred north of the main topographic divide, where precipitation is 

substantially lower (Figure 5-9). The GLOF at Kedarnath (Das et al., 2015), lying at the transition 

from Central to Western Himalaya, is the only reliably documented rainfall-triggered GLOF in the 

Himalayas, which these swaths did not cover.  

Given the sparsely instrumented meteorological network, I here presented satellite-based 

rainfall estimates that had an original resolution of several tens of kilometres and were downscaled 

to 10 or one km resolution using statistical relationships or regional climate circulation models 

(Bookhagen and Burbank, 2010; Maussion et al., 2014). The only climate station above 5,000 m a.s.l. 

near Mount Everest (Nepal) records that 90% of the annual precipitation (~400 mm) occurs as 

rainfall between June and September. This high contribution of rainfall at these altitudes suggests 
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that–in some regions–the amount and frequency of rainfall at glacial lakes could be higher than such 

coarse-scale products may estimate. The role of rainfall as a GLOF trigger thus remains an open 

question. Nevertheless, such reanalysis data offer estimates of several climate parameters beyond 

precipitation such as temperature or heat flux at sub-daily resolution, which are vital to analyse for 

anomalies in the days prior to historic GLOFs. 

The 19 reported GLOFs in the Central Himalayas could possibly relate to a zone of world’s 

highest relief, offering detachment zones with high potential energy, so that mass flows could enter 

lakes despite long runout distances. Glacier ice entrained by rock avalanches can reduce bulk friction, 

and even increase flow extents (Schneider et al., 2011). Such a case occurred at Mount Hualcán 

(Cordillera Blanca) in 2010, when a rock-ice avalanche (~5 × 105 m³) dropped over ~1,000 m 

vertically into Laguna 513, causing a flood wave ~25 m high (Carey et al., 2012; Schneider et al., 

2014). Two newly detected GLOFs in the Nyainqentanglha and Eastern Himalaya showed bright 

Figure 5-9: Rainfall, relief, and topography in the Himalayas. A, Location of numbered, 50 km 

wide and 300 km long swaths, representative for the two end-members from the distribution of 

topography, relief, and rainfall. B) One-step topography with steadily rising topographic profile results 

in a single high-amount rainfall peak (white swaths in A). Orange lines of relief are the variation of 

elevation within a 5 km radius. C) Two-step morphology coinciding with the Lesser Himalaya units 

and Higher (Greater) Himalaya forming two rainfall peaks (grey swaths in A). Figure adapted from 

Bookhagen and Burbank (2010). 
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sediment tails entering the lakes in the post-event images, suggesting that debris flows could also 

have contributed to lake failure in some cases. Contrary to this theory, the Eastern Himalayas have 

lower relief than the Central Himalayas, but even higher GLOF abundance, so that relief seems to be 

a rather vague predictor for the regional GLOF pattern. 

 

5.3.2.4. Earthquakes 

Apart from atmospheric triggers such as rainfall, earthquakes may play a dominant role in 

releasing such mass movements. At least one historic GLOF in Patagonia in 2000 (Harrison et al., 

2006) and five historic GLOFs in the Cordillera Blanca–one in 1725 and four in 1970 (Emmer, 2017; 

Lliboutry et al., 1977)–have been attributed to a seismic origin, either directly by reduced cohesion 

in moraine dams or indirectly by landslides or rockfalls entering lakes. In the Nepal Himalaya, valley 

infills at Pokhara have likely preserved repeated catastrophic GLOFs following three magnitude M8 

earthquakes in ~1100, 1255, and 1344 AD (Schwanghart et al., 2016a). It is hence surprising that 

earthquakes have been rarely regarded as a potential trigger for Himalayan GLOFs in the literature. 

Exceptions confirm this rule, and Gurung et al. (2017) contemplate that the 2015 Lemthang Tsho 

GLOF (Bhutan) could relate to a M5.1 earthquake that occurred on the same day at an epicentral 

distance and depth of 187 km and 27 km, respectively. They state that its “role […] is difficult to 

confirm or discount in absence of first-hand information, but seems unlikely due to weak intensity of 

shaking”. They conclude that, with “the region being seismically very active zone, the role of 

earthquake as a trigger of GLOF cannot be overlooked”. The failure of Sabai Tsho in the Nepal 

Himalayas has been attributed to co-seismic mass movements into the lake, since at least four 

earthquakes with magnitudes from 4.1 to 5.6 were recorded at the same day within 15 km from the 

lake (Osti et al., 2011). 

At least 6,694 discrete earthquake shocks with M>4 and depths <150 km had their epicentres 

in a 150 km wide corridor along my study area between 1985 and 2017 (Figure 5-10a). The regional 

pattern of earthquakes, however, only partly complies with GLOF abundance: While the GLOF 

cluster in the Nepalese Himalayas is densely covered with seismic records, such signals are missing 

(or were at least not recorded) in the Bhutanese Himalayas, where GLOF abundance is highest. I also 

note frequent earthquake tremors in the Central Himalayas and the regions north of it, where only 

three GLOFs occurred in total (including the rainfall-triggered GLOF at Kedarnath in 2013). 
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A more detailed look at the seismic record shows that at least 748 earthquakes occurred within 

150 km of newly detected and historic GLOFs, and at most two years before the outbursts occurred 

(Figure 5-10b). Without further analysis of the associated local ground acceleration or displacement, 

I hypothesise that these shocks could at least have preconditioned some triggers of the observed 

GLOFs that were recorded days, months or years later. Many smaller earthquakes (M~4) occurred 

less than 100 days before the GLOFs, but mostly at distances >50 km from the source lakes. Other 

Figure 5-10: Earthquakes in the Himalayas (1985-2017). a, Epicenters with depths <150 km and magnitudes >4 

in a 150-km buffer around the study region (brown). Data from USGS 

(https://earthquake.usgs.gov/earthquakes/search; accessed 09 March 2019) b, Distance of GLOFs to earthquake 

epicenters in space and time. Bubbles are epicenters within 150 km (disregarding earthquake depth) and less than 

two years before newly detected (red) and previously known (blue) GLOFs. Grey color gradient highlights 

earthquakes that occurred both spatially and temporally close to the GLOFs. Large earthquakes such as the 

Ghorka earthquake in Nepal 2015 form clusters because of aftershocks. 

https://earthquake.usgs.gov/earthquakes/search
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GLOFs (ID12 and 20) had sequences of shocks of >M4.8 between 200 and 650 days prior (Figure 

5-10b). These cases might call for investigating post-seismic triggers with methods similar to those 

used in studies after the Ghorka earthquake in 2015: high-resolution satellite images showed no 

outbursts despite direct impacts from landslides into lakes (Kargel et al., 2016), whereas field visits 

from Byers et al. (2017) “identified worrisome cracks near the Tsho Rolpa outlet channel”. New 

advances in capturing earthquake-related mass movements may come from recently launched 

optical satellite constellations such as Copernicus Sentinel-2 or PlanetScope CubeSat. These missions 

have resolutions of 10 and 3 m, and repeat rates of five days or even on demand (ESA, 2015; Planet 

Labs, 2018). While optical imagery may still suffer from monsoonal clouds, radar missions such as 

Sentinel-1 or ALOS-2 point the way forward: Interferometric Synthetic Aperture Radar (InSAR) can 

penetrate clouds and detect earthquake-induced horizontal and vertical displacements with 

millimeter accuracy (Klees and Massonnet, 1998). 

 

5.3.2.5. Triggers and global warming 

GLOFs have been widely expected (Bajracharya and Mool, 2010; Cook et al., 2018; Richardson 

and Reynolds, 2000) or predicted (Harrison et al., 2018) to occur more frequently with ongoing 

atmospheric warming. Attributing GLOFs to climate change needs to consider two processes 

independently of each other: One of these is the presence and growth of glacial lakes, which we may 

assume to result from climate-driven glacier melt. Following the prevailing concept in GLOF 

research, we need, second, a trigger that causes some of these emerging lakes to fail catastrophically. 

Harrison et al. (2018) proposed a theory that predicts outbursts to lag behind lake formation. In this 

theory, triggers could occur randomly in time, from a year to centuries after lakes had started to 

grow. This notion may give a hint, why the rate of GLOFs per unit time has not increased 

commensurately with the number and area of glacial lakes during my study period. If triggers are a 

prerequisite for GLOFs, but come with delay to lake formation, this could support my hypothesis 

that the number of trigger events per unit lake must have declined in the past three decades. 

Triggers could also increase their frequency with atmospheric warming. However, I assume 

that this has happened less likely in the past 30 years, at least not with a magnitude or frequency 

that could have changed GLOF frequency in the past 30 years. Ice avalanches have dominated the 

historic record of triggers (Nie et al., 2018), which are challenging to attribute to atmospheric 

warming. My search in literature could not identify whether ice avalanches may change their 

frequency with ongoing global warming and glacier retreat. Projections of less or no ice in high 

mountains (Huss et al., 2017) may ask not least, which mechanisms could trigger GLOFs when all 

ice is gone eventually. 
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One option for increasing GLOF frequencies in the future are landslides, which could occur 

more often in high mountains because of atmospheric warming (Huggel et al., 2012). A recent 

hypothesis expects that thawing permafrost at high elevations may initate a process chain, in which 

steep mountain walls become unstable, so that landslides may detach and enter meltwater lakes 

eventually (Haeberli et al., 2017). However, testing such a process cascade in the Himalayas is 

difficult, not least since few long-term, regionally distributed datasets exist for these single 

components. I also found no study that systematically analysed landslide occurrences at elevations 

>4,000 m a.s.l., which is where impacts into glacial lakes may play a role. Judging from annual 

mapping in Nepal, monsoon-induced landslides Himalayas showed no change in frequency between 

2000 and 2018 (Marc et al., 2019). Regarding atmospheric warming, Krishnan et al. (2019) found 

that “during 1901–2014, annual mean surface air temperature increased significantly in the HKH at a 

rate of about 0.104 °C/decade”, but they evaluated only climate stations outside the high mountains. 

Maps of permafrost distribution in the Himalayas only come from models with coarse spatial 

resolution (>1 km), given that “direct observations of permafrost in mountains of the HKH are sparse” 

(Gruber et al., 2017). These authors note that the minimum elevation of permafrost could be 

anywhere between 3,500 and 6,000 m a.s.l. in the Himalayas, depending on local topography, aspect 

and temperature. As a consequence, even less is known on the local changes of the lower permafrost 

limit in past decades (Fukui et al., 2007). Huggel et al. (2012) conclude that there is still no 

unambiguous evidence that the landslide frequency may increase with atmospheric warming. Yet 

glacial lakes are expected to persist for hundreds to thousands of years in mountain landscapes 

(Haeberli et al., 2017). Whether they survive long enough to become targets of possibly changing 

landslide frequencies is an essential question for future research. 

Landslides, however, could also have a non-climatic background: the 2015 Ghorka earthquake 

alone featured 5-8 times more landslides compared to the pre-earthquake period (Marc et al., 2019). 

In the Cordillera Blanca, four GLOFs from the 1970 Ancash earthquake have disproportionally added 

to the total count and average rate of GLOFs (Emmer, 2017). Earthquakes and other non-climate 

driven mass movements are essential to consider when it comes to attributing GLOFs and their 

triggers to climate change. Harrison et al. (2018) summarised this issue appropriately: “The difficulty 

of attributing individual GLOF behaviour to climate change relates to the presence of non-climatic 

factors affecting GLOF behaviour, such as moraine dam geometry and sedimentology, climate-

independent GLOF triggers (e.g. earthquakes) and the timescales related to destabilization of 

mountain slopes, producing mass movements into lakes”. I note that the baseline behaviour of GLOF 

triggers in absence of climate change remains largely unknown, given that reports on GLOFs are 

widely unsystematic before the 1980s (Ives et al., 2010; Nie et al., 2018). In any case, I recommend 
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to account for both climatic and non-climatic triggers, including their changes, when projections of 

future GLOF frequency, hazard, and risk are demanded. 

 

5.4. Robustness of the hazard framework 

Understanding the physics of regional GLOF frequencies is one of the most urgent tasks to 

quantify GLOF hazard and risk. Though I could only speculate on regional GLOF drivers in the 

previous chapters, I maintain that the regionally varying susceptibility to GLOFs directly becomes 

apparent in my hazard appraisal: regions with higher (lower) historic GLOF abundance have higher 

(lower) contemporary GLOF hazard, which I expressed as the discharge that occurs on average once 

in 100 years. The concept of the 100-year GLOF discharge may sound unfamiliar at first view, 

probably because it has not been used for this type of natural hazard in the literature before. In 

essence, my approach for estimating GLOF hazard does not deviate from other hazard appraisals for 

hydro-meteorological floods, earthquakes, tsunamis, wildfires or asteroid impacts. Clearly, 

estimating the exceedance probability of an event of a given magnitude or larger is most widely 

applied in flood hydrology. Gauging equipment often log discharge for decades, so that return 

periods for any flood discharge of interest in a catchment can be readily inferred from distributions 

fitted to the extreme values (over a threshold or in defined blocks) from the recorded data.  

For historic GLOFs, such reported values of peak discharge are less reliable, given that they 

were often measured or approximated many tens of kilometres downstream, either visually or with 

gauging equipment prone to malfunction or blackouts during such high flows. Other studies 

estimated peak discharge from hydraulic step-backwater models; critical-depth methods; 

entrainment velocities of flow-transported boulders; super-elevation geometries; or empirical 

breach relationships (Korup and Tweed, 2007). Given these different methodologies, such estimates 

of peak discharge are challenging to integrate into a single time series of peak discharge. For the 22 

newly detected GLOFs, values of peak discharge are completely missing, which–in sum–made 

applying the traditional extreme-value approach in hydrology impractical. My solution to estimate 

GLOF return periods was to combine the inferred GLOF frequencies with simulations of flood 

magnitudes from possible GLOF sources. This approach is widely used for example in tsunami 

hazard appraisals, in which historic earthquake catalogues provide the frequency, while models of 

wave propagation from rupture zones yield an estimate of tsunami magnitude (Horspool et al., 

2014). 
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5.4.1. Predictions of peak discharge 

My estimates of GLOF magnitudes hinge on simplified hydraulic principles of critical flow, 

which Walder and O’Connor (1997) expressed in a physically motivated dam break model. They 

assumed that data from 63 breached reservoirs had sufficiently well recorded breach depths, rates 

and volumes to offer sufficient confirmation of these principles. Given the challenges to measure 

peak discharge at the breach, these cases include no uncertainties or measurement errors. 

Nevertheless, I can readily implement these uncertainties as prior information in the Bayesian piece-

wise regression model that I learned from these data (Supplementary Figure 7-4). The individual 

cases therein encompass a wide range of dam and breach geometries, lake volumes, and topographic 

settings. Moraine dams are only one among eight dam types that entered this model, and this 

imbalance could explain some of the scatter of Qp* over nearly two orders of magnitude for a given 

η, the product of breach volume and released flood volume. This variance would decrease possibly, 

if applying the model solely to moraine-dammed failures. Limiting the model in this way, however, 

would also mean that we had fewer data points available, and that the posterior predictive 

distributions would likely become broader. Outbursts from landslide dams dominate the data points 

used in the model, and only two GLOFs, one from the Tien Shan and one from Midui Lake in the 

Nyainqentanglha Mountains, contributed to learning the model, because breach erosion rates had 

been rarely measured at the dam failure. Despite this caveat, the detailed compilation by O’Connor 

and Beebee (2009) demonstrated that the reported data on moraine-dammed lakes do not form any 

distinct group outside of the overall trend of natural dam failures. Any differences to landslide dams, 

for example, in terms of overall geometry, are part of the overall scatter. 

Using this model to predict Qp for any other lake of interest needs to consider a complete 

distribution of plausible breach erosion rates, particularly if no physical properties of the dam are 

known. Empirical breach erosion rates from natural dam breaks vary by more than two orders of 

magnitude (O’Connor and Beebee, 2009), so that predictions of Qp will spread across a similar or 

larger range for a given flood volume. My Bayesian approach expresses all the major uncertainties 

in the shape of its marginal posterior distributions and offers richer information than any traditional 

point estimate from an empirical discharge-rating curve could do. For the GLOF at Kedarnath, for 

example, Das et al. (2015) compared 20 predictions of best-fit or envelope-based equations, and 

found Qp–for a fixed volume and breach depth–to vary by an order of magnitude. They also compared 

the sensitivity towards input data and found lake depth to vary by 36%, whereas lake volume varied 

by 60%. In my approach, the posterior distributions of Qp, predicted for any Himalayan lake, 

explicitly propagate these uncertainties as I calculated flood volumes from lake level drops in 1-m 

steps (Supplementary Figure 7-9). 
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Validating model predictions with reported peak discharge will remain unrewarding, not least 

due to missing breach erosion rates for historical Himalayan GLOFs. Yet with increasing 

computational capacities, the inference of Qp for historic (and also newly detected) cases should 

increasingly benefit from numerical and probabilistic models that include physically plausible 

scenarios of dam failure and flood-wave routing (Watson et al., 2015; Westoby et al., 2014; Westoby 

et al., 2015). In parallel, laboratory experiments have been increasingly successful to represent some 

of the key physical boundary conditions in such models (Carrivick, 2010; Carrivick et al., 2011). Even 

without further constraining these unknowns, I was able to learn from the data both the inflection 

point and credible error margins for the model by Walder and O’Connor (1997). These uncertainties 

are essential to know for predicting GLOF hazard, but have eluded detailed treatment in the original 

(Walder and O’Connor, 1997) or subsequent publications (O’Connor and Beebee, 2009). Yet they can 

be readily implemented into the current model setup, while still maintaining its original intention 

“for rapid prediction of plausible values of peak discharge” (Walder and O’Connor, 1997). 

 

5.4.2. Size distribution of glacial lakes 

Appraising performances and improvements of this model must not distract from the regional 

and size distribution of glacial lakes, which may be even more robust indicators for GLOF hazard 

than peak discharge. In essence, my estimates of peak discharge are only a proxy for lake area with 

the goal of expressing hazard in a more tangible way than lake area alone. Assuming that my inferred 

GLOF rates are correct to first order, the regional abundance and size of glacial lakes will remain the 

main control on regional GLOF hazard, regardless of which metric we use to estimate hazard. If we 

seek for reducing uncertainties in the peak-discharge model and its input data, we could ask in the 

simplest case: what is the 100-year lake area that bursts out in the Himalayas? Such a metric of 

hazard is even more straightforward to obtain with currently available lake inventories (Table 1.1), 

and will probably only marginally change the regional distribution of hazard that I estimated. While 

single scenarios of peak discharge from my, but also any other, model remain difficult to validate, 

the large sample of 0.3 billion scenarios is what makes my regional hazard appraisal robust. 

Numerical simulations show that increasing sizes of lake impacts or flood volumes produce higher 

discharges and runouts (Frey et al., 2018; Somos-Valenzuela et al., 2016), so that hazard–ignoring 

the temporal probability for the sake of the argument–is again tied to lake volumes, and hence lake 

areas.  

A similar scaling relationship may also apply to the overdeepenings that I extracted from ice 

thickness data (Kraaijenbrink et al., 2017; Linsbauer et al., 2016). From the basic concepts in the 

associated ice flow model (inverse flow law, coupling of surface slope with local ice thickness via 
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basal shear stress), the largest glaciers in the Karakoram can be expected to erode and expose the 

largest overdeepenings, if they have completely melted in the future (Linsbauer et al., 2016). Here, 

the strongest increase of GLOF hazard is thus not surprising to see, given that the size of 

overdeepenings correlates with glacier area (Supplementary Figure 7-5). Clearly, the extent and 

depth of single overdeepenings can be prone to errors. Validation of the ice thickness model, which 

I used, with 86 in-situ measurements shows that ice thicknesses are likely underestimated by -25.7 

m on average (Frey et al., 2014). Hence, modelled depressions could be deeper than I assumed, which 

could translate into higher future GLOF hazard in some regions, if these depressions do not fill by 

sediments or dry out. In any case, given that such ice thickness models can robustly represent the 

regional distribution of overdeepenings, the present glacier areas alone may provide a first-order 

appraisal of future GLOF hazard, without any conversion to other diagnostics of flood magnitude. 

 

5.5. Conclusion and future research questions  

In this thesis, I proposed a framework for estimating GLOF hazard in the Himalayas on 

regional scales. Appraising GLOF hazard hinges on the number of observed GLOFs in a given region, 

and could be strongly underestimated, if not systematically corrected for unreported cases. In this 

spirit, I collated the first consistent GLOF inventory for the Himalayas between the late 1980s and 

2017. By more than doubling the GLOF count to a total of 38 cases since 1988, I consolidated the 

regional contrast between higher GLOF abundance in the southern regions, and comparatively fewer 

GLOFs in the northern Hindu-Kush Karakoram range. Hence, the southern parts of the Himalayas 

have a higher contemporary GLOF hazard, which is not least due to a larger number and area of 

glacial lakes today. I find that GLOF rates and the regional size distribution of glacial lakes have a 

principal control on GLOF hazard, regardless of whether we express hazard by the 100-year return 

period of GLOF peak discharge, which I introduced here, or any other quantitative metric. 

These findings raised the question of how GLOF hazard changes in the future, if glaciers keep 

retreating as they mostly did in past decades. I show that the region-wide GLOF hazard could double 

in future when all glaciers in the Himalayas have melted eventually. While this is probably no worst-

case scenario any more, I maintain that glacier melt alone could raise the risk from Himalayan GLOFs 

two- to threefold, even if the annual GLOF rate, vulnerability, and exposure were to remain 

unchanged. Given the rapidly growing population, infrastructure, and hydropower projects in the 

Himalayas, this finding quantifies to first order the purely climate-driven contribution to GLOF 

hazard and risk.  
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In this thesis, I presented an unprecedented GLOF inventory and a novel approach to estimate 

GLOF hazard. These outcomes motivate some future research directions at the interface of 

geomorphology and hazard assessment: 

 

1/ Geomorphology: What are the magnitude and frequency of GLOFs beyond the Landsat 

era? 

My evaluation of the Landsat archive covered images from the past three decades, an interval 

that is conventionally used to study the response of natural hazards to climate change. However, 

glaciers have thinned, retreated and lost mass in many regions of the Himalayas–except for the 

Karakoram–since the 1970s or even earlier (Bolch et al., 2019), a period which my methodology could 

not cover. Quantifying the response times of glacial lakes and GLOFs to climate change is not only 

essential for hazard assessment. Outburst floods from moraine-dammed lakes are major conveyors 

of sediment in the Himalayan sediment routing system, probably taking an even larger role in the 

annual sediment yield than ‘normal’ monsoon-driven floods (Cook et al., 2018). Though I gave a first 

idea on sediment redistribution by mapping such sediment tails downstream of breached lakes, a 

more detailed quantification of their geomorphic effectiveness, especially for the pre-Landsat era, 

has remained an open question in this thesis. Appraising the landscape response to GLOFs needs to 

investigate their magnitude and frequency on a longer timeframe than the past 30 years. 

Systematically extending the Himalayan GLOF inventory could make use of declassified 

satellite or aerial images to identify previously unreported cases (Komori et al., 2012; Nie et al., 

2018). Such images mostly give the geomorphic impact after the flood, which calls for field work to 

approximate the year of occurrence. Vital information on GLOF ages can come from buried trees in 

sediment deposits (Stolle et al., 2017), from flood impacts in tree rings (Ballesteros-Cánovas et al., 

2015), or from local documents or chronologies (Emmer, 2017). Estimating historic GLOF 

magnitudes needs to quantify eroded and deposited sediment volumes in river channels. For this 

purpose, a widely unexplored resource are repeated historical digitial elevation models from stereo-

photographs and aerial images (Maurer and Rupper, 2015; Maurer et al., 2016). Such an expanded 

GLOF inventory could ideally answer at least three key questions in geomorphology: (1) How do 

sediment yields from single GLOFs compare with basin-wide, monsoon-driven erosion rates in the 

Himalayas? (2) How long do mountain rivers need to evacuate sediment and, hence, recover to pre-

GLOF conditions? (3) Regarding the differences in flood volumes of GLOFs before and in the Landsat 

era (Figure 3-3b), how do magnitudes of glacier-related floods change with atmospheric warming? 
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Moving beyond the Landsat era also means to improve our understanding of future GLOF 

frequency. Given that individual GLOFs are still difficult to attribute to atmospheric warming, I find 

that learning more on outburst susceptibility of glacial lakes could be a first step forward. 

 

2/ Susceptibility: What are the factors that make glacial lakes prone to outburst? 

This thesis has put together the most complete GLOF inventory in the Himalayas, which can 

be used as a stepping stone to learn the variables that make lakes susceptible to outbursts. Statistical 

learning techniques such as logistic regression are appropriate tools to identify the predictors that 

best discriminate drained lakes from undrained lakes (McKillop and Clague, 2007). The main input 

for such models are parameters that describe lake-specific characteristics (dam type and geomeotry, 

lake size), and its surrouding topography, geology, or climate (Prakash and Nagarajan, 2017). By 

training the Random Forest model (Chapter 2.3.2) and analysing regional GLOF drivers (Chapter 

5.3.2), I already have generated or obtained many of these key variables. Learning the decisive 

variables for lake outbursts should be then readily practicable for future work. With logistic 

regression models, I can also objectively estimate the breach probabilities (or better susceptibilities) 

for the thousands of undrained lakes. These probabilities could add a vital update to the regional 

hazard model (Chapter 4). For example, simulations of peak discharge could be sampled according 

to the probability of failure from a given lake.  

Statistical modelling of outburst susceptibility is not necessarily tied to the Himalayas alone. I 

hypothesize that globally collated cases (Harrison et al., 2018) can inform such susceptibility models, 

in which regional differences in climate, for example, can be appropriately represented as another 

predicting variable. This would be a first step forward not only to objectively estimate the outburst 

probability for a recently compiled sample of 13,000 glacial lakes worldwide (Shugar et al., 2019). It 

also calls for a global application of my hazard framework. 

 

3/ Hazard and risk: How can we couple the regional estimates of the 100-year flood 

discharge to local scales? 

I infer that my presented hazard appraisal can robustly quantify GLOF return periods at 

regional scales, but comes with little information on hazard and risk on the local scale. The 100-year 

GLOF discharge hitherto quantifies the peak discharge at a breach location in the headwaters. To be 

a more useful diagnostic for practitioners, this discharge needs to be routed downstream. 

Simulations of GLOF peak discharge need to include the baseflow of high mountain rivers, possibly 

with monsoonal flood discharges adding to these peak flows. Current model frameworks can 

estimate hydro-meteorological flood discharges from freely available data on topography, rainfall 
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and river networks in fully automated manner (Sampson et al., 2015). In this regard, future work 

may aim at implementing GLOF runout models (Watson et al., 2015) as an additional module in such 

hydro-meteorological frameworks. With exposure data becoming increasingly available (Sieg, 2019), 

hazard and risk from GLOFs could hence be probabilistically estimated at finer spatial scales, from 

districts, to cities and even single houses. 
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7. Supplementary Information 

 

Supplementary Figure 7-1: Temporal and geographic coverage of Landsat imagery over the HKKHN. Data 

given in 25 km ×25 km tiles. a, Year of first available image per tile. b, Total number of images per tile. c, 

Available images per tile and year along the HKKHN. Boxes span interquartile range; medians are thick black 

lines; whiskers encompass 1.5 times the interquartile range. Blue and red boxes express years with complete and 

incomplete image coverage across all tiles. Dashed line refers to right vertical axis. 
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Supplementary Figure 7-2: Noise in Landsat images and GLOF times series. a, Summary statistics on all 

classified Landsat pixels. Black lines are the annual sums of available Landsat pixels in the HKKHN and red line 

is the annual fraction of noise (snow, ice, clouds and shadow) as classified by the Random Forest classifier. The 

fraction of noise is 58.7% across the total of 74.5 × 109 classified pixels. Grey bars on top are time intervals 

between suitable Landsat images for newly detected GLOFs, which do not correlate with the total amount of 

pixels or their noise-free fraction. b, Fraction of noise in GLOF pixel time series. Dots show newly detected 

GLOFs, represented by a randomly selected pixel that changed from water to land after the GLOF. The algorithm 

successfully extracted GLOFs in pixel time series with >70% noise, regardless of available amount of pixels in the 

time series. 20 of the 22 newly detected GLOFs happened in the monsoon season (grey dots), demonstrating that 

the algorithm can successfully bridge missing images during the periods of extended cloud cover. 
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Supplementary Figure 7-3: Posterior distributions of GLOF characteristics. Horizontal black thick line and 

dark grey shade highlight 95% highest density intervals (HDI); vertical dashed line marks zero values; modal 

values are given on top of each distribution; y-axes have arbitrary units. a, Deviations from the common mean of 

estimated (log-transformed) GLOF volumes between for the pre-Landsat era (pre-1988) and younger (post-1988) 

are credibly non-zero (the zero value is outside of the 95% HDI). b, Deviations from the common mean of 

estimated (log-transformed) GLOF volumes in the Landsat era for reported and newly detected cases cannot be 

credibly distinguished. c, Slope of Bayesian robust linear regression indicating average annual GLOF frequency 

in the HKKHN cannot be credibly distinguished from zero. d-f, Corresponding regression slopes for the Central 

Himalayas (CH), eastern Himalayas (EH), and Nyainqentanglha Mountains (NQ); none of the parts of the HKKHN 

have had credible increases in GLOF frequency since the late 1980s. 
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Supplementary Figure 7-4: Bayesian piecewise linear regression for predicting peak discharge Qp* 

from η, the product of breach rate and released flood volume (all dimensionless). Lines are mean 

predictive posteriors of 5,000 samples of piecewise models with linear increase below (dark blue) and a 

constant asymptote above (light blue) a breakpoint learned from 63 data on dam failures (black dots). Grey 

probability density estimates the posterior breakpoint locations (grey ticks). Solid black line is the median of 

predictive posteriors, and dashed envelope is piecewise 95% highest density interval. 

Supplementary Figure 7-5: Glacier area versus area of overdeepenings and Qp100. a, Glacier area correlates 

positively (on log scale) with the area of the largest projected overdeepening per glacier with a Pearson’s 

correlation coefficient of ρ = 0.685. b, Glacier area correlates positively (on log scale) with the mode of predicted 

Qp per glacier, showing a Pearson’s correlation coefficient of ρ = 0.63. 
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Supplementary Figure 7-6: Estimated probability densities of Qp for ~9,500 

projected Himalayan glacial overdeepenings. We assumed complete drainage 

and breach to the lake beds, and predicted Qp with our approach and 21 empirical 

equations complied in Das et al. (2015). Symbols refer to whether peak discharge is 

a function of breach depth h, released volume V0 or a combination of both. Estimates 

of Qp from empirical equations are consistent within ~10²-104 m³ s-1, but spreads over 

more than two orders of magnitudes for larger GLOF discharges. 

Supplementary Figure 7-7: Accuracy assessment for the present-day lake inventory. a, Empirical 

cumulative distribution function of 737 lakes that we omitted using our automatic mapping approach. Lines show 

the median, and the 25th and 75th percentiles of omitted lake areas. b, Probability density of relative area 

difference between automatically and manually mapped lakes. Blue curves account for half a pixel mapping error 

in manually mapped lakes, whereas the orange curve is without error adjustment. Colour fills are the interquartile 

ranges, and dashed lines are the medians. c, Area of automatically mapped lakes versus area of manually 

mapped lakes (n = 2,329). 
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Supplementary Figure 7-8: Area-volume relationship of bathymetrically surveyed lakes and modelled 

overdeepenings. a, Sample of 49 bathymetrically surveyed glacial lakes (light yellow circles; from Cook and 

Quincey et al., 2015). Semi-transparent black lines are a sample of 500 median predictive posteriors from 

100,000 linear models of lake area versus lake volume. Solid light green line is the median of all mean predictive 

posteriors and dashed dark green envelope is the 95% highest density interval. b, Distribution of projected 

overdeepenings after lakes above the 95% HDI and <1 m deep had been removed from the initial distribution. 
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Supplementary Figure 7-9: Scheme for predicting Qp for projected overdeepenings and present lakes. a, 

Projected overdeepenings offer well-constraint geometries in terms of lake depths and volumes. For every 1-m 

drop in lake level, we calculated the associated flood volume and predicted Qp with a piecewise Bayesian 

regression, obtaining a mixture model of Qp from equally weighted outburst scenarios. b, Present lakes only offer 

mapped surface areas, but lack information on depths and volumes. From all overdeepenings, we randomly 

sampled 50 overdeepenings within an interval around the areas of present lakes and extracted the associated 

values of Qp, obtaining again a mixture model of Qp. 
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Supplementary Table 7.1: Reported GLOFs along the HKKHN in chronological order. Estimated volumes 

were derived from digitised lake areas with empirical lake area to volume relationship (Cook and Quincey, 2015). 

Asterisks for total flood volumes denote estimates from literature. Thick line denotes the beginning of the Landsat 

era. 

ID Lake 

 

Country Basin Lat 

[°] 

Lon 

[°] 

Altitude 

[m a.s.l.] 

Date Vol. 

before 
[106 

m³] 

Vol. 

after 
[106 m³] 

Total 

flood 
vol. 

[106 m³] 

Length 

of 
impact 

track 
[km] 

Reported 

fatalities, 
damages and 

economic loss 

Reference 

1 Taraco China CH 28.30 86.13 5245 1935-08-06  
 

3* - 63* 
 

66,700 m² of 

wheat field, 
livestock 

(Ives et al., 

2010; S. S. Liu 
et al., 2014; X. 

Wang et al., 
2012) 

2 Qubixiamaco/ 
Qiongbihema 

Tsho 

China EH 27.85 88.92 4764 1940-07-10  
 

12.4* 
 

Street and 
buildings 

(S. S. Liu et al., 
2014; X. Wang 

et al., 2012) 

3 Lure Co China EH 28.27 90.59 5415 1950s  
    

(S. S. Liu et al., 
2014) 

4 Sangwangco China EH 28.24 90.11 5130 1954-07-16  
 

300* 
 

691 people and 
8,679 livestock, 

170 villages 
destroyed 

(Gurung et al., 
2017; Ives et 

al., 2010; Osti 
and Egashira, 

2009; X. Wang 
et al., 2012) 

5 Cuoalong 

glacier 

Bhutan EH 28.06 90.61 4864 1955 - 1966  
   

Devastation 28 

km 
downstream 

(Komori et al., 

2012) 

6 Tarina Tsho China EH 28.11 89.90 4274 1957  
   

Punakha Dzong 
building, 75 km 

downstream 

(Komori et al., 
2012) 

7 Bachamancha Bhutan EH 28.03 90.68 4797 1960s  
    

(Ives et al., 

2010) 

8 Longdaco China CH 28.62 85.35 5115 1964-08-28  
 

10.8* 
  

(Bajracharya et 
al., 2006; Chen 

et al., 2013) 

9 Gelhaipuco/ 

Jilaico 

China EH 27.96 87.81 5248 1964-09-21 9.64 2.27 7.36 / 

23.4* 

65.5 Nepal–China 

Highway, 12 
trucks 

(J.-J. Liu et al., 

2014; X. Wang 
et al., 2012) 

10 Damenhaico China NQ 29.87 93.04 5219 1964-09-26  
 

2* 
 

villages and 

blocked the 
Niyang River 

for 16 h 

(Ives et al., 

2010) 

11 Zhangzangbo/ 

Cirenmaco 1st 

China CH 28.07 86.07 4630 1964  
    

(J.-J. Liu et al., 

2014; Wang et 
al., 2018) 

12 name unknown Bhutan EH 27.82 89.35 4474 1966 - 1974  
    

(Komori et al., 
2012) 

13 Ayaco 1st China CH 28.35 86.49 5529 1968-08-15  
 

90* 
 

Roads and one 

concrete bridge 
damaged as far 

as 40 km away 

(J.-J. Liu et al., 

2014; X. Wang 
et al., 2012) 

14 Ayaco 2nd China CH 28.35 86.49 5529 1969-08-17  
    

(J.-J. Liu et al., 

2014; X. Wang 
et al., 2012) 

15 Ayaco 3rd China CH 28.35 86.49 5529 1970-08-18  
    

(J.-J. Liu et al., 

2014; X. Wang 
et al., 2012) 

16 Pogeco China NQ 31.74 94.73 4322 1972-07-23  
   

Few minor 
bridges 

(S. S. Liu et al., 
2014) 

17 Bogeco China NQ 31.86 94.76 4332 1974-07-06  
   

Roads, wooden 
bridges 

(S. S. Liu et al., 
2014) 

18 Nare Nepal CH 27.83 86.83 4596 1977-09-03  
 

4.9* 
 

Mini 

hydropower 
plant, bridges 

and trails 

(Buchroithner 

et al., 1982; 
Cenderelli and 

Wohl, 2001; X. 
Wang et al., 

2012) 

19 Nagma Pokhari Nepal EH 27.87 87.87 4926 1980-06-23 19.46 16.46 3 70.7 Villages 

destroyed 71 
km from 

source 

(Fujita et al., 

2013; Ives et 
al., 2010; X. 

Wang et al., 
2012) 

20 Zharico China EH 28.30 90.61 5353 1981-06-24  
   

Mills, 

hydropower 
station, 

bridges, and 
houses 

(Ives et al., 

2010; S. S. Liu 
et al., 2014; X. 

Wang et al., 
2012) 

21 Zhangzangbo/ 
Cirenmaco 2nd 

China CH 28.07 86.07 4630 1981-07-11  
 

19* 
 

Killed 200 
people, 

buildings, 
bridges and a 

hydropower 
station 

(Wang et al., 
2018) 
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22 Yindapu Co China EH 27.95 87.91 5168 1982-08-27 23.49 16.46 7.03 33.4 ~1,600 head of 

livestock, 20 ha 
of cultivated 

fields, houses 
in eight 

villages 

(Gurung et al., 

2017; S. S. Liu 
et al., 2014; Nie 

et al., 2018) 

23 Dig Tsho Nepal CH 27.87 86.59 4376 1985-08-04 9.09 6.18 2.90/ 5* 29.7 Hydroelectric 

power plant, 14 
bridges, ~30 

houses, many 
hectares of 

farmland, trail 
network 

(Cenderelli and 

Wohl, 2003; 
Vuichard and 

Zimmermann, 
1987) 

24 Guangxieco China NQ 29.47 96.50 3833 1988-07-15 8.28 2.55 5.72/ 6* 31.0 Killed 5 people 
and 50 

livestock; 18 
bridges; NY 0.1 

billion damage 

(J.-J. Liu et al., 
2014; X. Wang 

et al., 2012) 

25 Chubung Nepal CH 27.88 86.47 4615 1991-07-12  
 

0.5* - 1* 
 

Few houses (Kattelmann, 

2003; X. Wang 
et al., 2012) 

26 Luggye Tsho Bhutan EH 28.09 90.30 4511 1994-10-07 32.21 24.11 8.09 / 

17.2* 

25.6 Houses in 

different 
villages 

(Fujita et al., 

2008) 

27 Zanaco China CH 28.66 85.37 4732 1995-06-07 0.66 0.00 0.66 12.0 28 km stretch 
of a highway 

(J.-J. Liu et al., 
2014; Nie et al., 

2018) 

28 Tam Pokhari/ 

Sabai Tsho 

Nepal CH 27.74 86.84 4411 1998-09-03 10.03 4.59 5.44/ 

19.5* 

61.3 Human lives 

and more than 
NRs 156 

million 

(Ives et al., 

2010; Lamsal 
et al., 2015; 

Osti and 
Egashira, 

2009) 

29 Kongyangmi La 
Tsho 

India EH 27.90 88.78 5115 1995 11.16 2.86 8.30 7.5 n.a. (found by 
image analysis) 

(Nie et al., 
2018) 

30 Gangri Tsho III Bhutan EH 27.90 90.81 4810 1998 0.64 0.11 0.53/ 1* 10.1 n.a. (found by 
image analysis) 

(Komori et al., 
2012) 

31 Chongbaxia 

Tsho/ Longjiu 
Co 

China EH 28.21 89.74 4882 2001 18.23 9.49 8.75/ 

7.8* 

15.0 n.a. (found by 

image analysis) 

(Fujita et al., 

2013; Komori 
et al., 2012; S. 

S. Liu et al., 
2014; Nie et al., 

2018) 

32 Unnamed China NQ 29.75 96.47 5062 2005-09 2.02 0.84 1.18 5.6 n.a. (found by 

image analysis) 

(Wang et al., 

2011b) 

33 Tsho Ga/ 

Cuoga 

China NQ 30.83 94.00 4737 2009-07-29 10.46 4.56 5.90 70.9 Killed 2 people; 

destroyed 27 
kms of road, 6 

bridges; 19 

cars and 
motorcycles 

(S. S. Liu et al., 

2014; Nie et al., 
2018) 

34 Tshojo glacier Bhutan EH 28.10 90.16 4267 2009-04-29   1.47* 
 

None (Komori et al., 
2012; 

Yamanokuchi 
et al., 2011) 

35 Geiqu China EH 27.95 87.99 5488 2010 0.41 0.04 0.37 7.4 Roads and a 
bridge 

(S. S. Liu et al., 
2014) 

36 Chorabari India WH 30.75 79.06 3889 2013-06-17 0.29 0.00 0.29/ 

0.43* 

32.7 Hundreds to 

thousands of 
people, 

hydropower 
plants, roads, 

buildings 

(Allen et al., 

2016; Das et 
al., 2015) 

37 Ranzeria Co China NQ 30.47 93.53 5013 2013-07-05 13.22 4.37 8.85 62.4 Killed several 

people and 
livestock; 

concrete 
bridge; 

economic loss 
~CNY 0.25 

billion 

(Sun et al., 

2014) 

38 Lemthang Tsho Bhutan EH 28.07 89.58 4257 2015-06-28 0.72 0.00 0.72/ 
0.37* 

14.0 4 horses; 4 
bridges, 1 acre 

of land, 1 km of 
trail 

(Gurung et al., 
2017) 

39 Gongbatongsha 
Tsho 

China CH 28.08 86.06 4619 2016-07-07 0.09 0.00 0.09 8.1 Hydropower 
station 

(Cook et al., 
2018) 

40 Langmale lake Nepal CH 27.81 87.14 4790 2017-04-20 0.93 0.28 0.65 32.0 Three 

buildings, 
bridges, many 

hectares of 
farmland 

(Byers et al., 

2018) 
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Supplementary Table 7.2: Newly detected GLOFs. Period of outburst is given by the last clear image before 

and the first clear Landsat image after the GLOF. Estimated volumes were derived from digitised lake areas with 

empirical lake area to volume relationship (Cook and Quincey, 2015). 

ID Country Ba-
sin 

Lat 
[°N] 

Lon 
[°E] 

Alti-
tude 

[m.a.s.
l.] 

Date of last 
clear image 

before GLOF 

Date of next 
clear image 

after GLOF 

Vol. 
before 

[106 
m³] 

Vol. 
after 

[106 
m³] 

Total 
flood 

vol. 
[106 
m³] 

Length 
of 

impact 
track 
[km] 

1 China NQ 30.13 93.90 4,197 1976-01-04 
(KH image) 

1987-11-08 2.21 1.25 0.96 20.2 

2 China NQ 29.55 92.79 5,283 1988-10-09 1992-09-25 0.10 0.00 0.10 2.8 

3 China EH 27.97 88.89 5,433 1990-10-20 1991-10-23 8.76 4.18 4.58 38.5 

4 

(1st) 

Bhutan EH 28.09 90.33 4,706 1990-11-14 1991-09-30 1.61 0.38 1.22 2.4 

5 China NQ 29.75 96.56 5,122 1992-09-04 1992-09-20 15.32 5.20 10.12 13.6 

6 India EH 27.56 88.11 4,717 1992-09-23 1993-10-28 0.96 0.29 0.67 9.0 

7 Pakistan HKK 36.03 73.20 4,555 1993-08-06 1996-10-01 0.07 0.01 0.06 16.6 

8 China CH 30.34/ 
30.36 

82.14/ 
82.12 

5,451 1993-10-31 1994-10-02 6.61 2.21 4.40 10.9 

9 China CH 28.66 85.48 5,199 1995-11-01 1996-10-02 1.65 0.48 1.17 19.3 

10 India EH 27.70 92.39 5,060 1996-10-15 1997-10-02 1.12 0.15 0.97 19.0 

11 Bhutan EH 27.90 90.42 5,130 1997-11-01 1998-11-04 0.46 0.01 0.45 17.2 

12 Nepal CH 27.96 86.78 5,003 1998-11-02 1999-08-01 0.10 0.00 0.10 3.2 

13 China CH 28.14 85.92 4,858 2001-10-24 2003-09-28 0.35 0.35 NA 4.4 

14 Pakistan HKK 36.61 73.90 3,778 2002-08-23 2004-08-12 2.03 0.04 1.99 13.4 

15 China NQ 30.68 94.32 4,118 2002-10-24 2003-10-11 2.29 1.77 0.51 4.5 

16 China NQ 29.63 93.55 4,660 2002-11-09 2004-10-21 0.65 0.27 0.38 9.4 

17 Bhutan EH 28.28 90.23 5,302 2007-11-21 2008-09-20 28.76 23.05 5.71 35.8 

18 
(2nd) 

Myanmar NQ 28.32 97.84 4,187 2008-11-12 2009-10-14 1.08 0.84 0.24 2.3 

19 Bhutan EH 28.09 90.33 4,705 2009-11-18 2010-10-04 1.28 0.85 0.43 1.3 

20 China NQ 30.54 94.94 3,876 2013-10-23 2014-11-27 0.78 0.00 0.78 8.0 

21 China CH 30.31 82.20 5,534 2015-09-26 2016-09-12 4.98 2.79 2.18 10.2 

22 China EH 27.94 87.90 5,494 2015-10-09 2015-10-25 1.73 0.69 1.04 9.4 
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Supplementary Table 7.3: Estimated 100-year GLOFs for present and projected future meltwater lakes. 

 Contemporary 

Qp100 [m3 s-1] 

Possible future Qp100 

[m3 s-1] 

Pooled estimate of present 

and future Qp100  [m3 s-1] 

Average 

contemporary GLOF 

rate [n yr-1] 

All regions 20,607 +2219/-2320 41,817 +5,423/-4,723 31,169 +4,347/-3,413 1.26 

Hindu Kush 786 +206/-166 1,587 +366/-489 1,091 +259/-263 0.06  

Karakoram 831 +233/-203 2,782 +873/-656 2,610 +736/-646 0.06  

Western Himalaya 136 +213/-215 271 +465/-718 90 +458/-458 0.03  

Central Himalaya 3,940 +768/-568 5,991 +893/-1,101 5,289 +1,102/-826 0.19  

Eastern Himalaya 18,159 +2,757/-2217 25,930 +3,891/-3,233 21,493 +2,858/-2,675 0.71  

Nyainqentanglha 5,283 +789/-895 10,566 +2,017/-1,634 7,362 +1,303/-1168 0.23  

Hengduan Shan 3,708 +712/-596 7,600 +1,371/-1,053 5,049 +970/-971 0.13  

 


	Title
	Imprint

	Abstract
	Zusammenfassung
	Table of Contents
	1. Introduction
	1.1. Climate Change in the Himalayas
	1.2. Outburst floods from moraine-dammed lakes
	1.3. Frequency of Himalayan GLOFs
	1.4. GLOF hazard assessment in the Himalayas
	1.5. Research questions and structure of the thesis
	1.6. Author Contributions

	2. Detecting Himalayan Glacial Lake Outburst Floods from Landsat time series
	2.1. Introduction
	2.2. Study area
	2.3. Data and Methods
	2.3.1. Data
	2.3.2. The processing chain
	2.3.2.1. Data preprocessing
	2.3.2.2. Step 1: Random Forest classification
	2.3.2.3. Step 2: Outburst detection from pixel time series


	2.4. Results
	2.4.1. Accuracy of land cover maps
	2.4.2. Optimal time steps for change-point detection
	2.4.3. Accuracy of water change maps
	2.4.4. Detection of GLOFs

	2.5. Discussion
	2.5.1. Data quality
	2.5.2. Quality of fuzzy land cover maps
	2.5.3. Challenges of change-point detection

	2.6. Conclusions

	3. Unchanged frequency of moraine-dammed glacial lake outburst floods in the Himalaya
	3.1. Main article
	3.2. Methods

	4. Current and future hazard of Himalayan meltwater floods
	4.1. Main article
	4.2. Methods

	5. Discussion
	5.1. Advances and challenges from a Landsat-based GLOF inventory
	5.1.1. Quantity and quality of Landsat images
	5.1.2. Limits of detection
	5.1.3. The minimum size of a GLOF from a hazard perspective

	5.2. Validating and extracting key diagnostics of GLOFs
	5.2.1. Distinguishing GLOFs from other types of flow
	5.2.2. Flood volumes
	5.2.3. Impact tracks and geomorphic work

	5.3. Drivers of GLOF frequency on global and regional scales
	5.3.1. Comparing Himalayan with South American GLOF frequencies
	5.3.2. Regional drivers for Himalayan GLOFs
	5.3.2.1. Distribution and age of glacial lakes
	5.3.2.2. Climate and glaciers
	5.3.2.3. Regional topography and rainfall
	5.3.2.4. Earthquakes
	5.3.2.5. Triggers and global warming


	5.4. Robustness of the hazard framework
	5.4.1. Predictions of peak discharge
	5.4.2. Size distribution of glacial lakes

	5.5. Conclusion and future research questions

	6. Bibliography
	7. Supplementary Information

